“On the Supernova Breakout in the Bdhn GRB 190114C”, March 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Morphology of the X-Ray Afterglows and of the Jetted Gev Emission in Long Grbs
MNRAS 000,1– ?? (2020) Preprint 17 March 2021 Compiled using MNRAS LATEX style file v3.0 The morphology of the X-ray afterglows and of the jetted GeV emission in long GRBs R. Ruffini,1;2;5;7;14 R. Moradi,1;2;15? J. A. Rueda,1;2;4;8;16 L. Li,1;2;15 N. Sahakyan,1;6 Y.-C. Chen,1;2 Y. Wang,1;2;15 Y. Aimuratov,1;2;9 L. Becerra,1;2;17 C. L. Bianco,1;2;16 C. Cherubini,1;3;11 S. Filippi,1;3;10 M. Karlica,1;2 G. J. Mathews,1;12 M. Muccino,13 G. B. Pisani,1;2 and S. S. Xue1;2 1 ICRANet, Piazza della Repubblica 10, I-65122 Pescara, Italy 2 ICRA, Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Roma, Italy 3 ICRA, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, I-00128 Rome, Italy 4 ICRANet-Ferrara, Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I–44122 Ferrara, Italy 5 ICRANet-Rio, Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290–180 Rio de Janeiro, Brazil 6 ICRANet-Armenia, Marshall Baghramian Avenue 24a, Yerevan 0019, Republic of Armenia 7 Université de Nice Sophia-Antipolis, Grand Château Parc Valrose, Nice, CEDEX 2, France 8 Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I–44122 Ferrara, Italy 9 Fesenkov Astrophysical Institute, Observatory 23, 050020 Almaty, Kazakhstan 10 Department of Engineering, University Campus Bio-Medico of Rome, Nonlinear Physics and Mathematical Modeling Lab, Via Alvaro del Portillo 21, 00128 Rome, Italy 11 Department of Science and Technology for Humans and the Environment and Nonlinear Physics and Mathematical Modeling Lab, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy 12 Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN, 46556, USA 13 Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, I-00044 Frascati, Italy 14 INAF, Viale del Parco Mellini 84, 00136 Rome, Italy 15 INAF – Osservatorio Astronomico d’Abruzzo,Via M. -
Discovery of Grbs at Tev Energies
Major Progress in Understanding of GRBs: Discovery of TeraelectronVolt Gamma-Ray Emission Razmik Mirzoyan On behalf of the MAGIC Collaboration Max-Planck-Institute for Physics Munich, Germany This year we celebrate the 30 year jubilee of ground-based VHE g-ray astronomy • The first 9s detection of the Crab Nebula marked the birth of the VHE g-ray astronomy as an independent branch of astronomy • This detection was reported by the 10m diameter Whipple IACT team in Arizona, lead by the pioneer of VHE g-ray astronomy Trevor Weekes, in 1989 • With the detection of the first gigantic signal from the GRB190114C (in the first 30 s the gamma-ray rate was x 100 Crab!) we want to celebrate the 30 years jubilee of VHE g-ray astronomy ! 25th of July 2019, 36th ICRC, Razmik Mirzoyan: GRBs: Discovery of TeV 2 Madison, WI, USA Gamma-Ray Emission The Astronomer’s Telegram Offline analyses revealed signal > 50 s 25th of July 2019, 36th ICRC, Razmik Mirzoyan: GRBs: Discovery of TeV 3 Madison, WI, USA Gamma-Ray Emission Gamma Ray Bursts • Most powerful, violent, distant explosions in the Universe • 2 different populations, short and long bursts • Long GRBs: T > ~ 2s; massive star collapse > ultra-relativistic jet • Recent detection of a gravitational wave signal consistent with a binary neutron star merger and associated to a short GRB • Both long and short GRBs have been detected at E < 100 GeV • No strict division in time between prompt and afterglow 25th of July 2019, 36th ICRC, Razmik Mirzoyan: GRBs: Discovery of TeV 4 Madison, WI, USA Gamma-Ray Emission Past Hint from a GRB @ E ≥ 20 TeV AIROBICC & GRB 920925c Padilla et al., 1998 • AIROBICC in 1990’s was an air Cherenkov integrating array of 7x7 40cm Ø PMT-based stations covering ≥ 32000m2 • From GRB 920925c one expected 0.93 events while 11 were observed. -
Link to the Live Plenary Sessions
IWARA2020 Video Conference Mexico City time zone, Mexico 9th International Workshop on Astronomy and Relativistic Astrophysics 6 – 12 September, 2020 Live Plenary Talks Program SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY DAYS/HOUR 06/09/2020 07/09/2020 08/09/2020 09/09/2020 10/09/2020 11/09/2020 12/09/2020 COSMOLOGY, DE MMA, DE, DM, CCGG COMPSTARS, DM, GWS DENSE MATTER, QCD DM, DE, GWS, BHS DENSE MATTER, SNOVAE ARCHAEOASTRONOMY TOPICS DM, COMPACT STARS X- & CR- RAYS, MWA PARTICLES, ϒ-RAYS QGP, QFT, HIC, GWS GRAVITATION, GALAXIES DM, COMPACT STARS BHS, GRBS, SNOVAE GRAVITY, BHS, GWS NSS, SNOVAE, GRAVITY QCD, HIC, SNOVAE DM, COSMOLOGY EROSITA DE, BHS, COSMOLOGY LIVE PLENARY TALKS PETER HESS & THOMAS BOLLER & STEVEN GULLBERG & PETER HESS & Steven Gullberg & LUIS UREÑA-LOPEZ & PETER HESS & MODERATORS CESAR ZEN GABRIELLA PICCINELLI CESAR ZEN THOMAS BOLLER Luis Ureña-Lopes BENNO BODMANN CESAR ZEN 07:00 WAITING ROOM WAITING ROOM WAITING ROOM WAITING ROOM WAITING ROOM WAITING ROOM WAITING ROOM 07:45 OPENING 08:00 R. SACAHUI P. SLANE A. SANDOVAL S. FROMENTEAU G. PICCINELLI V. KARAS F. MIRABEL60’ 08:30 M. GAMARRA U. BARRES G. WOLF J. RUEDA R. XU J. STRUCKMEIER60’ 09:00 ULLBERG ARRISON ANAUSKE ENEZES EXHEIMER S. G D. G M. H D. M 60’ V. D D. ROSIŃSKA 09:30 V. ORTEGA G. ROMERO D. VASAK D. PAGE J. AICHELIN M. VARGAS 10:00 – CONFERENCE-BREAK: VIDEO-SYNTHESIS OF RECORDED VIDEOS LIVE SPOTLIGHTS TALKS MODERATORS MARIANA VARGAS MAGAÑA & GABRIELLA PICCINELLI 10:15 J. HORVATH Spotlight Session 1 SPOTLIGHT SESSION 2 Spotlight Session 3 Spotlight Session 4 Spotlight Session 5 SPOTLIGHT SESSION 6 MARCOS MOSHINSKY 10:45 AWARD 11:15 – CONFERENCE-BREAK: VIDEO-SYNTHESIS OF RECORDED VIDEOS LIVE PLENARY TALKS PETER HESS & THOMAS BOLLER & STEVEN GULLBERG & PETER HESS & Steven Gullberg & LUIS UREÑA-LOPEZ & PETER HESS & MODERATORS CESAR ZEN GABRIELLA PICCINELLI CESAR ZEN THOMAS BOLLER Luis Ureña-Lopes BENNO BODMANN CESAR ZEN C. -
Vatican Observatory N E W S L E T T
vatican observatory NEWSLETTER Spring 2012 embracing, encouraging and promoting scientific study VOF Honors Benefactors at Circles of Giving Awards Dinner DID YOU KNOW? German Jesuit Christoph Cla- vius’s viewing of the total solar eclipse of 1560 made him de- cide that astronomy would be his life's work? He went on to write numerous textbooks and Rich Friedrich and Peter Moore was the senior mathematician on Fr. DiUlio and Marianne Augustine of the Pacific Western Foundation the commission for the reform of On February 24, 2012, the Vatican Observatory Foundation honored friends and benefactors who have so the calendar in 1582. The Vatican generously supported the work of the Vatican Observatory over time. Each year as donors reach a certain Observatory Foundation rec- lifetime giving level, they achieve a Circle of Giving designation and are recognized and thanked publicly ognizes his contribution to the by the President and Board of Directors as well as their fellow benefactors and friends. Each Circle of Giv- field by welcoming benefactors of ing is named in honor of one of the exceptional individuals connected with astronomy, the Society of Jesus $10,000 to the Christoph Clavius and the Vatican Observatory. At this year’s dinner four honorees were present to receive awards from Circle of Giving. Foundation President Fr. Albert J. DiUlio, S.J., and Board Chairman, Richard J. Friedrich. They included Christoph Clavius Bill Ahmanson of The Ahmanson Foundation; Marianne Augustine; Peter Moore of the Pacific Western Foundation; and Dan Cracchiolo of The Steele Foundation, whose award was accepted by his sister, Rose Collins. -
Icranet Activities with Brazil
ICRANet activities with Brazil ICRANet-IRAP PhD Fellowships to Brazilian Students pp. 1-17 Part 1 CAPES-ICRANet Program I cycle – 2013-2016 Part 2 p. 19 2. a – IRAP Ph. D. Program pp. 21-27 2. b – Postdoctoral Program in Europe/Asia pp. 29-42 2. c – Postdoctoral Program in Brazil pp. 43-54 2. d – Senior Visitors in Brazil pp. 55-66 2. e – Senior Visitors in Europe/Asia pp. 67-78 0 1. ICRANet-IRAP PhD Fellowships to Brazilian Students index - de Barros, Gustavo 3 - Pereira, Jonas Pedro 7 - Sversut Arsioli, Bruno 11 - Gomes de Oliveira, Fernanda 15 - Maiolino, Tais 17 1 2 de Barros, Gustavo Position: IRAP PhD – Fifth Cycle, 2006-09 Current position: Professor Adjunto Centro Universitário da Zona Oeste – OEZO Publications: -) Patricelli, B.; Bernardini, M. G.; Bianco, C. L.; Caito, L.; de Barros, G.; Izzo, L.; Ruffini, R.; Vereshchagin, G. V.; “Analysis of GRB 080319B and GRB 050904 within the Fireshell Model: Evidence for a Broader Spectral Energy Distribution”; The Astrophysical Journal, 756 (2012), id. 16; DOI: 10.1088/0004- 637X/756/1/16 -) Bianco, C. L.; Amati, L.; Bernardini, M. G.; Caito, L.; De Barros, G.; Izzo, L.; Patricelli, B.; Ruffini, R.; “The class of ``disguised'' short GRBs and its implications for the Amati relation”; Memorie della Società Astronomica Italiana Supplement, 21 (2012), 139. -) Patricelli, B.; Bernardini, M. G.; Bianco, C. L.; Caito, L.; de Barros, G.; Izzo, L.; Ruffini, R.; Vereshchagin, G.; “High Energetic Gamma Ray Bursts and Their Spectral Properties Within the Fireshell Model”; International Journal of Modern Physics: Conference Series, 12 (2012), pp. -
A Proposed Italian Contribution to the Mirax Scientific Payload 51
IL NUOVO CIMENTO Vol. 34 C, N. 3 Maggio-Giugno 2011 DOI 10.1393/ncc/i2011-10867-0 Colloquia: Scineghe2010 A proposed Italian contribution to the MIRAX Scientific Payload L. Amati(1),M.Feroci(2),F.Frontera(3), C. Labanti(1),A.Vacchi(4), A. Argan(5), R. Campana(2),E.Costa(2), R. Ruffini(6), I. Bombaci(7), E. Del Monte(2), I. Donnarumma(2), A. Drago(3), Y. Evangelista(2), R. Farinelli(3), G. Ghirlanda(8),G.Ghisellini(8),C.Guidorzi(3), F. Fuschino(1), F. Lazzarotto(2), D. Lazzati(9),P.Malcovati(10), M. Marisaldi(1), E. Morelli(1),F.Muleri(2), M. Orlandini(1), L. Pacciani(2), E. Pian(11),M.Rapisarda(2),A.Rubini(2), R. Salvaterra(12), P. Soffitta(2), L. Titarchuk(3),A.Traci(1), A. Rashevsky(4),G.Zampa(4),N.Zampa(4), N. Auricchio(1),A.Basili(1),E.Caroli(1),E.Maiorano(1),N.Masetti(1), L. Nicastro(1), E. Palazzi(1),S.Silvestri(1), J. B. Stephen(1)andJ. Braga(13) (1) INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica - Bologna, Italy (2) INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica - Rome, Italy (3) Universit`a di Ferrara - Ferrara, Italy (4) INFN, Sezione di Trieste - Trieste, Italy (5) INAF, sede centrale - Rome, Italy (6) International Center for Relativistic Astrophysics Network (ICRANet) - Pescara, Italy (7) Universit`adiPisa-Pisa,Italy (8) INAF, Osservatorio Astronomico di Brera - Merate, Italy (9) North Carolina State University - Raleigh, NC, USA (10) Universit`a di Pavia - Pavia, Italy (11) INAF, Osservatorio Astronomico di Trieste - Trieste, Italy (12) Universit`a dell’Insubria - Como, Italy (13) Instituto Nacional de Pesquisas Espaciais (INPE) - Sao Jos`e dos Campos, Brazil (ricevuto il 25 Febbraio 2011) Summary. -
GRB 190114C: an Upgraded Legend Arxiv:1901.07505V2 [Astro-Ph.HE] 25 Mar 2019
GRB 190114C: An Upgraded Legend Yu Wang1;2, Liang Li 1, Rahim Moradi 1;2, Remo Ruffini 1;2;3;4;5;6 1ICRANet, P.zza della Repubblica 10, 65122 Pescara, Italy. 2ICRA and Dipartimento di Fisica, Sapienza Universita` di Roma, P.le Aldo Moro 5, 00185 Rome, Italy. 3ICRANet - INAF, Viale del Parco Mellini 84, 00136 Rome, Italy. 4Universite´ de Nice Sophia Antipolis, CEDEX 2, Grand Chateauˆ Parc Valrose, Nice, France. 5ICRANet-Rio, Centro Brasileiro de Pesquisas F´ısicas, Rua Dr. Xavier Sigaud 150, 22290–180 Rio de Janeiro, Brazil. 6ICRA, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, I-00128 Rome, Italy. [email protected], [email protected], [email protected], ruffi[email protected] arXiv:1901.07505v2 [astro-ph.HE] 25 Mar 2019 1 Gamma-ray burst (GRB) 190114C first resembles the legendary GRB 130427A: Both are strong sources of GeV emission, exhibiting consistent GeV spectral evolution, and almost identical in detail for the morphology of light-curves in X-ray, gamma-ray and GeV bands, inferring a standard system with differ- ent scales. GRB 190114C is richer than GRB 130427A: a large percentage of ∼ 30% energy is thermal presenting in the gamma-ray prompt emission, mak- ing it as one of the most thermal-prominent GRBs; Moreover, GRB 190114C extends the horizon of GRB research, that for the first time the ultra-high energy TeV emission (> 300 GeV) is detected in a GRB as reported by the MAGIC team. Furthermore, GRB 190114C urges us to revisit the traditional theoretical framework, since most of the GRB’s energy may emit in the GeV and TeV range, not in the conventional MeV range. -
Longterm MWL Behavior of 1ES1959+650
Fakultät Physik – Experimentelle Physik 5 Long-term observations of the TeV blazar 1ES 1959+650 Temporal and spectral behavior in the multi-wavelength context Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Dipl.-Phys. Michael Backes Dezember 2011 Contents 1 Introduction 1 2 Brief Introduction to Astroparticle Physics 3 2.1 ChargedCosmicRays .............................. 4 2.1.1 CompositionofCosmicRays . 4 2.1.2 EnergySpectrumofCosmicRays. 5 2.1.3 Sources of Cosmic Rays up to 1018 eV................ 6 ∼ 2.1.4 Sources of Cosmic Rays above 1018 eV................ 8 ∼ 2.2 AstrophysicalNeutrinos . ... 12 2.3 PhotonsfromOuterSpace. 13 2.3.1 Leptonic Processes: Connecting Low and High Energy Photons . 13 2.3.2 Hadronic Processes: Connecting Photons, Protons, and Neutrinos . 16 2.4 ActiveGalacticNuclei . 16 2.4.1 Blazars .................................. 17 2.4.2 EmissionModels ............................. 19 2.4.3 BinaryBlackHolesinAGN . 20 3 Instruments for Multi-Wavelength Astronomy 25 3.1 RadioandMicrowave .............................. 25 3.1.1 Single-DishInstruments . 25 3.1.2 Interferometers .............................. 26 3.1.3 Satellites ................................. 27 3.2 Infrared ...................................... 27 3.3 Optical ...................................... 28 3.3.1 Satellite-Born............................... 28 3.3.2 Ground-Based .............................. 28 3.4 Ultraviolet..................................... 29 3.5 X-Rays ..................................... -
2019 ANNUAL REPORT Institute of Cosmos Sciences of the University of Barcelona
INSTITUTE OF COSMOS SCIENCES UNIVERSITY OF BARCELONA 2019 ANNUAL REPORT Institute of Cosmos Sciences of the University of Barcelona. Published in Barcelona, July 1st 2020. This report has been written and designed by the Scientific Office. Cover photography by Eduard Masana CONTENTS FORWORD 4 GOVERNING BODIES 6 ICCUB IN FIGURES 7 RESEARCH HIGHLIGHTS 9 Cosmology and Large Scale Structure 10 Experimental Particle Physics 11 Galaxy Structure and Evolution 12 Gravitation and Cosmology 13 Hadronic, nuclear and atomic physics 14 High Energy Astrophysics 15 Particle Physics Phenomenolgy 16 Quantum Field Theory and String Theory 17 Quantum Technologies 18 Star Formation 19 LIFE AT THE ICCUB 20 TECHNOLOGICAL UNIT 25 OUTREACH 26 FOREWORD 2019 has been for the ICCUB a year marked by the Maria de Maetzu awards. Our first one finished on June, and we reapplied for a renewal without success, although we obtained a very high score that has encouraged us to define an ambitious strategic program for the next four years and to apply again. The four years of our first award have allowed us to consolidate the structure of our institute and this year has been very rich in results. In July 2019 we have officially become members of the Virgo consortium, thus strengthening our Gravitational Waves strategic line. We are contributing to Virgo both in instrument development through our Technological Unit, and science through an initial PhD position and the involvement of several of our senior researchers. © EGO /Virgo Collaboration/Perciballi Let me here remark the significant consolidation of our Technological Unit during this year after the opening of its new labs and offices in the Parc Científic. -
NORDIC OPTICAL TELESCOPE Johannes Andersen Student
NORDIC OPTICAL TELESCOPE Johannes Andersen Student programme The Nordic Optical Telescope1 (NOT) at La Palma, Spain, invites applications for Research Studentships starting at any time from January 2021 onward. NOT is a modern 2.6-m telescope with state-of-the-art optical and near-IR instruments. Our staff of ~18, including astronomers, engineers, and students, and informal, hands-on style of operation offer attractive training opportunities for young Nordic scientists and engineers. The NOT Research Studentship programme offers support for a limited number of PhD or advanced MSc astronomy or engineering students who wish to profit from these opportunities. Stipends cover living expenses on La Palma for periods of typically a year; in return, students spend ~30% of their time contributing to the operation or development of NOT, with the rest devoted to thesis work. Thesis subjects may be astronomical and include observations with the NOT, or they may concern developments in optics, detectors, electronics, or software. An extension of the studentships by 6 months is normally granted. Johannes Andersen (1943-2020) has been an extremely important person in the history of NOT, being many years member of the NOT Council, and being its director from 2002 till 2013. Johannes has been instrumental in making NOT what it is today, but his pride and joy was the studentship programme, which he largely shaped to its present form. In his honour, and in recognition of his fundamental contribution, the studentship programme has been named after Johannes. Applicants should (see http://www.not.iac.es/general/studentships/ for further details): 1. -
NORDIC OPTICAL TELESCOPE Research Studentships
NORDIC OPTICAL TELESCOPE Research Studentships The Nordic Optical Telescope1 (NOT) at La Palma, Spain, invites applications for Research Studentships starting at any time from June 2020 onward. NOT is a modern 2.6-m telescope with state-of-the-art optical and near-IR instruments. Our staff of ~18, including astronomers, engineers, and students, and informal, hands-on style of operation offer attractive training opportunities for young Nordic scientists and engineers. The NOT Research Studentship programme offers support for a limited number of PhD or advanced MSc astronomy or engineering students who wish to profit from these opportunities. Stipends cover living expenses on La Palma for periods of typically a year; in return, students spend ~30% of their time contributing to the operation or development of NOT, with the rest devoted to thesis work. Thesis subjects may be astronomical and include observations with the NOT, or they may concern developments in optics, detectors, electronics, or software. Our staff will monitor the progress of each student and provide scientific and technical guidance as appropriate in each case. An extension of the studentships by 6 months is normally granted. Applicants should (see http://www.not.iac.es/general/studentships/ for further details): 1. Be enrolled in a PhD or MSc programme in astronomy or a related technical discipline at a recognised university or similar academic institution. Preference is given to PhD students and applicants from the Nordic countries. 2. Have a strong interest in observational astrophysics and/or astronomical instrumentation. 3. Be capable and willing to work during night- as well as daytime, occasionally also on weekends or public holidays, at an altitude of 2400 metres above sea level, and to take up residence on La Palma for the duration of the Studentship. -
Numerical Methods for Radiative and Ideal Relativistic Hydrodynamics Applied to the Study of Gamma-Ray Bursts
Numerical methods for radiative and ideal relativistic hydrodynamics applied to the study of gamma-ray bursts Julio David Melon Fuksman Department of Physics University of Rome “La Sapienza” This dissertation is submitted for the degree of Doctor of Philosophy IRAP PhD program Supervisor: Dr. Carlo L. Bianco September 2019 A Julio y Elena Acknowledgements I am obliged to express my gratitude towards a number of people who have helped me in different ways throughout the last three and a half years, making this work possible. First of all, I would like to thank the organizers of the IRAP PhD Program for the financial support throughout the time of my PhD. I also thank my advisor, Carlo L. Bianco, and Professors Jorge A. Rueda and Gregory V. Vereshchagin for their guidance and the many fruitful discussions we had. I thank the entire staff of Sapienza and ICRANet, in particular Cinzia Di Niccolo, Federica Di Berardino, Cristina Adamo, Silvia Latorre, Gabriele A. Brandolini, and Elisabetta Natale, for being so helpful and kind to me ever since my arrival in Pescara. I would like to thank all of the members of the Thesis Comittee and the external evaluators for aiding me in the final stage of my PhD by taking the time to read this thesis and express their judgement. Among the scientists I have met since I arrived in Italy, I must especially mention Andrea Mignone. I am indebted to you for welcoming my interest to work together and consistently trusting it would lead to a good place. Above all, however, I thank you deeply for your support in the last year, and for always finding some time to talk when I needed advice.