Quantization of Emergent Gravity

Total Page:16

File Type:pdf, Size:1020Kb

Quantization of Emergent Gravity Preprint typeset in JHEP style - HYPER VERSION arXiv:1312.0580 Quantization of Emergent Gravity Hyun Seok Yang Center for Quantum Spacetime, Sogang University, Seoul 121-741, Korea E-mail: [email protected] Abstract: Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the elec- tromagnetic force can always be eliminated by a local coordinate transformation as far as spacetime admits a symplectic structure, in other words, a microscopic spacetime becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC spacetime, this picture of emergent gravity suggests a completely new quantization scheme where quan- tum gravity is defined by quantizing spacetime itself, leading to a dynamical NC spacetime. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background independent formulation where spacetime as well as matter fields is equally emergent from a universal vacuum of quantum gravity. Keywords: Models of Quantum Gravity, Gauge-Gravity Correspondence, arXiv:1312.0580v4 [hep-th] 24 Dec 2014 Non-Commutative Geometry. Contents 1. Introduction 1 2. U(1) gauge theory on Poisson manifold 8 3. Deformation quantization 16 4. Noncommutative gauge theory 24 5. Emergent gravity from U(1) gauge fields 32 5.1 Interlude for local life 32 5.2 Equivalence principle and Riemann normal coordinates 40 5.3 Fedosov manifolds and global deformation quantization 42 5.4 Generalization to Poisson manifolds 55 5.5 Towards a global geometry 59 6. Noncommutative geometry and quantum gravity 68 6.1 Quantum geometry and matrix models 68 6.2 Emergent time 74 6.3 Matrix representation of Poisson manifolds 79 6.4 Noncommutative field theory representation of AdS/CFT correspondence 83 7. Discussion 88 A. Darboux coordinates and NC gauge fields 91 B. Modular vector fields and Poisson homology 93 C. Jet bundles 98 1. Introduction This paper grew out of the author’s endeavor, after fruitful interactions with his colleagues, to clarify certain aspects of the physics of emergent gravity [1, 2, 3] proposed by the author himself a few years ago. The most notable feedbacks (including some confusions and fallacies) may be classified into three categories: (I) Delusion on noncommutative (NC) spacetime, (II) Prejudice on quantization, (III) Globalization of emergent geometry. – 1 – Let us first defend an authentic picture from the above actions (I) and (II). But we have to confess our opinion still does not win a good consensus. (III) will be one of main issues addressed in this paper. We start with the discussion why we need to change our mundane picture about gravity and spacetime if emergent gravity picture makes sense. According to the general theory of relativity, gravity is the dynamics of spacetime geometry where spacetime is realized as a (pseudo-)Riemannian manifold and the gravitational field is represented by a Riemannian metric [4, 5]. Therefore the dynamical field in gravity is a Riemannian metric over spacetime and the fluctuations of metric necessarily turn a (flat) background spacetime into a dynamical structure. Since gravity is associated to spacetime curvature, the topology of spacetime enters general relativity through the fundamental assumption that spacetime is organized into a (pseudo-)Riemannian manifold. A main lesson of general relativity is that spacetime itself is a dynamical entity. The existence of gravity introduces a new physical constant, G. The existence of the gravitational constant G, together with another physical constants c and ~ originated from the special relativity and quantum mechanics, implies that spacetime at a certain scale G~ −33 known as the Planck length LP = 3 = 1.6 10 cm, is no longer commuting, instead c × spacetime coordinates obey the commutationq relation [yµ,yν]= iθµν . (1.1) Note that the NC spacetime (1.1) is a close pedigree of quantum mechanics which is the i i formulation of mechanics on NC phase space [x ,pj] = i~δj. Once Richard Feynman said (The Character of Physical Law, 1967) “I think it is safe to say that no one understands quantum mechanics”. So we should expect that the NC spacetime similarly brings about a radical change of physics. Indeed a NC spacetime is much more radical and mysterious than we thought. However we understood the NC spacetime too easily. The delusion (I) on NC spacetime is largely rooted to our naive interpretation that the NC spacetime (1.1) is an extra structure (induced by B fields) defined on a preexisting spacetime. This naive picture inevitably brings about the interpretation that the NC spacetime (1.1) necessarily breaks the Lorentz symmetry. See the introduction in [6] for the criticism of this viewpoint. One of the reasons why the NC spacetime (1.1) is so difficult to understand is that the concept of space is doomed and the classical space should be replaced by a state in a complex vector space . Since the NC spacetime (1.1), denoted by R2n, is equivalent to H θ the Heisenberg algebra of n-dimensional harmonic oscillator, the Hilbert space in this H case is the Fock space (see eq. (6.2)). Since the Hilbert space is a complex linear vector H space, the superposition of two states must be allowed which necessarily brings about the interference of states as in quantum mechanics. We may easily be puzzled by a gedanken experiment that mimics the two slit experiment or Einstein-Podolsky-Rosen experiment in quantum mechanics. Furthermore any object defined on the NC spacetime R2n becomes O θ an operator acting on the Hilbert space . Thus we can represent the object in the Fock H O space , i.e., End( ). Since the Fock space has a countable basis, the representation H O∈ H of End( ) is given by an N N matrix where N = dim( ) [7, 8, 9]. In the case at O ∈ H × H – 2 – hand, N . This is the point we completely lose the concept of space. And this is the →∞ pith of quantum gravity to define the final destination of spacetime. To our best knowledge, quantum mechanics is the more fundamental description of nature. Hence quantization, understood as the passage from classical physics to quantum physics, is not a physical phenomenon. The world is already quantum and quantization is only our poor attempt to find the quantum theoretical description starting with the classical description which we understand better. The same philosophy should be applied to a NC spacetime. In other words, spacetime at a microscopic scale, e.g. LP , is intrinsically NC, so spacetime at this scale should be replaced by a more fundamental quantum algebra such as the algebra of N N matrices denoted by N . Therefore the usual classical spacetime × A does not exist a priori. Rather it must be derived from the quantum algebra like classical mechanics is derived from quantum mechanics. But the reverse is not feasible. In our case the quantum algebra is given by the algebra N of N N matrices. Since N = End( ), A × A ∼ H it is isomorphic to an operator algebra θ acting on the Hilbert space . The algebra A H θ is NC and generated by the Heisenberg algebra (1.1). The spacetime structure derived A from the NC ⋆-algebra θ is dubbed emergent spacetime. But this emergent spacetime A is dynamical, so gravity will also be emergent via the dynamical NC spacetime because gravity is the dynamics of spacetime geometry. It is called emergent gravity. But it turns out [1, 2, 3] that the dynamical NC spacetime is defined as a deformation of the NC spacetime (1.1) (see eq. (6.1)) and the deformation is related to U(1) gauge fields on the NC spacetime (1.1). This picture will be clarified in section 4. In this emergent gravity picture, any spacetime structure is not assumed a priori but defined by the theory. That is, the theory of emergent gravity must be background independent. Hence it is necessary to define a configuration in the algebra θ, for instance, A like eq. (1.1), to generate any kind of spacetime structure, even for flat spacetime. A beautiful picture of emergent gravity is that the flat spacetime is emergent from the Moyal- Heisenberg algebra (1.1). See section 6.2 for the verification. Many surprising results immediately come from this dynamical origin of flat spacetime [2, 3], which is absent in general relativity. As a result, the global Lorentz symmtry, being an isometry of flat spacetime, is emergent too. If true, the NC spacetime (1.1) does not break the Lorentz symmetry. Rather it is emergent from the NC spacetime (1.1). This is the picture how we correct the delusion (I). The dynamical system is described by a Poisson manifold (M,θ) where M is a differ- entiable manifold whose local coordinates are denoted by yµ µ = 1, , d = dim(M) and · · · the Poisson structure 1 ∂ ∂ θ = θµν Γ(Λ2T M) (1.2) 2 ∂yµ ∂yν ∈ ^ is a (not necessarily nondegenerate) bivector field on M. Quantum mechanics is defined by quantizing the Poisson manifold (M,θ) where M is the phase space of particles with local µ i coordinates y = (x ,pi). Let us call it ~-quantization. Similarly the NC spacetime (1.1) is defined by quantizing the Poisson manifold (M,θ) where M is a spacetime manifold, e.g., M = R2n and yµ’s are local spacetime coordinates. Let us call it θ-quantization. The first order deviation of the quantum or NC multiplication from the classical one is given by the – 3 – Poisson bracket of classical observables.
Recommended publications
  • Lectures on Differential Geometry Math 240C
    Lectures on Differential Geometry Math 240C John Douglas Moore Department of Mathematics University of California Santa Barbara, CA, USA 93106 e-mail: [email protected] June 6, 2011 Preface This is a set of lecture notes for the course Math 240C given during the Spring of 2011. The notes will evolve as the course progresses. The starred sections are less central to the course, and may be omitted by some readers. i Contents 1 Riemannian geometry 1 1.1 Review of tangent and cotangent spaces . 1 1.2 Riemannian metrics . 4 1.3 Geodesics . 8 1.3.1 Smooth paths . 8 1.3.2 Piecewise smooth paths . 12 1.4 Hamilton's principle* . 13 1.5 The Levi-Civita connection . 19 1.6 First variation of J: intrinsic version . 25 1.7 Lorentz manifolds . 28 1.8 The Riemann-Christoffel curvature tensor . 31 1.9 Curvature symmetries; sectional curvature . 39 1.10 Gaussian curvature of surfaces . 42 1.11 Matrix Lie groups . 48 1.12 Lie groups with biinvariant metrics . 52 1.13 Projective spaces; Grassmann manifolds . 57 2 Normal coordinates 64 2.1 Definition of normal coordinates . 64 2.2 The Gauss Lemma . 68 2.3 Curvature in normal coordinates . 70 2.4 Tensor analysis . 75 2.5 Riemannian manifolds as metric spaces . 84 2.6 Completeness . 86 2.7 Smooth closed geodesics . 88 3 Curvature and topology 94 3.1 Overview . 94 3.2 Parallel transport along curves . 96 3.3 Geodesics and curvature . 97 3.4 The Hadamard-Cartan Theorem . 101 3.5 The fundamental group* .
    [Show full text]
  • 3. Introducing Riemannian Geometry
    3. Introducing Riemannian Geometry We have yet to meet the star of the show. There is one object that we can place on a manifold whose importance dwarfs all others, at least when it comes to understanding gravity. This is the metric. The existence of a metric brings a whole host of new concepts to the table which, collectively, are called Riemannian geometry.Infact,strictlyspeakingwewillneeda slightly di↵erent kind of metric for our study of gravity, one which, like the Minkowski metric, has some strange minus signs. This is referred to as Lorentzian Geometry and a slightly better name for this section would be “Introducing Riemannian and Lorentzian Geometry”. However, for our immediate purposes the di↵erences are minor. The novelties of Lorentzian geometry will become more pronounced later in the course when we explore some of the physical consequences such as horizons. 3.1 The Metric In Section 1, we informally introduced the metric as a way to measure distances between points. It does, indeed, provide this service but it is not its initial purpose. Instead, the metric is an inner product on each vector space Tp(M). Definition:Ametric g is a (0, 2) tensor field that is: Symmetric: g(X, Y )=g(Y,X). • Non-Degenerate: If, for any p M, g(X, Y ) =0forallY T (M)thenX =0. • 2 p 2 p p With a choice of coordinates, we can write the metric as g = g (x) dxµ dx⌫ µ⌫ ⌦ The object g is often written as a line element ds2 and this expression is abbreviated as 2 µ ⌫ ds = gµ⌫(x) dx dx This is the form that we saw previously in (1.4).
    [Show full text]
  • Hamilton's Ricci Flow
    The University of Melbourne, Department of Mathematics and Statistics Hamilton's Ricci Flow Nick Sheridan Supervisor: Associate Professor Craig Hodgson Second Reader: Professor Hyam Rubinstein Honours Thesis, November 2006. Abstract The aim of this project is to introduce the basics of Hamilton's Ricci Flow. The Ricci flow is a pde for evolving the metric tensor in a Riemannian manifold to make it \rounder", in the hope that one may draw topological conclusions from the existence of such \round" metrics. Indeed, the Ricci flow has recently been used to prove two very deep theorems in topology, namely the Geometrization and Poincar´eConjectures. We begin with a brief survey of the differential geometry that is needed in the Ricci flow, then proceed to introduce its basic properties and the basic techniques used to understand it, for example, proving existence and uniqueness and bounds on derivatives of curvature under the Ricci flow using the maximum principle. We use these results to prove the \original" Ricci flow theorem { the 1982 theorem of Richard Hamilton that closed 3-manifolds which admit metrics of strictly positive Ricci curvature are diffeomorphic to quotients of the round 3-sphere by finite groups of isometries acting freely. We conclude with a qualitative discussion of the ideas behind the proof of the Geometrization Conjecture using the Ricci flow. Most of the project is based on the book by Chow and Knopf [6], the notes by Peter Topping [28] (which have recently been made into a book, see [29]), the papers of Richard Hamilton (in particular [9]) and the lecture course on Geometric Evolution Equations presented by Ben Andrews at the 2006 ICE-EM Graduate School held at the University of Queensland.
    [Show full text]
  • GEOMETRIC INTERPRETATIONS of CURVATURE Contents 1. Notation and Summation Conventions 1 2. Affine Connections 1 3. Parallel Tran
    GEOMETRIC INTERPRETATIONS OF CURVATURE ZHENGQU WAN Abstract. This is an expository paper on geometric meaning of various kinds of curvature on a Riemann manifold. Contents 1. Notation and Summation Conventions 1 2. Affine Connections 1 3. Parallel Transport 3 4. Geodesics and the Exponential Map 4 5. Riemannian Curvature Tensor 5 6. Taylor Expansion of the Metric in Normal Coordinates and the Geometric Interpretation of Ricci and Scalar Curvature 9 Acknowledgments 13 References 13 1. Notation and Summation Conventions We assume knowledge of the basic theory of smooth manifolds, vector fields and tensors. We will assume all manifolds are smooth, i.e. C1, second countable and Hausdorff. All functions, curves and vector fields will also be smooth unless otherwise stated. Einstein summation convention will be adopted in this paper. In some cases, the index types on either side of an equation will not match and @ so a summation will be needed. The tangent vector field @xi induced by local i coordinates (x ) will be denoted as @i. 2. Affine Connections Riemann curvature is a measure of the noncommutativity of parallel transporta- tion of tangent vectors. To define parallel transport, we need the notion of affine connections. Definition 2.1. Let M be an n-dimensional manifold. An affine connection, or connection, is a map r : X(M) × X(M) ! X(M), where X(M) denotes the space of smooth vector fields, such that for vector fields V1;V2; V; W1;W2 2 X(M) and function f : M! R, (1) r(fV1 + V2;W ) = fr(V1;W ) + r(V2;W ), (2) r(V; aW1 + W2) = ar(V; W1) + r(V; W2), for all a 2 R.
    [Show full text]
  • Differential Geometry Lecture 17: Geodesics and the Exponential
    Differential geometry Lecture 17: Geodesics and the exponential map David Lindemann University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670 3. July 2020 David Lindemann DG lecture 17 3. July 2020 1 / 44 1 Geodesics 2 The exponential map 3 Geodesics as critical points of the energy functional 4 Riemannian normal coordinates 5 Some global Riemannian geometry David Lindemann DG lecture 17 3. July 2020 2 / 44 Recap of lecture 16: constructed covariant derivatives along curves defined parallel transport studied the relation between a given connection in the tangent bundle and its parallel transport maps introduced torsion tensor and metric connections, studied geometric interpretation defined the Levi-Civita connection of a pseudo-Riemannian manifold David Lindemann DG lecture 17 3. July 2020 3 / 44 Geodesics Recall the definition of the acceleration of a smooth curve n 00 n γ : I ! R , that is γ 2 Γγ (T R ). Question: Is there a coordinate-free analogue of this construc- tion involving connections? Answer: Yes, uses covariant derivative along curves. Definition Let M be a smooth manifold, r a connection in TM ! M, 0 and γ : I ! M a smooth curve. Then rγ0 γ 2 Γγ (TM) is called the acceleration of γ (with respect to r). Of particular interest is the case if the acceleration of a curve vanishes, that is if its velocity vector field is parallel: Definition A smooth curve γ : I ! M is called geodesic with respect to a 0 given connection r in TM ! M if rγ0 γ = 0. David Lindemann DG lecture 17 3.
    [Show full text]
  • Differential Geometry Lecture 18: Curvature
    Differential geometry Lecture 18: Curvature David Lindemann University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670 14. July 2020 David Lindemann DG lecture 18 14. July 2020 1 / 31 1 Riemann curvature tensor 2 Sectional curvature 3 Ricci curvature 4 Scalar curvature David Lindemann DG lecture 18 14. July 2020 2 / 31 Recap of lecture 17: defined geodesics in pseudo-Riemannian manifolds as curves with parallel velocity viewed geodesics as projections of integral curves of a vector field G 2 X(TM) with local flow called geodesic flow obtained uniqueness and existence properties of geodesics constructed the exponential map exp : V ! M, V neighbourhood of the zero-section in TM ! M showed that geodesics with compact domain are precisely the critical points of the energy functional used the exponential map to construct Riemannian normal coordinates, studied local forms of the metric and the Christoffel symbols in such coordinates discussed the Hopf-Rinow Theorem erratum: codomain of (x; v) as local integral curve of G is d'(TU), not TM David Lindemann DG lecture 18 14. July 2020 3 / 31 Riemann curvature tensor Intuitively, a meaningful definition of the term \curvature" for 3 a smooth surface in R , written locally as a graph of a smooth 2 function f : U ⊂ R ! R, should involve the second partial derivatives of f at each point. How can we find a coordinate- 3 free definition of curvature not just for surfaces in R , which are automatically Riemannian manifolds by restricting h·; ·i, but for all pseudo-Riemannian manifolds? Definition Let (M; g) be a pseudo-Riemannian manifold with Levi-Civita connection r.
    [Show full text]
  • Chapter 7 Geodesics on Riemannian Manifolds
    Chapter 7 Geodesics on Riemannian Manifolds 7.1 Geodesics, Local Existence and Uniqueness If (M,g)isaRiemannianmanifold,thentheconceptof length makes sense for any piecewise smooth (in fact, C1) curve on M. Then, it possible to define the structure of a metric space on M,whered(p, q)isthegreatestlowerboundofthe length of all curves joining p and q. Curves on M which locally yield the shortest distance between two points are of great interest. These curves called geodesics play an important role and the goal of this chapter is to study some of their properties. 489 490 CHAPTER 7. GEODESICS ON RIEMANNIAN MANIFOLDS Given any p M,foreveryv TpM,the(Riemannian) norm of v,denoted∈ v ,isdefinedby∈ " " v = g (v,v). " " p ! The Riemannian inner product, gp(u, v), of two tangent vectors, u, v TpM,willalsobedenotedby u, v p,or simply u, v .∈ # $ # $ Definition 7.1.1 Given any Riemannian manifold, M, a smooth parametric curve (for short, curve)onM is amap,γ: I M,whereI is some open interval of R. For a closed→ interval, [a, b] R,amapγ:[a, b] M is a smooth curve from p =⊆γ(a) to q = γ(b) iff→γ can be extended to a smooth curve γ:(a ", b + ") M, for some ">0. Given any two points,− p, q →M,a ∈ continuous map, γ:[a, b] M,isa" piecewise smooth curve from p to q iff → (1) There is a sequence a = t0 <t1 < <tk 1 <t = b of numbers, t R,sothateachmap,··· − k i ∈ γi = γ ! [ti,ti+1], called a curve segment is a smooth curve, for i =0,...,k 1.
    [Show full text]
  • Estimates on the Metric Tensor
    Estimates on the Metric Tensor David Glickenstein February 14, 2000 1. Intro duction. This is a summary of some easy estimates on the metric tensor of a manifold if the sectional curvatures are b ounded. It generally follows [1, section 1.8]. 2. De nitions. We will estimate derivatives of the metric in geo desic p olar co ordinates. Supp ose wehave a Riemannian manifold M; g. We consider geo desic p olar co ordinates, 2 2 i j and in these co ordinates the metric can b e written as g = dr + r g i j d d . We also are going to need to take a geo desic ton M which is parametrized by arclength, 0 and we will say that P = 0, Q = r , and T t= t. 0 In the sequel, we shall talk ab out vector elds V along the curve . When we write V t, it is understo o d to mean r V t, where r is the Riemannian connection on M . T t We shall also restrict ourselves to r such that r is in the ball around P where exp is P a di eomorphism inside the injectivity radius. 3. Relevant Theorems. We will use Jacobi elds and the Index Inequality. We rst should de ne the Index of a vector eld. De nition 3.1. The index at r of a vector eld V t along a curve is Z r 0 0 I V; V = [gV t;V t + g RT t;V tT t;V t] dt r 0 d where T t= is the tangential vector eld to .
    [Show full text]
  • Arxiv:1406.5413V3
    The tangent bundle exponential map and locally autoparallel coordinates for general connections on the tangent bundle with application to Finsler geometry Christian Pfeifer∗ Institute for theoretical physics,Leibniz Universit¨at Hannover, Appelstrasse 2, 30167 Hannover, Germany We construct a tangent bundle exponential map and locally autoparallel coordinates for geometries based on a general connection on the tangent bundle of a manifold. As concrete application we use these new coordinates for Finslerian geometries and obtain Finslerian geodesic coordinates. They generalise normal coordinates known from metric geometry to Finsler geometric manifolds and it turns out that they are identical to the Douglas-Thomas normal coordinates introduced earlier. We expand the Finsler Lagrangian of a Finsler space- time in these new coordinates and find that it is constant to quadratic order. The quadratic order term comes with the non-linear curvature of the manifold. From physics these coor- dinates may be interpreted as the realisation of an Einstein elevator in Finslerian spacetime geometries. I. INTRODUCTION Locally autoparallel coordinates respectively locally geodesic coordinates constructed with help of the exponential map are an important tool in metric and affine connection geometry for various proofs, calculations and derivations. Their most valuable properties are that the connection coeffi- cients vanish at the origin of the coordinate system and that autoparallels of the affine connection respectively geodesics become straight lines. In gravitational physics the existence of coordinates arXiv:1406.5413v3 [math-ph] 27 Nov 2015 which are optimally adapted to the Lorentzian metric geometry of spacetime, Riemann normal coordinates, is interpreted as the realization of the Einstein equivalence principle.
    [Show full text]
  • Normal Modes. the True Story
    Normal modes. The true story. Emil Zak∗ Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK (Dated: January 20, 2016) I. INTRODUCTION KEO in arbitrary curvlinear coordinates was introduced by Yachmenev and Yurchenko [3] and successfully ap- The aim of this article is a comprehensive description plied to four-atomic systems by Chubb, Yachmenev and of normal modes of molecular vibrations. The starting Yurchenko [4]. Parallel analytic progress in the field has point is chosen to be a general molecular system with been made by Szalay [5], [6]. Several authors: Tennyson separated center of mass and an arbitrary embedding of et al. [7], [8], Jensen [9], Csaszar [10] and others also body-fixed axes. This allows to focus on internal de- succeeded to evaluate practical representations for many- grees of freedom only, leaving the problem of rotational body Hamiltonians in an arbitrary embedding of the motion behind. Nevertheless, for the sake of complete- body-fixed frame. In each of these cases one is theoreti- ness we first introduce a general quantum-mechanical cally able to linearize the internal coordinates and subse- Hamiltonian in Eckart-Watson representation, to make quently transfer into normal modes level. Nonetheless we a quick leap into a simplified harmonic description for shall follow the historically first attempt due to its strong internal motion and rigid rotor for rotational degrees of association with normal coordinates. After separating freedom. This regime constitutes a basis for more sophis- the nuclear center of mass, and moving into the Eckart ticated calculations. The first section introduces normal frame which guarantees minimal rotation-vibration cou- modes with emphasis on mathematical precision.
    [Show full text]
  • Introduction to RIEMANNIAN GEOMETRY
    Introduction to RIEMANNIAN GEOMETRY Gert Heckman Radboud University Nijmegen [email protected] May 23, 2019 1 Contents Preface 2 1 Classical Differential Geometry 5 1.1 SmoothCurvesinEuclideanSpace . 5 1.2 Submanifolds of Euclidean Space . 7 1.3 Geodesics on Submanifolds of Euclidean Space . 9 1.4 HypersurfacesinEuclideanSpace . 10 2 Vector Bundles and Connections 13 2.1 TensorProducts.......................... 13 2.2 VectorBundles .......................... 16 2.3 Connections ............................ 18 2.4 CurvatureofaConnection . 22 2.5 ParallelTransportandHolonomy . 26 2.6 FundamentalGroup ....................... 28 2.7 FlatConnectionsandMonodromy. 34 3 Riemannian Geometry 38 3.1 Riemannian Manifolds . 38 3.2 Levi-Civita Connection and Riemann Curvature . 41 3.3 SectionalCurvature. 47 3.4 RicciCurvature .......................... 50 3.5 Geodesics ............................. 53 3.6 TheSecondFundamentalForm . 60 3.7 TheLaplace–Beltramioperator . 65 3.8 Historicalremarks......................... 68 2 Preface These are lecture notes for an introductory course on Riemannian geometry. The readers are supposed to be familiar with the basic notions of the theory of smooth manifolds, such as vector fields and their flows, differential forms, integration of volume forms and the theorem of Stokes. This material has been covered in the first semester of the third year by Ioan M˘arcut [15]. In addition, it will be helpful if the readers are familiar with the classical differential geometry of curves (the formulas of Frenet) and surfaces (various curvatures and the Theorema Egregium on the intrinsic nature of the Gauss curvature) in R3. Such a course is offered at our university in the second semester of the second year, based on a book by Andrew Pressley [19] and lecture notes by the author [11].
    [Show full text]
  • Arxiv:Gr-Qc/9712092V2 20 Dec 1999
    DESY 97-254 ANL-HEP-PR-97-99 MZ-TH/97-38 A Closed Formula for the Riemann Normal Coordinate Expansion Uwe M¨uller Institut f¨ur Physik, Johannes-Gutenberg-Universit¨at Mainz, Staudingerweg 7, D-55099 Mainz, Germany e-mail: [email protected] Christian Schubert High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815, USA and Institut f¨ur Physik, Humboldt Universit¨at zu Berlin, Invalidenstr. 110, D-10115 Berlin, Germany e-mail: [email protected] Anton E. M. van de Ven II Institut f¨ur Theoretische Physik, Universit¨at Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany e-mail: [email protected] arXiv:gr-qc/9712092v2 20 Dec 1999 Abstract We derive an integral representation which encodes all coeffi- cients of the Riemann normal coordinate expansion and also a closed formula for those coefficients. In gauge theory, one often uses Fock-Schwinger gauge [1, 2] to achieve manifest covari- ance in the calculation of effective actions, anomaly densities, or other quantities. Fock- Schwinger gauge “centered at 0” can be defined by the condition µ y Aµ(y) = 0. (1) Locally in some neighbourhood of 0, this condition can be solved in terms of the following integral representation connecting the gauge potential and the field strength tensor [3, 4], 1 ρ Aµ(y)= y dvvFρµ(vy) (2) Z0 (see our eqs. (9-13)). More explicitly, in this gauge one can express the coefficients of the Taylor expansion of A at x = 0 in terms of the covariant derivatives of F , ∞ n ∞ n (y · ∂x) ρ (y · Dx) ρ Aµ(y)= y Fρµ(0) = y Fρµ(0).
    [Show full text]