The Nitrogen Cycle Used by Permission

Total Page:16

File Type:pdf, Size:1020Kb

The Nitrogen Cycle Used by Permission Dr. L. Deegan, www.dryas.mbl.edu/research/clue/default.htm The nitrogen cycle Used by permission Nitrogen is cycled through air, water and and change them into nitrogen gas (N2). soil, undergoing many transformations Denitrification is an anaerobic process, made possible by the actions of taking place when no oxygen or specialized bacteria. extremely low concentrations of oxygen are available. Denitrification also The term “organic nitrogen” is used to requires a source of carbon. describe a nitrogen compound that had its origin in living material. Nitrogen is Nitrogen gas is very plentiful and makes found in protein and urea which is a up about 80 percent of the earth’s byproduct of protein digestion. When a atmosphere (oxygen accounts for plant or animal dies or an animal slightly less than 20 percent). excretes waste, organic nitrogen is released. Anammox bacteria are unique in their ability to convert ammonium and nitrite Bacteria use various forms of nitrogen to directly to nitrogen gas without the need survive and in the process convert for oxygen or a carbon source. organic nitrogen into ammonia (NH3) or + ammonium (NH4 ), a process called Atmospheric nitrogen gas becomes a ammonification. source of nitrogen for plants, but it must first be processed into a usable form, a The addition of oxygen allows different function again performed mostly by bacteria to convert ammonium to nitrite bacteria. The bacteria combine nitrogen - (NO2 ), and still other bacteria to change with hydrogen to produce ammonia - the nitrite to nitrate (NO3 ) during which they then convert further using nitrification. The need for oxygen enzymes to make their own organic defines nitrification as an aerobic compounds. An example is the process. Rhizobium bacteria that lives in legume plant root nodules. Plants can also Denitrification happens when other absorb nitrate or ammonium ions from bacteria take the nitrites and nitrates the soil via their root hairs. .
Recommended publications
  • Municipal Wastewater Denitrification Evaluation City of Windom, Minnesota
    Municipal Wastewater Denitrification Evaluation City of Windom, Minnesota July 29, 2016 – Revised November 4, 2016 Bolton & Menk, Inc. Project No. T22.109023 Prepared by: Submitted by: Bolton & Menk, Inc. 12224 Nicollet Blvd Burnsvillle, MN 55337 P: 952-890-0509 F: 952-890-8065 wq-wwtp5-91 MUNICIPAL WASTEWATER DENITRIFICATION EVALUATION CITY OF WINDOM, MINNESOTA JULY 2016 BMI Project No. T22.109023 I hereby certify that this plan, specification or report was prepared by me or under my direct supervision, and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota. Signature: Typed or Printed Name: Lana Tullis, P.E. Date: July 29, 2016 Lic. No. 41450 I hereby certify that this plan, specification or report was prepared by me or under my direct supervision, and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota. Signature: Typed or Printed Name: Herman Dharmarajah, Ph.D., P.E. Date: July 29, 2016 Lic. No. 18256 I hereby certify that this plan, specification or report was prepared by me or under my direct supervision, and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota. BOLTON & MENK, INC. CONSULTING ENGINEERS AND LAND SURVEYORS This page intentionally left blank. TABLE OF CONTENTS SECTION 1 INTRODUCTION ............................................................................................... 1-1 A. Project Background ........................................................................................ 1-1 B. Nitrate Standards
    [Show full text]
  • Human Alteration of the Global Nitrogen Cycle
    What is Nitrogen? Human Alteration of the Nitrogen is the most abundant element in Global Nitrogen Cycle the Earth’s atmosphere. Nitrogen makes up 78% of the troposphere. Nitrogen cannot be absorbed directly by the plants and animals until it is converted into compounds they can use. This process is called the Nitrogen Cycle. Heather McGraw, Mandy Williams, Suzanne Heinzel, and Cristen Whorl, Give SIUE Permission to Put Our Presentation on E-reserve at Lovejoy Library. The Nitrogen Cycle How does the nitrogen cycle work? Step 1- Nitrogen Fixation- Special bacteria convert the nitrogen gas (N2 ) to ammonia (NH3) which the plants can use. Step 2- Nitrification- Nitrification is the process which converts the ammonia into nitrite ions which the plants can take in as nutrients. Step 3- Ammonification- After all of the living organisms have used the nitrogen, decomposer bacteria convert the nitrogen-rich waste compounds into simpler ones. Step 4- Denitrification- Denitrification is the final step in which other bacteria convert the simple nitrogen compounds back into nitrogen gas (N2 ), which is then released back into the atmosphere to begin the cycle again. How does human intervention affect the nitrogen cycle? Nitric Oxide (NO) is released into the atmosphere when any type of fuel is burned. This includes byproducts of internal combustion engines. Production and Use of Nitrous Oxide (N2O) is released into the atmosphere through Nitrogen Fertilizers bacteria in livestock waste and commercial fertilizers applied to the soil. Removing nitrogen from the Earth’s crust and soil when we mine nitrogen-rich mineral deposits. Discharge of municipal sewage adds nitrogen compounds to aquatic ecosystems which disrupts the ecosystem and kills fish.
    [Show full text]
  • Nitrogen Metabolism in Phytoplankton - Y
    MARINE ECOLOGY – Nitrogen Metabolism in Phytoplankton - Y. Collos, J. A. Berges NITROGEN METABOLISM IN PHYTOPLANKTON Y. Collos Laboratoire d'Hydrobiologie CNRS, Université Montpellier II, France J. A. Berges School of Biology and Biochemistry, Queen's University of Belfast, UK Keywords: uptake, reduction, excretion, proteases, chlorophyllases, cell death. Contents 1. Introduction 2. Availability and use of different forms of nitrogen 2.1 Nitrate 2.2. Nitrite 2.3. Ammonium 2.4. Molecular N2 2.5. Dissolved organic N (DON) 2.6. Particulate nitrogen (PN) 3. Assimilation pathways 4. Accumulation and storage 4.1. Inorganic compounds 4.2. Organic compounds 5. Nutrient classification and preferences 6. Plasticity in cell composition 7. Overflow mechanisms: excretion and release processes 8. Recycling of N within the cell 9. Degradation pathways 9.1. Requirements for and roles of degradation 9.2. How is degradation accomplished? 9.3. Variation in degradation 9.4. Pathogenesis and Cell Death 10. From uptake to growth: time-lag phenomena 11. Relationships with carbon metabolism 12. Future directions AcknowledgementsUNESCO – EOLSS Glossary Bibliography SAMPLE CHAPTERS Biographical Sketches Summary Phytoplankton use a large variety of nitrogen compounds and are extremely well adapted to fluctuating environmental conditions by a high capacity to change their chemical composition.Degradation and turnover of nitrogen within phytoplankton is essential for many processes including normal cell maintenance, acclimations to changes in light, salinity, and nutrients, and cell defence against pathogens. The ©Encyclopedia of Life Support Systems (EOLSS) MARINE ECOLOGY – Nitrogen Metabolism in Phytoplankton - Y. Collos, J. A. Berges pathways by which N degradation is accomplished are very poorly understood, but based on work in higher plant species, protein degradation is likely to be of central importance.
    [Show full text]
  • Nitrogen Removal Training Program
    Nitrogen Removal Training Program Module 1 Nitrogen in the Aquatic Environment • Forms of Nitrogen and Nitrogen Transformations • Nitrogen in Surface Waters • Water Quality Impacts of Nitrogen Discharges • Nitrogen in Wastewater Module 1 Transparency 1 Nitrogen Removal Training Program Module 1 Forms of Nitrogen and Nitrogen Transformations Module 1 Transparency 2 Forms of Nitrogen in the Environment Unoxidized Forms Oxidized Forms of Nitrogen of Nitrogen Nitrite (NO -) • Nitrogen Gas (N2) • 2 + Nitrate (NO -) • Ammonia (NH4 , NH3) • 3 • Organic Nitrogen (urea, • Nitrous Oxide (N2O) amino acids, peptides, proteins, etc...) • Nitric Oxide (NO) • Nitrogen Dioxide (NO2) Module 1 Transparency 3 Nitrogen Fixation • Biological Fixation - Use of atmospheric nitrogen by certain photosynthetic blue-green algae and bacteria for growth. Nitrogen Gas Organic Nitrogen (N2) • Lightning Fixation - Conversion of atmospheric nitrogen to nitrate by lightning. lightning Nitrogen Gas + Ozone Nitrate - (N2) (O3)(NO3 ) • Industrial Fixation - Conversion of nitrogen gas to ammonia and nitrate-nitrogen (used in the manufacture of fertilizers and explosives). Module 1 Transparency 4 Biological Nitrogen Fixation Nitrogen Gas (N2) Bacteria Blue-green Algae Organic N Organic N Certain blue-green algae and bacteria use atmospheric nitrogen to produce organic nitrogen compounds. Module 1 Transparency 5 Atmospheric Fixation Lightning converts Nitrogen Gas and Ozone to Nitrate. Nitrogen Gas Nitrate Module 1 Transparency 6 Industrial Fixation N2 Nitrogen gas is converted to ammonia and nitrate in the production of fertilizer and explosives. NH3 - NO3 Module 1 Transparency 7 Ammonification and Assimilation Ammonification - Conversion of organic nitrogen to ammonia-nitrogen resulting from the biological decomposition of dead plant and animal tissue and animal fecal matter.
    [Show full text]
  • Human Alteration of the Global Nitrogen Cycle: Causes And
    Published by the Ecological Society of America Number 1, Spring 1997 Causes andConsequences Human Alterationofthe Issues in EcologyGlobal NitrogenCycle: Photo by Nadine Cavender Issues in Ecology Number 1 Spring 1997 Human Alteration of the Global Nitrogen Cycle: Causes and Consequences SUMMARY Human activities are greatly increasing the amount of nitrogen cycling between the living world and the soil, water, and atmosphere. In fact, humans have already doubled the rate of nitrogen entering the land-based nitrogen cycle, and that rate is continuing to climb. This human-driven global change is having serious impacts on ecosystems around the world because nitrogen is essential to living organisms and its availability plays a crucial role in the organization and functioning of the worlds ecosystems. In many ecosystems on land and sea, the supply of nitrogen is a key factor controlling the nature and diversity of plant life, the population dynamics of both grazing animals and their predators, and vital ecologi- cal processes such as plant productivity and the cycling of carbon and soil minerals. This is true not only in wild or unmanaged systems but in most croplands and forestry plantations as well. Excessive nitrogen additions can pollute ecosystems and alter both their ecological functioning and the living communities they support. Most of the human activities responsible for the increase in global nitrogen are local in scale, from the production and use of nitrogen fertilizers to the burning of fossil fuels in automobiles, power generation plants, and industries. However, human activities have not only increased the supply but enhanced the global movement of various forms of nitrogen through air and water.
    [Show full text]
  • Redalyc.DENITRIFICATION of WASTEWATER TREATMENT PLANT EFFLUENT USING ANAEROBIC BACTERIAL BED REACTOR IMMERSED: OPERATING PERFO
    Journal of Urban and Environmental Engineering E-ISSN: 1982-3932 [email protected] Universidade Federal da Paraíba Brasil Sylla, Aboubacar; Fatima Ezzahra, Aboussabiq; Najwa, Hassou; Rihani, Mohamed; Jamal, Amine; Omar, Assobhei; Samira, Etahiri DENITRIFICATION OF WASTEWATER TREATMENT PLANT EFFLUENT USING ANAEROBIC BACTERIAL BED REACTOR IMMERSED: OPERATING PERFORMANCE Journal of Urban and Environmental Engineering, vol. 11, núm. 2, julio-diciembre, 2017, pp. 208-218 Universidade Federal da Paraíba Paraíba, Brasil Available in: http://www.redalyc.org/articulo.oa?id=283255970009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Journal of Urban and Environmental Journal of Urban and E Engineering, v.11, n.2, p.208-218 Environmental Engineering ISSN 1982-3932 J www.journal-uee.org E doi: 10.4090/juee.2017.v11n2.208218 U DENITRIFICATION OF WASTEWATER TREATMENT PLANT EFFLUENT USING ANAEROBIC BACTERIAL BED REACTOR IMMERSED: OPERATING PERFORMANCE Aboubacar Sylla*, Aboussabiq Fatima Ezzahra, Hassou Najwa, Mohamed Rihani, Amine Jamal, Assobhei Omar and Etahiri Samira BIOMARE Laboratory, Biology Department, Faculty of Science, University Chouaib Doukkali, P.O. Box 20, El Jadida 2400, Morocco. Received 27 August 2016; received in revised form 02 May 2017; accepted 05 July 2017 Abstract: In this study, a heterotrophic denitrification was designed for domestic wastewater treatment with unexpected water flows at different loading rates. Benefited from excellent removal ability COD, shorten operating time and lower maintenance cost. During the time of operation (six months), injection of nitrate was made in the influent RALBI 1 while the RALBI 2 was fed with sewage without addition of nitrate.
    [Show full text]
  • Carbon–Nitrogen Interactions in Idealized Simulations with JSBACH (Version 3.10)
    Geosci. Model Dev., 10, 2009–2030, 2017 www.geosci-model-dev.net/10/2009/2017/ doi:10.5194/gmd-10-2009-2017 © Author(s) 2017. CC Attribution 3.0 License. Carbon–nitrogen interactions in idealized simulations with JSBACH (version 3.10) Daniel S. Goll1,a, Alexander J. Winkler2,3, Thomas Raddatz2, Ning Dong3,5, Ian Colin Prentice4,6, Philippe Ciais1, and Victor Brovkin2 1Le Laboratoire des Sciences du Climat et de l’Environnement, IPSL-LSCE CEA/CNRS/UVSQ Saclay, Gif sur Yvette, France 2Max Planck Institute for Meteorology, Hamburg, Germany 3International Max Planck Research School on Earth System Modeling, Hamburg, Germany 4Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia 5Faculty of Agriculture and Environment, Department of Environmental Sciences, University of Sydney, NSW 2006, Australia 6AXA Chair in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK aformerly at: Max Planck Institute for Meteorology, Hamburg, Germany Correspondence to: Daniel S. Goll ([email protected]) Received: 17 December 2016 – Discussion started: 9 January 2017 Revised: 7 April 2017 – Accepted: 14 April 2017 – Published: 22 May 2017 Abstract. Recent advances in the representation of soil car- The strengths of the land carbon feedbacks of the re- −1 bon decomposition and carbon–nitrogen interactions imple- cent version of JSBACH, with βL D 0:61 Pgppm and γL D mented previously into separate versions of the land sur- −27:5 Pg ◦C−1, are 34 and 53 % less than the averages of face scheme JSBACH are here combined in a single version, CMIP5 models, although the CMIP5 version of JSBACH which is set to be used in the upcoming 6th phase of coupled simulated βL and γL, which are 59 and 42 % higher than model intercomparison project (CMIP6).
    [Show full text]
  • Nitrogen Transformations in Wetlands: Effects of Water Flow Patterns
    S£ 9807//6 Nitrogen transformations in wetlands: Effects of water flow patterns Department of Ecology Limnology Lund University, Sweden Lund 1997 DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document. Organization Document name LUND UNIVERSITY DOCTORAL DISSERTATION Department ofEcology Limnology Date of Issue November 14. 1997 S-223 62 Lund Sweden SE-LUNBDS/NBLL-97/1032-t-l 14pp Authors) Sponsoring organization Torbjorn Davidsson Title and subtitle Nitrogen transformations in wetlands: Effects of water Bow patterns Abstract In this thesis, 1 have studied nitrogen turnover processes in watermcadows. A watcrmcadow is a wetland where water infiltrates through the soil of a grassland field. It is hypothesized that infiltration of water through the soil matrix promotes nutrient transformations compared to surface flow of water, by increasing the contact between water, nutrients, soil organic matter and bacteria. 1 have studied how the balance between nitrogen removal (denitrification, assimilative uptake, adsorption) and release (mineralization, desorption) processes arc affected by water How characteristics. Mass balance studies and direct denitrification measurements at two field sites showed that, although denitrification was high, net nitrogen removal in the watermcadows was poor. This was dueto release of ammonium and dissolved organic nitrogen (DON) from the soils. In laboratory studies, using ,5 N isotope techniques, I have shown that nitrogen turnover is considerably affected by hydrological conditions and by soil type. Infiltration increased virtually all the nitrogen processes, due to deeper penetration of nitrate and oxygen, and extended zones of turnover processes. On the contrary, soils and sediments with surface waterflow, diffusion is the main transfer mechanism.
    [Show full text]
  • Effects of Phosphorus on Nitrification Process in a Fertile Soil Amended
    agriculture Article Effects of Phosphorus on Nitrification Process in a Fertile Soil Amended with Urea Jianfeng Ning 1,2,*, Yuji Arai 2 , Jian Shen 1, Ronghui Wang 1 and Shaoying Ai 1,* 1 Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China; [email protected] (J.S.); [email protected] (R.W.) 2 Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; [email protected] * Correspondence: [email protected] (J.N.); [email protected] (S.A.) Abstract: While the effects of carbon on soil nitrogen (N) cycle have been extensively studied, it is not clearly understood how co-existing macronutrients, such as phosphorus (P), affect the N cycle in agroecosystems. In this study, P amendment effects on nitrification in a fertile agricultural soil were investigated under a typical N-P amendment rate. In a laboratory incubation study, soils were amended with urea, monopotassium phosphate and a mixture of urea and monopotassium phosphate at the same rate. In soils that received no amendments (control), P only, urea only, and urea plus P amendment, nitrification occurred within the first five days, with an average net nitrification rate of 5.30, 5.77, 16.66 and 9.00 mg N kg−1d−1, respectively. Interestingly, nitrification in urea-treated soils was retarded by P addition where a N:P ratio seemed to be a key factor impeding nitrification.
    [Show full text]
  • Biogeochemistry of Wetlands Nitrogen
    Institute of Food and Agricultural Sciences (IFAS) Biogeochemistry of Wetlands SiScience an dAd App litilications NITROGEN Wetland Biogeochemistry Laboratory Soil and Water Science Department University of Florida Instructor : Patrick Inglett [email protected] 6/22/20086/22/2008 P.W.WBL Inglett1 1 Nitrogen Introduction N Forms, Distribution, Importance Basic processes of N Cycles Examples of current research Examples of applications Key points learned 6/22/2008 P.W. Inglett 2 1 Nitrogen Learning Objectives Identify the forms of N in wetlands Understand the importance of N in wetlands/global processes Define the major N processes/transformations Understand the importance of microbial activity in N transformations Understand the potential regulators of N processes See the application of N cycle principles to understanding natural and man-made ecosystems 6/22/2008 P.W. Inglett 3 Nitrogen Cycling Plant biomass N N2 NH3 N2 N2O (g) Litterfall Nitrogen Fixation Volatilization Mineralization. Water - Nitrification + + NO3 NH4 Organic N NH4 Column AEROBIC - Plant Peat NO3 + + [NH4 ]s uptake accretion [NH4 ]s Denitrification ANAEROBIC Microbial + Organic N Biomass N Adsorbed NH4 N2, N2O (g) 6/22/2008 P.W. Inglett 4 2 Forms of Nitrogen Organic Nitrogen Inorganic Nitrogen + • Proteins • Ammonium (NH4 ) - • Amino Sugars • Nitrate N (NO3 ) - • Nucleic Acids • Nitrite N (NO2 ) • Urea • Nitrous ox ide (N2O) • Dinitrogen (N2) 6/22/2008 P.W. Inglett 5 N Transformations Solid Gaseous Phase: Phase: Particulate N N2 + Bound: NH4 N2O - - NO3 NO2 Aqueous Phase: + NH4 DON - DIN NO3 - Particulate N NO2 6/22/2008 P.W. Inglett 6 3 Reservoirs of Nitrogen Lithosphere 163,600 x 1018 g Atmosphere 3,860 x 1018 g Hydrosphere 23 x 1018 g Biosphere 0.28 x 1018 g 6/22/2008 P.W.
    [Show full text]
  • Minimization of N2O Emission Through Intermittent Aeration in a Sequencing Batch Reactor (SBR): Main Behavior and Mechanism
    water Article Minimization of N2O Emission through Intermittent Aeration in a Sequencing Batch Reactor (SBR): Main Behavior and Mechanism Tang Liu 1, Shufeng Liu 1,*, Shishi He 2, Zhichao Tian 2 and Maosheng Zheng 2 1 College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; [email protected] 2 College of Environmental Science and Technology, North China Electric Power University, Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing 102206, China; [email protected] (S.H.); [email protected] (Z.T.); [email protected] (M.Z.) * Correspondence: [email protected]; Tel.: +86-10-62754292 Abstract: To explore the main behavior and mechanism of minimizing nitrous oxide (N2O) emission through intermittent aeration during wastewater treatment, two lab-scale sequencing batch reac- tors operated at intermittently aerated mode (SBR1), and continuously aerated mode (SBR2) were established. Compared with SBR2, the intermittently aerated SBR1 reached not only a higher total nitrogen removal efficiency (averaged 93.5%) but also a lower N2O-emission factor (0.01–0.53% of influent ammonia), in which short-cut nitrification and denitrification were promoted. Moreover, less accumulation and consumption of polyhydroxyalkanoates, a potential endogenous carbon source promoting N2O emission, were observed in SBR1. Batch experiments revealed that nitrifier denitrifi- cation was the major pathway generating N2O while heterotrophic denitrification played as a sink of N2O, and SBR1 embraced a larger N2O-mitigating capability. Finally, quantitative polymerase chain reaction results suggested that the abundant complete ammonia oxidizer (comammox) ele- vated in the intermittently aerated environment played a potential role in avoiding N2O generation during wastewater treatment.
    [Show full text]
  • External Carbon Sources for Nitrogen Removal
    United States Environmental Protection Agency August 2013 Wastewater Treatment Fact Sheet: External Carbon Sources for Nitrogen Removal DESCRIPTION Discharge permits for publicly owned treatment There are two major sources of organic carbon works (POTWs) and industries often include utilized in wastewater treatment operations. effluent limits for nutrients, including nitrogen. The sources are defined with respect to Total maximum daily loads (TMDLs) for whether they originate within the influent nutrients have and are being developed for many wastewater entering the treatment facility or water bodies throughout the United States. The are provided as an external supplemental TMDLs and resultant waste load allocations to carbon source added to the treatment system. protect impaired water bodies have resulted in Carbon sources are termed external when the more stringent effluent limits for total nitrogen. carbon substrate is sourced from outside the wastewater treatment process i.e., it is not In order to achieve very low total nitrogen limits derived from the influent wastewater or any of less than 6 mg/l through biological onsite treatment processes at the treatment denitrification, a readily biodegradable carbon facility. External supplemental carbon sources source must be available for the denitrifying are brought into the wastewater treatment organisms to use. A supplemental external process usually as pure compounds or high carbon source is often required when organic strength waste materials where concentrations material in the wastewater has been oxidized. can be as high as 1.5 g/L chemical oxygen This is especially true in denitrification processes demand (COD) to facilitate nutrient removal. that are located after the aeration process such Internal carbon sources refer to organic as post or second anoxic zone and denitrifying carbon substrates obtained either within filters.
    [Show full text]