THE STRUCTURE of RECOGNIZABLE DIATONIC TUNINGS by EASLEY BLACKWOOD
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pietro Aaron on Musica Plana: a Translation and Commentary on Book I of the Libri Tres De Institutione Harmonica (1516)
Pietro Aaron on musica plana: A Translation and Commentary on Book I of the Libri tres de institutione harmonica (1516) Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Matthew Joseph Bester, B.A., M.A. Graduate Program in Music The Ohio State University 2013 Dissertation Committee: Graeme M. Boone, Advisor Charles Atkinson Burdette Green Copyright by Matthew Joseph Bester 2013 Abstract Historians of music theory long have recognized the importance of the sixteenth- century Florentine theorist Pietro Aaron for his influential vernacular treatises on practical matters concerning polyphony, most notably his Toscanello in musica (Venice, 1523) and his Trattato della natura et cognitione de tutti gli tuoni di canto figurato (Venice, 1525). Less often discussed is Aaron’s treatment of plainsong, the most complete statement of which occurs in the opening book of his first published treatise, the Libri tres de institutione harmonica (Bologna, 1516). The present dissertation aims to assess and contextualize Aaron’s perspective on the subject with a translation and commentary on the first book of the De institutione harmonica. The extensive commentary endeavors to situate Aaron’s treatment of plainsong more concretely within the history of music theory, with particular focus on some of the most prominent treatises that were circulating in the decades prior to the publication of the De institutione harmonica. This includes works by such well-known theorists as Marchetto da Padova, Johannes Tinctoris, and Franchinus Gaffurius, but equally significant are certain lesser-known practical works on the topic of plainsong from around the turn of the century, some of which are in the vernacular Italian, including Bonaventura da Brescia’s Breviloquium musicale (1497), the anonymous Compendium musices (1499), and the anonymous Quaestiones et solutiones (c.1500). -
Musical Techniques
Musical Techniques Musical Techniques Frequencies and Harmony Dominique Paret Serge Sibony First published 2017 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2017 The rights of Dominique Paret and Serge Sibony to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2016960997 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-058-4 Contents Preface ........................................... xiii Introduction ........................................ xv Part 1. Laying the Foundations ............................ 1 Introduction to Part 1 .................................. 3 Chapter 1. Sounds, Creation and Generation of Notes ................................... 5 1.1. Physical and physiological notions of a sound .................. 5 1.1.1. Auditory apparatus ............................... 5 1.1.2. Physical concepts of a sound .......................... 7 1.1.3. -
Encyclopedia of the History of Arabic Science. Volume 2, Mathematics
Encyclopedia of the History of Arabic Science Encyclopedia of the History of Arabic Science Volume 2 Edited by ROSHDI RASHED in collaboration with RÉGIS MORELON LONDON AND NEW YORK First published in 1996 by Routledge 11 New Fetter Lane, London EC4P 4EE 29 West 35th Street, New York, NY 10001 This edition published in the Taylor & Francis e-Library, 2009. To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk. Structure and editorial matter © 1996 Routledge The chapters © 1996 Routledge All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. Library of Congress Cataloguing-in-Publication Data A catalogue record for this book is available on request. ISBN 0-203-40360-6 Master e-book ISBN ISBN 0-203-71184-X (Adobe ebook Reader Format) ISBN 0-415-12411-5 (Print Edition) 3 volume set ISBN 0-415-02063-8 Contents VOLUME 1 Contents v Preface ix 1 General survey of Arabic astronomy Régis Morelon 1 2 Eastern Arabic astronomy between the eighth and the eleventh centuries 20 Régis Morelon 3 Arabic planetary theories after the eleventh century AD 58 George Saliba 4 Astronomy and -
On the Bimodular Approximation and Equal Temperaments
On the Bimodular Approximation and Equal Temperaments Martin Gough DRAFT June 8 2014 Abstract The bimodular approximation, which has been known for over 300 years as an accurate means of computing the relative sizes of small (sub-semitone) musical intervals, is shown to provide a remarkably good approximation to the sizes of larger intervals, up to and beyond the size of the octave. If just intervals are approximated by their bimodular approximants (rational numbers defined as frequency difference divided by frequency sum) the ratios between those intervals are also rational, and under certain simply stated conditions can be shown to coincide with the integer ratios which equal temperament imposes on the same intervals. This observation provides a simple explanation for the observed accuracy of certain equal divisions of the octave including 12edo, as well as non-octave equal temperaments such as the fifth-based temperaments of Wendy Carlos. Graphical presentations of the theory provide further insights. The errors in the bimodular approximation can be expressed as bimodular commas, among which are many commas featuring in established temperament theory. Introduction Just musical intervals are characterised by small-integer ratios between frequencies. Equal temperaments, by contrast, are characterised by small-integer ratios between intervals. Since interval is the logarithm of frequency ratio, it follows that an equal temperament which accurately represents just intervals embodies a set of rational approximations to the logarithms (to some suitable base) of simple rational numbers. This paper explores the connection between these rational logarithmic approximations and those obtained from a long-established rational approximation to the logarithm function – the bimodular approximation. -
Sagittal a Microtonal Notation System
Sagittal A Microtonal Notation System by George D. Secor and David C. Keenan Introduction George Secor began development of the Sagittal (pronounced “SAJ-i-tl”) notation system in August 2001. In January 2002 he presented what he had developed to the Yahoo group tuning and offered to consider suggestions for improvements. At that stage the system could notate the equal temperaments with 17, 19, 22, 29, 31, 41, and 72 divisions per octave. Little did he know that he had provided a unifying symbolic principle which would ultimately be developed into a system capable of notating almost any conceivable microtonal tuning. In the early stages of the discussion, one idea that surfaced repeatedly was that a set of symbols indicating prime-number commatic alterations to tones in a Pythagorean series might be used to notate both rational intervals (e.g. just intonation) and equal divisions of the octave. Similar ideas had previously been proposed by Hermann Helmholtz, Alexander Ellis, Carl Eitz, Paul Rapoport, Daniel Wolf, Joe Monzo, and others1, but these had never been implemented in a performance notation to such an extent as was being discussed. As a first step, Gene Ward Smith suggested that it would be desirable that there be no more than one comma symbol per prime number, and a selection of 19-limit commas was tentatively identified to define the semantics of the notation. David Keenan enthusiastically observed that these commas came in an assortment of sizes that made the objective theoretically feasible, but he also realized that devising a set of distinct and recognizable symbols suitable for a performance notation was not going to be a simple matter. -
FD2020 Full-Proceedngs-160920-V3
Proceedings of the 36th Annual Meeting of the International Society for Psychophysics Fechner Day 2020 {Online} October 19-22, 2020 1 Published by the International Society for Psychophysics, 2020. Cover Image: Markus Spiske Cover design: Jordan Richard Schoenherr Title: Proceedings of the 36th Annual Meeting of the International Society for Psychophysics Fechner Day 2020 Edited by Jordan Richard Schoenherr, Timothy Hubbard, William Stine, and Craig Leth-Steensen for the International Society for Psychophysics. All papers are considered nonarchival, representing working papers of the authors. The International Society for Psychophysics does not hold any rights to the works contained herein which remain the intellectual property of the authors. Please contact the authors listed in the respective extended abstracts or papers for further details. Table of Contents Table of Contents ....................................................................................................... 3 Preface ......................................................................................................................... 4 Schedule ....................................................................................................................... 6 Abstracts and Papers ................................................................................................. 9 3 Preface Welcome to the 36th Annual Conference of the International Society for Psychophysics, Fechner Day 2020! As a member of the Executive Committee, I am pleased to welcome -
MTO 12.3: Duffin, Just Intonation in Renaissance Theory and Practice
Volume 12, Number 3, October 2006 Copyright © 2006 Society for Music Theory Ross W. Duffin ABSTRACT: Just intonation has a reputation as a chimerical, theoretical system that simply cannot work in practice. This is based on the assessment of most modern authorities and supported by misgivings expressed during the Renaissance when the practice was supposedly at its height. Looming large among such misgivings are tuning puzzles printed by the 16th-century mathematician, Giovanni Battista Benedetti. However, Renaissance music theorists are so unanimous in advocating the simple acoustical ratios of Just intonation that it seems clear that some reconciliation must have occurred between the theory and practice of it. This article explores the basic theory of Just intonation as well as problematic passages used to deny its practicability, and proposes solutions that attempt to satisfy both the theory and the ear. Ultimately, a resource is offered to help modern performers approach this valuable art. Received June 2006 Introduction | Theoretical Background | Benedetti's Puzzles | Problematic Passages | Is Just Tuning Possible? A New Approach | Problem Spots in the Exercises | Rehearsal Usage | Conclusion Introduction The idea . that one can understand the ratios of musical consonances without experiencing them with the senses is wrong. Nor can one know the theory of music without being versed in its practice. [1] So begins the first of two letters sent by the mathematician Giovanni Battista Benedetti to the composer Cipriano de Rore in 1563. Subsequently publishing the letters in 1585,(1) Benedetti was attempting to demonstrate that adhering to principles of Just intonation, as championed most famously by Gioseffo Zarlino,(2) would, in certain cases, cause the pitch of the ensemble to migrate. -
The Extended Helmholtz-Ellis JI Pitch Notation PLAINSOUND MUSIC EDITION
The Extended Helmholtz-Ellis JI Pitch Notation microtonal accidentals designed by / mikrotonale Vorzeichen konzipiert von Marc Sabat & Wolfgang von Schweinitz, 2004 English Text : Marc Sabat, 2005 Deutsche Fassung : Natalie Pfeiffer P L A I N S O U N D M U S I C E D I T I O N The Extended Helmholtz-Ellis JI Pitch Notation microtonal accidentals designed by / mikrotonale Vorzeichen konzipiert von Marc Sabat & Wolfgang von Schweinitz, 2004 English Text : Marc Sabat Deutsche Fassung : Natalie Pfeiffer P L A I N S O U N D M U S I C E D I T I O N „Die Obertonreihe ... enthält noch viele Probleme, die eine Auseinandersetzung nötig machen werden. Und wenn wir diesen Problemen augenblicklich noch entrinnen, so verdanken wir das fast ausschließlich einem Kompromiß zwischen den natürlichen Intervallen und unserer Unfähigkeit sie zu verwenden. Jenem Kompromiß, das sich temperiertes System nennt, das einen auf eine unbestimmte Frist geschlossenen Waffenstillstand darstellt. Diese Reduktion der natürlichen Verhältnisse auf handliche wird aber die Entwicklung auf die Dauer nicht aufhalten können; und das Ohr wird sich mit den Problemen befassen müssen, weil es will. Dann wird unsere Skala ebenso aufgehen in eine höhere Ordnung, wie die Kirchentonarten in der Dur- und Molltonart aufgegangen sind. Ob dann Viertel-, Achtel-, Drittel- oder (wie Busoni meint) Sechsteltöne kommen, oder ob man direkt zu einer 53 tönigen Skala übergehen wird ... läßt sich nicht voraussagen. Vielleicht wird diese neue Teilung der Oktave sogar untemperiert sein und mit unserer Skala nur noch wenig gemeinsam haben.“ Arnold Schoenberg: Harmonielehre, 3. Auflage, S. 22-24 (1922) “The overtone series … still contains many problems that will have to be faced. -
The Helmholtz-Ellis JI Pitch Notation (HEJI) | 2020 | LEGEND
The Helmholtz-Ellis JI Pitch Notation (HEJI) | 2020 | LEGEND revised by Marc Sabat and Thomas Nicholson | PLAINSOUND MUSIC EDITION | www.plainsound.org in collaboration with Wolfgang von Schweinitz, Catherine Lamb, and M.O. Abbott, building upon the original HEJI notation devised by Marc Sabat and Wolfgang von Schweinitz in the early 2000s PYTHAGOREAN JUST INTONATION | generated by multiplying / dividing an arbitrary reference frequency by PRIMES 2 and 3 only notate a series of perfect fifths above / below a reference — 3/2 ≈ ±702:0 cents (ca. 2c wider than tempered) ::: ::: E e n v V each new accidental therefore represents 7 fifths, altering by one apotome — 2187/2048 ≈ ±113:7 cents Frequency ratios including higher prime numbers (5–47) may be precisely written by adding the following distinct accidental symbols. Custom indications for higher primes or various enharmonic substitutions may be invented as needed by simply defining further symbols representing the relevant ratio alterations. PTOLEMAIC JUST INTONATION | PRIMES up to 5 includes the consonant just major third — 5/4 ≈ ±386:3 cents (ca. 14c narrower than tempered) D d m u U F f o w W alteration by one syntonic comma — 81/80 ≈ ±21:5 cents C c l t T G g p x X alteration by two syntonic commas — 81/80 · 81/80 ≈ ±43:0 cents ~u = e |f = v alteration by one schisma to notate an exact enharmonic substitution — 32805/32768 ≈ ±2:0 cents SEPTIMAL JI | PRIME 7 includes the consonant natural seventh — 7/4 ≈ ±968:8 cents (ca. 31c narrower than tempered) < > alteration by one septimal comma — 64/63 ≈ ±27:3 cents (Giuseppe Tartini) , . -
Just Major Thirds
Wolfgang von Schweinitz Just Major Thirds INTONATION STUDY for two clarinets in B-flat op. 54 2010 composed for James Sullivan and Brian Walsh and the Machine Project Hammer Museum, Los Angeles PLAINSOUND MUSIC EDITON Performance Notes REHEARSAL PROCEDURE This piece is a tuning study exploring some new playing techniques for microtonal just intonation, namely the employment of non-conventional microtonal fingerings in order to produce the specific sonority of precisely tuned non-tempered intervals. Each fingering must be carefully examined and fine-tuned by embouchure at an extremely slow tempo in the first duo rehearsal(s). This initial phase of experimentation could perhaps start out with checking the fingerings for the major sixths (with a frequency ratio of 5/3) in measure 5, 8, 9, 10 and 18, as the beatings between the third and fifth partials will be particularly noticeable if the major sixths are tempered. Then the tuning of the pure major thirds and perfect fourths (and their octave expansions) should carefully be studied, memorizing the specific timbre of these intervals in the various registers. This procedure will also establish a feeling for the melodic interval of the just diatonic semitone with a size of 112 cents (and a frequency ratio of 16 : 15, which is the difference between a perfect fourth and a pure major third). The small chromatic semitone with a size of only 71 cents (25 : 24) is established as the difference between a pure major and a pure minor third (in measures 12-13, 13-14 and 22-23). When the tuning of all the fingerings used in Part I (“Diatonic Theme”) has been optimized, the additional microtonal fingerings needed in Part II (“Enharmonic Variation”) must be checked, again at an extremely slow tempo. -
The Classical Indian Just Intonation Tuning System
The Classical Indian Just Intonation Tuning System with 22 SRUTI-s defining the 7 SWARA-s of Hindu Classical Music combining the three different kinds of SRUTI which are understood as PRAMANA ("measuring" or "standard") SRUTI = Syntonic Comma (81/80) = 21.5 cents NYUNA ("deficient") SRUTI = Minor Chroma (25/24) = 70.7 cents Wolfgang von Schweinitz October 20 - 22, 2006 PURNA ("fullfilling") SRUTI = Pythagorean Limma (256/243) = 90.2 cents (where PURNA SRUTI may also, enharmonically, be interpreted as the sum of PRAMANA SRUTI and NYUNA SRUTI = Major Chroma (135/128 = 81/80 * 25/24) = 92.2 cents) purna nyuna purna nyuna purna nyuna purna purna pramana pramana pramana pramana pramana pramana pramana pramana pramana pramana nyuna purna nyuna purna nyuna nyuna # # # # # # " ! # " # # ! # # # <e e f m n >m n # # # # # f # n t e u f m n # # ! # # # <e e# f# m# n# e f m n >m ! n" t <f e u f m n # # # # # # " ! # " # # ! # # # <e e f m n >m n ! # # # # # f # n t e u f m n # # ! # # # <e e# f# m# n# n o u v >u n " t <f e u f m n # # " ! ! # # ! # # # <n n# o# u# v# >u n # # # # f # # n" t e u f m n # # # ! # # # <e e # f # m# n# n o u v >u n " t <f e u f m n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 # # ! # # ! <e e# f# m# n# >m n " # # f n" t e# u f# m# n# $ # ! <e e# f# m# n# n# o# u# v# >u n " t <f e#u f# m# n# Sa ri ri Ri Ri ga ga Ga Ga ma ma Ma Ma Pa dha dha Dha Dha ni ni Ni Ni Sa 1 25 21 256 135 16 10 9 7 32 6 5 81 4 27 45 64 729 10 3 25 128 405 8 5 27 7 16 9 15 243 40 2 Ratio 1 24 20 243 128 15 9 8 6 27 5 4 64 3 20 32 45 -
Music Theory Contents
Music theory Contents 1 Music theory 1 1.1 History of music theory ........................................ 1 1.2 Fundamentals of music ........................................ 3 1.2.1 Pitch ............................................. 3 1.2.2 Scales and modes ....................................... 4 1.2.3 Consonance and dissonance .................................. 4 1.2.4 Rhythm ............................................ 5 1.2.5 Chord ............................................. 5 1.2.6 Melody ............................................ 5 1.2.7 Harmony ........................................... 6 1.2.8 Texture ............................................ 6 1.2.9 Timbre ............................................ 6 1.2.10 Expression .......................................... 7 1.2.11 Form or structure ....................................... 7 1.2.12 Performance and style ..................................... 8 1.2.13 Music perception and cognition ................................ 8 1.2.14 Serial composition and set theory ............................... 8 1.2.15 Musical semiotics ....................................... 8 1.3 Music subjects ............................................. 8 1.3.1 Notation ............................................ 8 1.3.2 Mathematics ......................................... 8 1.3.3 Analysis ............................................ 9 1.3.4 Ear training .......................................... 9 1.4 See also ................................................ 9 1.5 Notes ................................................