A Guide to Using PEST for Model-Parameter and Predictive-Uncertainty Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Groundwater Resources Program Global Change Research & Development Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Model-Parameter and Predictive-Uncertainty Analysis 1. Calibrate the model p (unknown) 3. Take difference with calibrated parameter field NULL SPACE Total parameter error p (estimated) SOLUTION SPACE 2. Generate a parameter set using C(p) NULL SPACE NULL SPACE SOLUTION SPACE 4. Project difference to null space SOLUTION SPACE NULL SPACE SOLUTION SPACE 5. Add to calibrated field 6. Adjust solution space components 7. Repeat . NULL SPACE NULL SPACE NULL SPACE SOLUTION SPACE SOLUTION SPACE SOLUTION SPACE Scientific Investigations Report 2010–5211 U.S. Department of the Interior U.S. Geological Survey Cover figure Processing steps required for generation of a sequence of calibration-constrained parameter fields by use of the null-space Monte Carlo methodology Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Model-Parameter and Predictive-Uncertainty Analysis By John E. Doherty, Randall J. Hunt, and Matthew J. Tonkin Groundwater Resources Program Global Change Research & Development Scientific Investigations Report 2010–5211 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2011 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Doherty, J.E., Hunt, R.J., and Tonkin, M.J., 2010, Approaches to highly parameterized inversion: A guide to using PEST for model-parameter and predictive-uncertainty analysis: U.S. Geological Survey Scientific Investigations Report 2010–5211, 71 p. iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1 Box 1: The Importance of Avoiding Oversimplification in Prediction Uncertainty Analysis ......................................................................................................2 Purpose and Scope .......................................................................................................................................5 Summary and Background of Underlying Theory ....................................................................................6 General Background ............................................................................................................................6 Parameter and Predictive Uncertainty .............................................................................................6 The Resolution Matrix .................................................................................................................7 Parameter Error............................................................................................................................9 Linear Analysis ....................................................................................................................................11 Parameter Contributions to Predictive Uncertainty/Error Variance .................................11 Observation Worth .....................................................................................................................11 Optimization of Data Acquisition .............................................................................................12 Nonlinear Analysis of Overdetermined Systems ...........................................................................12 Structural Noise Incurred Through Parameter Simplification ...........................................13 Highly Parameterized Nonlinear Analysis .....................................................................................14 Constrained Maximization/Minimization ...............................................................................14 Null-Space Monte Carlo ...........................................................................................................14 Hypothesis Testing ..............................................................................................................................16 Uncertainty Analysis for Overdetermined Systems ...............................................................................16 Linear Analysis Reported by PEST ...................................................................................................17 Linear Analysis Using PEST Postprocessors .................................................................................18 Other Useful Linear Postprocessors ...............................................................................................18 Nonlinear Analysis—Constrained Optimization ............................................................................19 Nonlinear Analysis—Random Parameter Generation for Monte Carlo Analyses ..................19 Linear Analysis for Underdetermined Systems ......................................................................................20 Postcalibration Analysis ....................................................................................................................20 Regularized Inversion and Uncertainty ..................................................................................21 Regularized Inversion Postprocessing ..................................................................................21 Predictive Error Analysis ..........................................................................................................21 Calibration-Independent Analysis ...................................................................................................22 The PREDVAR Suite ...................................................................................................................23 PREDVAR1 ..........................................................................................................................23 PREDVAR4 ..........................................................................................................................23 PREDVAR5 ..........................................................................................................................24 The PREDUNC Suite ..................................................................................................................24 Identifiability and Relative Uncertainty/Error Variance Reduction ...................................24 The GENLINPRED Utility ...........................................................................................................26 Box 2: GENLINPRED—Access to the Most Common Methods for Linear Predictive Analysis within PEST ....................................................................26 Non-linear Analysis for Underdetermined Systems ..............................................................................27 iv Constrained Maximization/Minimization ........................................................................................27 Problem Reformulation .............................................................................................................28 Practical Considerations ..........................................................................................................28 Null-Space Monte Carlo ....................................................................................................................28 Box 3: Null-Space Monte Carlo—A Flexible and Efficient Technique for Nonlinear Predictive Uncertainty Analysis ....................................30 Method 1—Using the Existing Parameterization Scheme .................................................32 RANDPAR ...........................................................................................................................32 PNULPAR ............................................................................................................................32 SVD-Assisted Parameter Adjustment ...........................................................................32 The Processing Loop ........................................................................................................32 Postprocessing .................................................................................................................33 Making Predictions .........................................................................................................34 Method 2—Using Stochastic Parameter Fields ...................................................................34 General ...............................................................................................................................34 Generation of Stochastic