U.S. Geological Survey Science Support Strategy for Biscayne National Park and Surrounding Areas in Southeastern Florida

Total Page:16

File Type:pdf, Size:1020Kb

U.S. Geological Survey Science Support Strategy for Biscayne National Park and Surrounding Areas in Southeastern Florida U.S. Geological Survey Science Support Strategy for Biscayne National Park and Surrounding Areas in Southeastern Florida By Melinda A. Wolfert-Lohmann, Christian D. Langevin, Sonya A. Jones, Chris D. Reich, Georgiana L. Wingard, Ilsa B. Kuffner, and Kevin J. Cunningham Open-File Report 2007-1288 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Wolfert-Lohmann, M.A., Langevin, C.D., Jones, S.A., and others, 2008, U.S. Geological Survey Science Support Strategy for Biscayne National Park and Surrounding Areas in Southeastern Florida: U.S. Geological Survey Open-File Report 2007-1288, 48 p. iii Contents 1.0 Abstract ..................................................................................................................................................1 2.0 Introduction ............................................................................................................................................1 2.1 Partnerships ..................................................................................................................................2 2.2 Acknowledgments .......................................................................................................................3 3.0 Description of Biscayne National Park and Surrounding Areas in Southeastern Florida ...........3 3.1 Ecosystem .....................................................................................................................................3 3.1.1 History ................................................................................................................................5 3.1.2 Function .............................................................................................................................5 3.2 Hydrology ....................................................................................................................................11 3.2.1 Surface Water ................................................................................................................11 3.2.2 Ground Water .................................................................................................................11 3.2.3 Water Quality ..................................................................................................................14 3.3 Socioeconomic Conditions .........................................................................................................18 4.0 U.S. Geological Survey Research Issues and Needs ...................................................................19 4.1 Ecosystem Stresses...................................................................................................................19 4.2 Water Deliveries .........................................................................................................................20 4.3 Contaminants ..............................................................................................................................21 4.4 Database and Geographic Information System Issues .......................................................22 5.0 Current or Recently Completed Studies in and around Biscayne National Park .................................................................................................................................22 6.0 Potential U.S. Geological Survey Research Projects in and around Biscayne National Park .................................................................................................................................35 6.1 Ecosystem Stresses ..................................................................................................................36 6.2 Water Deliveries ........................................................................................................................41 6.3 Contaminants ..............................................................................................................................43 6.4 Database and Geographic Information System Issues .......................................................45 7.0 References Cited .................................................................................................................................46 Figures 1. Map showing location of Biscayne National Park in southeastern Florida ...................................4 2. Map showing location of core sites in Biscayne Bay, Florida ..........................................................6 3. Graphs showing percent abundance of key molluscan salinity indicators in Middle Key core segments from the nearshore area of Card Sound ...................................................................7 4. Graphs showing percent abundance of key salinity indicator species in No Name Bank core segment from central Biscayne Bay and magnesium-calcium ratios derived from ostracod shells .......................................................................................................8 5. Schematic showing infrared changes in Biscayne Bay salinity in recent centuries based on indicators from cores between Card Bank and central Biscayne Bay .........................9 6. Cross section showing relations of geologic formations, aquifers, and semipermeable units of the surficial aquifer system across central Miami-Dade County ....................................13 7. Diagram showing relation between pore classes I and III and touching-vug and conduit-pore types, respectively, for the Fort Thompson Formation and Miami Limestone in the Lake Belt area of Miami-Dade County .................................................................15 8. Diagram showing relation between pore class II and matrix porosity ..........................................16 9. Diagram showing three-dimensional conceptual hydrogeologic model of the Biscayne aquifer for the Lake Belt area in north-central Miami-Dade County ....................17 iv Photographs 1. Red mangrove in Biscayne Bay............................................................................................................2 2. H-alicia shipwreck ..................................................................................................................................3 3. Biscayne Bay mangroves near Black Point .......................................................................................7 4. Seagrass in Biscayne Bay.....................................................................................................................9 5. Biscayne National Park patch reef ....................................................................................................10 6. Montstrea cavernosa infected with black band disease ..............................................................10 7. Sea fan (Gorgonia sp.) in Biscayne Bay ...........................................................................................12 8. Sponge (unidentified) in Biscayne Bay .............................................................................................12 9. Alina’s Reef drilling in Biscayne National Park ................................................................................16 10. Scientist/diver collecting pore-water samples at Alina’s Reef, Biscayne National Park.........18 11. Alina’s Reef in Biscayne Bay ..............................................................................................................20 12. Water sampling syringe and mini-piezometer used for collection of reef sediment pore waters ...........................................................................................................................................21 13. Monitoring wells located on Alina’s Reef .........................................................................................21 v Conversion Factors and Vertical Datum Multiply By To obtain centimeter 0.3937 inch (in.) meter (m) 3.281 foot (ft) meter per day (m/d) 3.281 foot per day (ft/d) kilometer (km) 0.6214 mile (mi) hectare (ha) 2.471 acre square meter (m2) 10.76 square foot (ft2) cubic meter (m3) 264.2 gallon (gal) cubic decimeter (dm3) 0.2642 gallon (gal) cubic meter (m3) 0.0002642 million gallons (Mgal) liter per minute (L/min) 0.2642 gallon per minute (gal/min) Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: °F = (1.8 × °C) + 32. Vertical coordinate information is referenced to National Geodetic Vertical Datum of 1929 (NGVD 29). Acronyms and Abbreviations AVHRR Advanced Very High Resolution Radiometer CERP Comprehensive Everglades Restoration Plan CUES Comprehensive Urban Ecosystems Studies DERM Department of Environmental Resources Management EAARL Experimental Advanced Airborne Research Lidar EPOC emerging pollutants of concern GIS Geographic
Recommended publications
  • Florida Forever Work Plan
    South Florida Water Management District Florida Forever Work Plan December 13, 2001 Florida Forever Work Plan Contributors South Florida Water Management District Florida Forever Work Plan November 2001 Contributors Susan Coughanour Bill Helfferich Jenni Hiscock Lewis Hornung Blair Littlejohn Victor Lopez Gregg Mallinger Victor Mullen Agnes Ramsey Wanda Caffie-Simpson Paul Whalen i Florida Forever Work Plan Contributors ii Florida Forever Work Plan Executive Summary EXECUTIVE SUMMARY In 1999, the Florida Forever program was created, which authorized the issuance of bonds in an amount not to exceed $3 billion for acquisitions of land and water areas. This revenue is to be used for the purposes of restoration, conservation, recreation, water resource development, historical preservation and capital improvements to such land and water areas. This program is intended to accomplish environmental restoration, enhance public access and recreational enjoyment, promote long-term management goals, and facilitate water resource development. The requirements for developing The Florida Forever Water Management District Work Plan are contained in Section (s.) 373.199, Florida Statutes (F.S). The provision states that the water management districts are to create a five-year plan that identifies projects meeting specific criteria. In developing their project lists, each district is to integrate its surface water improvement and management plans, Save Our Rivers (SOR) land acquisition lists, stormwater management projects, proposed water resource development projects, proposed water body restoration projects, and other properties or activities that would assist in meeting the goals of Florida Forever. The initial plan was submitted on June 1, 2001 to the President of the Senate, Speaker of the House of Representatives, and Secretary of the Department of Environmental Protection (FDEP).
    [Show full text]
  • Biscayne Aquifer, Florida Groundwater Provides Nearly 50 Percent of the Nation’S Drinking Water
    National Water Quality Program National Water-Quality Assessment Project Groundwater Quality in the Biscayne Aquifer, Florida Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey - (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Biscayne aquifer constitutes one of the important aquifers being evaluated. Background Overview of Water Quality The Biscayne aquifer underlies an area of about 4,000 square miles in southeastern Florida. About 4 million people live in this area, and the Biscayne aquifer is the primary source of drinking water with about 700 million gallons per day (Mgal/d) withdrawn for public supply in 2000 Inorganic Organic (Maupin and Barber, 2005; Arnold and others, 2020a). The study area for the Biscayne aquifer constituents constituents underlies much of Broward and Miami-Dade Counties in southeastern Florida and includes 3 the cities of Miami and Fort Lauderdale. Most of the area overlying the aquifer is developed 5 and consists of about 63 percent urban and 9 percent agricultural land use. The remaining area 17 (28 percent) is undeveloped (Homer and others, 2015). The Biscayne aquifer is an unconfined, surficial aquifer made up of shallow, highly 80 95 permeable limestone as well as some sandstone units (Miller, 1990). Because of the shallow depth of the units that make up this aquifer, the connection to surface water is an important aspect of the hydrogeology of the Biscayne aquifer (Miller, 1990). A system of canals and levees are used to manage the freshwater resources of southern Florida.
    [Show full text]
  • Socan Monitoring Workshop
    SOCAN MONITORING WORKSHOP Image credit: Lauren Valentino, NOAA/AOML 2/28/17 WorksHop Report SOCAN MONITORING WORKSHOP SOCAN MONITORING WORKSHOP IDENTIFYING PRIORITY LOCATIONS FOR OCEAN ACIDIFICATION MONITORING IN THE U.S. SOUTHEAST SUMMARY The Southeast Ocean and Coastal Acidification Network (SOCAN) held a worksHop in CHarleston, SoutH Carolina to facilitate discussion on priority locations for ocean acidification monitoring in tHe SoutHeast. The discussion included identification of key gradients in physical, chemical and biological parameters along tHe SoutHeast coast, a review of current monitoring efforts, and an assessment of stakeHolder needs. Sixteen monitoring locations were identified as potential acidification monitoring locations (see page 12). The following three monitoring locations were HigHligHted as priority sites tHat would furtHer our understanding of the chemistry and regional drivers of ocean acidification and address stakeholder needs: (1) Sapelo Island, GA (2) Gulf Stream, offsHore of Gray’s Reef, GA (3) Biscayne National Park, FL The workshop concluded witH a discussion of logistics and opportunities to pursue monitoring at tHe recommended locations. A copy of tHe agenda is included in Appendix 1. PROCEEDINGS Approximately 16 experts gatHered for tHe SOCAN Monitoring Workshop to outline recommendations for priority ocean acidification monitoring locations in tHe SoutHeast (Attendee List, Appendix 2). The worksHop began witH introductory remarks regarding tHe structure and responsibilities of SOCAN and SECOORA. Following the introductory remarks, participants reviewed the proposed agenda; no modifications were made. The first half-day was spent reviewing tHe state of ocean acidification science and regional response. Kim Yates sHared a syntHesis of tHe 2016 SOCAN State of the Science meeting, wHicH included a review of webinars and key findings related to OA chemistry, modeling and organismal response.
    [Show full text]
  • Development of Environmental Measures for Assessing Effects of Water Level Changes on Lakes and Wetlands in the Central Florida Water Initiative Area
    Development of Environmental Measures for Assessing Effects of Water Level Changes on Lakes and Wetlands in the Central Florida Water Initiative Area Central Florida Water Initiative’s Environmental Measures Team Final Report November, 2013 Attachments A‐H Environmental Measures Team Final Report Attachment A – Land Development Index (LDI) and Cross‐Walk of Florida Land Use Cover and Classification System (FLUCCS) Codes to LDI Values November, 2013 Environmental Measures Team Final Report Attachment A – Land Development Index (LDI) Tony Janicki, Ph.D. Janicki Environmental, Inc. Land Use and the Land Development Index The Land Development Index (LDI) (Brown et al. 2003) was estimated for each of the EMT study sites using land use data and a development intensity measure derived from energy use per unit area. The LDI is an estimate of the potential impacts from human‐dominated activities that are experienced by ecological systems within those watersheds. Initially, each of the wetland sites was overlain on the ECFT model grid. Then, the land uses (i.e., FLUCCS codes) within the ECFT model grid were identified and the contributing areas enumerated. Each of the land uses was assigned an LDI coefficient (Table A‐1). The overall LDI ranking was calculated as an area weighted average. Using the GIS, total area and percent of total area occupied by each of the land uses were determined and then the LDI was calculated as follows: LDITotal = Σ %LUi * LDIi Where: LDItotal = LDI ranking for wetland site, %LUi= percent of the total area of influence in land use I, and LDIi = landscape development intensity coefficient for land use i.
    [Show full text]
  • Biscayne National Park's Fishery Management Plan
    WATER Credit: iStock.com/Matt_Potenski Biscayne National Park’s Fishery 77% Management Plan OF 35 FISH STOCKS STUDIED Biscayne National Park is a national treasure 5 WITHIN THE PARK ened, some on the verge of collapse. If ac- and home to part of the third largest barrier tion isn’t taken and fish populations and ARE OVERFISHED, reef ecosystem in the world. 95% water, MOST CAPTURED habitat health continue to decline, the Park Biscayne is the largest marine park in the BEFORE THEY Service will have failed at its fundamental National Park System, created to protect, “a HAD A CHANCE TO mission to protect Biscayne National Park in SPAWN.1 rare combination of terrestrial, marine, and perpetuity for all Americans. Implementing amphibious life in a tropical setting of great a marine reserve and science-based fisheries natural beauty” for present and future management policies are key to protecting 3 generations. In addition to its ecological and restoring Biscayne’s marine resources. value, the park is a significant economic 95% driver, supporting a variety of economic and Biscayne’s Fishery Management Plan DECLINE IN REEF recreation activities, such as fishing, diving, Biscayne National Park’s Fishery Manage- FISH CATCHES IN snorkeling, and boating. According to a ment Plan (FMP), finalized back in 2014, BISCAYNE SINCE National Park Service report, in 2018 over aims to increase the average size and abun- THE 1960s.2 450,000 visitors to Biscayne spent more than dance of target fish species in the park by $30 million, supporting 398 local jobs and 20% by creating park-specific fisheries man- generating more than $42 million for the lo- agement regulations and reducing fishing- cal economy.4 related habitat degradation.
    [Show full text]
  • Plant-Insect Interactions in a Shifting Coastal Ecosystem: Avicennia Germinans and Its Associated Arthropods
    ABSTRACT Title of Dissertation: PLANT-INSECT INTERACTIONS IN A SHIFTING COASTAL ECOSYSTEM: AVICENNIA GERMINANS AND ITS ASSOCIATED ARTHROPODS Mayda Nathan, Doctor of Philosophy, 2020 Dissertation directed by: Dr. Daniel S. Gruner, Department of Entomology The climate’s role in determining where species occur is increasingly well understood, but our ability to predict how biotic interactions both influence and respond to species’ range shifts remains poor. This is particularly important when considering climate-change-driven range shifts in habitat-forming species like mangroves, given their impact on ecosystem structure and function. In this dissertation, I consider the arthropods associated with the black mangrove, Avicennia germinans, to explore whether patterns of arthropod diversity affect the rate of a plant’s range expansion, and, in turn, how a range-expanding plant alters arthropod communities in habitats where it is invading. Among arthropods with the potential to influence plants’ range dynamics, pollinators can directly affect plant reproduction and ability to spread into new territory. Breeding system experiments reveal that A. germinans relies on pollinators for full fruit set, and surveys along the Florida coast show a substantial northward decline in the overall frequency of pollinator visits to A. germinans flowers. However, the decline in abundance of some common pollinator taxa is partly offset by an increase in the frequency of other highly effective taxa. Furthermore, range-edge A. germinans produce more flowers than southern individuals, contributing to high range-edge fecundity and enabling range expansion. As a woody plant with nectar-producing flowers, A. germinans is a novel resource for arthropods in the salt marshes where it is encroaching.
    [Show full text]
  • Rapid Response and Restoration for Coral Reef Injuries In
    Nova Southeastern University NSUWorks Oceanography Faculty Reports Department of Marine and Environmental Sciences 6-1-2007 Rapid Response and Restoration for Coral Reef Injuries in Southeast Florida: Guidelines and Recommendations Chantal Collier Florida Department of Environmental Protection, Coral Reef Conservation Program Richard E. Dodge Nova Southeastern University Oceanographic Center, [email protected] David S. Gilliam Nova Southeastern University Oceanographic Center, [email protected] Kelly Gracie Tetra Tech EC Inc. Lisa Gregg Florida Fish and Wildlife Conservation Commission See next page for additional authors Findollo outw thi mors aend infor addmitationional a boutworkNs oavta: hSouthettp://nastseuwrn orkUnivs.enorsitvya.aenddu/oc the Oc_faceacrnoegrporaptshic Center. Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Collier, C., R. Dodge, D. Gilliam, K. Gracie, L. Gregg, W. Jaap, M. Mastry, and N. Poulos. 2007. "Rapid Response and Restoration for Coral Reef Injuries in Southeast Florida: Guidelines and Recommendations." The eD partment of Environmental Protection, 63pp. This Report is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Oceanography Faculty Reports by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Authors Chantal Collier, Richard E. Dodge, David S. Gilliam, Kelly Gracie, Lisa Gregg, Walter Jaap, Mike Mastry, and Nikki Poulos This report is available at NSUWorks: http://nsuworks.nova.edu/occ_facreports/11 RAPID RESPONSE AND RESTORATION FOR CORAL REEF INJURIES IN SOUTHEAST FLORIDA Guidelines and Recommendations A Maritime Industry and Coastal Construction Impacts Focus Area Project of the Southeast Florida Coral Reef Initiative June 2007 Rapid Response and Restoration for Coral Reef Injuries in Southeast Florida: Guidelines and Recommendations Dedicated to Dr.
    [Show full text]
  • Florida Forever Work Plan
    Florida Forever Work Plan January 1, 2003 prepared by South Florida Water Management District Florida Forever Work Plan Contributors South Florida Water Management District Florida Forever Work Plan January 1, 2003 Contributors Christine Carlson Dolores Cwalino Fred Davis Jude Denick Juan Diaz-Carreras Andy Edwards Paul Ellis William Helfferich Sally Kennedy Phil Kochan Tom McCracken Kim O’Dell Steve Reel Bonnie Rose Dawn Rose Wanda Caffie-Simpson Andrea Stringer iii Florida Forever Work Plan Contributors iv Florida Forever Work Plan Executive Summary EXECUTIVE SUMMARY In 1999, the Florida Forever program was created, which authorized the issuance of bonds in an amount not to exceed $3 billion for acquisitions of land and water areas. This revenue is to be used for the purposes of restoration, conservation, recreation, water resource development, historical preservation and capital improvements to the acquired land and water. The program is intended to accomplish environmental restoration, enhance public access and recreational enjoyment, promote long-term management goals and facilitate water resource development. The water management districts create a five-year plan that identifies projects meeting specific criteria for the Florida Forever program. Each district integrates its surface water improvement and management plans, Save Our Rivers (SOR) land acquisition lists, stormwater management projects, proposed water resource development and water body restoration projects and other activities that support the goals of Florida Forever. Thirty-five percent of the Florida Forever bond proceeds are distributed annually to the Florida Department of Environmental Protection (FDEP) for land acquisition and capital expenditures in order to implement the priority lists submitted by the water management districts.
    [Show full text]
  • Nature-Based Coastal Defenses in Southeast Florida Published by Coral Cove Dune Restoration Project
    Nature-Based Coastal Defenses Published by in Southeast Florida INTRODUCTION Miami Beach skyline ©Ines Hegedus-Garcia, 2013 ssessments of the world’s metropolitan areas with the most to lose from hurricanes and sea level rise place Asoutheast Florida at the very top of their lists. Much infrastructure and many homes, businesses and natural areas from Key West to the Palm Beaches are already at or near sea level and vulnerable to flooding and erosion from waves and storm surges. The region had 5.6 million residents in 2010–a population greater than that of 30 states–and for many of these people, coastal flooding and erosion are not only anticipated risks of tomorrow’s hurricanes, but a regular consequence of today’s highest tides. Hurricane Sandy approaching the northeast coast of the United States. ©NASA Billions of dollars in property value may be swept away in one storm or slowly eroded by creeping sea level rise. This double threat, coupled with a clearly accelerating rate of sea level rise and predictions of stronger hurricanes and continued population growth in the years ahead, has led to increasing demand for action and willingness on the parts of the public and private sectors to be a part of solutions. Practical people and the government institutions that serve them want to know what those solutions are and what they will cost. Traditional “grey infrastructure” such as seawalls and breakwaters is already common in the region but it is not the only option. Grey infrastructure will always have a place here and in some instances it is the only sensible choice, but it has significant drawbacks.
    [Show full text]
  • Everglades Ecosystem Assessment: Water Management and Quality, Eutrophication, Mercury Contamination, Soils and Habitat
    United States Region 4 Science & Ecosystem EPA 904-R-07-001 Environmental Protection Support Division and Water August 2007 Agency Management Division EPA Everglades Ecosystem Assessment: Water Management and Quality, Eutrophication, Mercury Contamination, Soils and Habitat Monitoring for Adaptive Management: A R-EMAP Status Report The Everglades Ecosystem Assessment Program is being conducted by the United States Environmental Protection Agency Region 4 Science and Ecosystem Support Division, with the Region 4 Water Management Division cooperating. Many entities have contributed to this Program, including the National Park Service, United States Army Corps of Engineers, Florida Department of Environmental Protection, United States Fish and Wildlife Service, Florida International University, University of Georgia, Battelle Marine Sciences Laboratory, FTN Associates Incorporated, United States Geological Survey, South Florida Water Management District, and Florida Fish and Wildlife Conservation Commission. The Miccosukee Tribe of Indians of Florida and the Seminole Tribe of Indians allowed sampling to take place on their federal reservations within the Everglades. EPA 904-R-07-001 August 2007 EVERGLADES ECOSYSTEM ASSESSMENT Water Management and Quality, Eutrophication, Mercury Contamination, Soils and Habitat Monitoring for Adaptive Management A R-EMAP Status Report U.S. Environmental Protection Agency Region 4 Science and Ecosystem Support Division Athens, Georgia This document is available on the Internet for browsing or download at: <http://www.epa.gov/region4/sesd/sesdpub_completed.html> Everglades R-EMAP is a program of the United States Environmental Protection Agency’s Region 4 Laboratory [the Science and Ecosystem Support Division (SESD) in Athens, Georgia], with the Region 4 Water Management Division (WMD) cooperating. Everglades R-EMAP is managed by Peter Kalla of SESD.
    [Show full text]
  • Assessment of Natural Resource Conditions in and Adjacent to Biscayne National Park Natural Resource Report NPS/BISC/NRR—2012/598 Peter W
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Assessment of Natural Resource Conditions In and Adjacent to Biscayne National Park Natural Resource Report NPS/BISC/NRR—2012/598 Peter W. Harlem, Joseph N. Boyer, Henry O. Briceño, James W. Fourqurean, Piero R. Gardinali, Rudolph Jaffé, John F. Meeder, Michael S. Ross Southeast Environmental Research Center Florida International University Miami, FL 33199 December 2012 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado Pg. xxiii Executive Summary This report is an assessment of the conditions of natural resources in Biscayne National Park (BNP) based on the compilation, review and evaluation of existing information on the Park’s natural resources. This review evaluates threats and stressors, and is intended to improve understanding of BNP resources to help guide Park management to address the identified threats, which are supported by enhanced data collection, research and assessment efforts. The report is focused on broad resource components, namely terrestrial resources and aquatic systems including: wetlands, canals, bay waters, marine/reef areas and ground waters. Biotic and abiotic resource components are considered in the review. The objectives of the assessment are to: Provide a review/compilation of existing information on BNP natural resources. Provide a list and description of threats/stressors to these resources. Develop a semi-quantitative ranking of the threats to resource components and the extent of existing information. Identify research needs based on information gaps and degree of threat to the resources. There are many threats to the resources of BNP and many gaps in our knowledge of the functioning of the Biscayne Bay ecosystem.
    [Show full text]
  • Biscayne National Park National Park Service
    National Park Service Marine Reserves for People A National Park Perspective Biscayne National Park National Park Service Mark Lewis Superintendent Biscayne National Park [email protected] 786-335-3643 Biscayne National Park National Park Service From just south of Key Biscayne to just north of Key Largo. Biscayne National Park National Park Service Adjacent to approx 3 million people Biscayne National Park National Park Service Biscayne National Park • preserves and protects 173,000 acres of reefs, islands and most of Biscayne Bay; • contains over 5,000 patch reefs; • is the largest tropical marine park in the National Park system; • is a tourism, recreation & education destination for over ½ million people each year. Biscayne National Park National Park Service Mission of the National Park Service ...to conserve the scenery and the natural and historic objects and the wild life therein and to provide for the enjoyment of the same in such manner and by such means as will leave them unimpaired for the enjoyment of future generations. Biscayne National Park National Park Service Why consider a marine reserve for Biscayne NP? The purpose of the marine reserve would be to provide the public the opportunity to experience a healthy, natural reef with a wide diversity of fish species and sizes; Biscayne National Park National Park Service Why consider a marine reserve for Biscayne NP? to create an area of the park where visitors can experience greater abundance, larger individuals, and higher diversity of fishes, corals, and other organisms. Biscayne National Park National Park Service Why consider a marine reserve for Biscayne NP? If you go to Yellowstone NP you expect to see bison; If you go to Redwoods NP you expect to see giant trees; Biscayne National Park National Park Service Why consider a marine reserve for Biscayne NP? If you go to the largest tropical marine park in the national park system, you expect to see healthy coral reefs teeming with diverse and large fish.
    [Show full text]