Offshore Wind Power Investment Model Using a Reference
Total Page:16
File Type:pdf, Size:1020Kb
OFFSHORE WIND POWER INVESTMENT MODEL USING A REFERENCE CLASS FORECASTING APPROACH TO ESTIMATE THE REQUIRED COST CONTINGENCY BUDGET Dissertation in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE WITH A MAJOR IN ENERGY TECHNOLOGY WITH FOCUS ON WIND POWER Uppsala University Department of Earth Sciences, Campus Gotland Pär Boquist 2015-05-22 OFFSHORE WIND POWER INVESTMENT MODEL USING A REFERENCE CLASS FORECASTING APPROACH TO ESTIMATE THE REQUIRED COST CONTINGENCY BUDGET Dissertation in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE WITH A MAJOR IN ENERGY TECHNOLOGY WITH FOCUS ON WIND POWER Uppsala University Department of Earth Sciences, Campus Gotland Approved by: Supervisor, Håkan Kullvén, Dept. of Engineering Sciences, Uppsala University Supervisor, Christos Kaidis, Consulting Engineer, MECAL Independent eXperts BV Examiner, Heracles Polatidis, Dept. of Earth Sciences, Uppsala University 2015-05-22 iii ABSTRACT Forecasting capital expenditures in early stages of an offshore wind power project is a problematic process. The process can be affected by optimism bias and strategic misrepresentation which may result in cost overruns. This thesis is a response to issues regarding cost overruns in offshore wind power projects. The aim of this thesis is to create a cost forecasting method which can estimate the necessary capital budget in a wind power project. The author presents a two-step model which both applies the inside view and outside view. The inside view contains equations related to investment and installation costs. The outside view applies reference class forecasting in order to adjust the necessary cost contingency budget. The combined model will therefore forecast capital expenditures for a specific site and adjust the cost calculations with regard to previous similar projects. The results illustrate that the model is well correlated with normalized cost estimations in other projects. A hypothetical 150MW offshore wind farm is estimated to cost between 2.9 million €/MW and 3.5 million €/MW depending on the location of the wind farm. iv ACKNOWLEDGEMENTS I would like to express my gratitude towards my supervisors Dr. Kullvén and Mr. Kaidis for their guidance and support throughout the course of this research. In addition, special acknowledgments go to Gästrike-Hälsinge nation for being a big part of my life during my years in college. Finally I would like to thank Göransson-Sandviken traveling scholarship fund for supporting me during my time in The Netherlands. v NOMENCLATURE : Coefficients for nominal voltage : Total length from shoreline to the grid level : Distance from shore. : Rated power from the transformer : Hub height : Total length of overhead lines : Cable ampacity [A] C : Cost I: Installation hours : Average reference cost L : loading time : Total cost of the collection system. LOAD: total loading time : Cost of the diesel generator. M: intra-field movement time : Estimated construction cost Move: total trip intra-field movement time : Cost of switchgears : Number of HV circuits. : Sub-station foundation cost : Number of transformers. : Cost of collection system : Number of turbines. : HV busbar : Number of clusters. : Project development cost : Amount of overhead lines : SCADA system cost NUMUNIT: Number of turbines : Cost of switchgears. NUMUNIT: number of units : Switchgear cost. : Rated power. : Cost of offshore substation platform. : Correlation coefficient S: Cable section [mm2]. : Cost of Transformer. SDR: spread day rate Cost per turbine. : Cost of the submarine cables. SPU: total scour per unit : Cost of the foundation. TDC: total daily cost : Installation cost of submarine HV TSR: total tonnage of scour needed VC: vessel capacity (units/trips) cables. : Collector investment cost / km VDR: vessel day rate : Unit cost of submarine HV cables. : Nominal voltage in kV. W: the weather factor : Sea depth in meters. : Rotor diameter : Average distance to shore vi Table of Contents CHAPTER 1. INTRODUCTION ........................................................................................ 1 1.1 BACKGROUND TO THE RESEARCH ................................................................. 1 1.2 PROBLEM STATEMENT ...................................................................................... 4 1.3 RESEARCH PUPOSE ............................................................................................. 5 1.4 RESEARCH QUESTION ........................................................................................ 5 1.5 DELIMINATIONS OF SCOPE AND LIMITATIONS .......................................... 6 1.6 DECLARATION AND JUSTIFICATION FOR THE RESEARCH ...................... 7 1.7 CONCLUSIONS ...................................................................................................... 7 CHAPTER 2. LITERATURE REVIEW .......................................................................... 10 2.1 CAPITAL EXPENDITURES FOR OFFSHORE WIND POWER DEVELOPMENT ........................................................................................................ 10 2.1.1 COST DRIVERS IN OFFSHORE WIND POWER DEVELOPMENT ........ 13 2.2 INACCUARY IN COST FORECASTING ........................................................... 16 2.2.1 TECHNICAL REASONS FOR COST OVERRUNS .................................... 17 2.2.2 PSYCOLOGICAL REASONS FOR COST OVERRUN ............................... 18 2.2.3 POLITICAL RESONS FOR COST OVERRUN ............................................ 19 2.3 THE INVESTMENT COST CALCULATION APPROACH IN MODELING OFFSHORE WIND POWER CAPEX. ....................................................................... 21 2.3.1 COST OF TURBINE ...................................................................................... 21 2.3.2 COST OF FOUNDATION ............................................................................. 21 2.3.3 COST OF COLLECTION SYSTEM .............................................................. 22 2.3.4 COST OF INTEGRATION SYSTEM ............................................................ 23 2.3.5 COST OF TRANSIMMSION SYSTEM ........................................................ 26 2.3.6 COST OF GRID INTERFACE ....................................................................... 27 2.3.7 PROJECT DEVELOPMENT ......................................................................... 27 2.3.8 COMBINED INVESTMENT COST MODEL ............................................... 28 2.4 OFFSHORE WIND INSTALLATION COSTS .................................................... 28 2.4 REFERENCE CLASS FORECASTING METHODS ........................................... 35 2.4.1 REFERENCE CLASS FORECASTING IN WIND POWER DEVLEOPMENT .................................................................................................... 38 vii 2.5 CONTINGENCIES ................................................................................................ 41 2.6 CONCLUSIONS .................................................................................................... 43 CHAPTER 3. METHODOLOGY AND DATA ................................................................ 44 3.1 DESCRIPTION OF THE METHODOLOGICAL FRAMEWORK ..................... 44 3.1.1 RESEARCH DESIGN .................................................................................... 44 3.1.2 RESEARCH RELIABILITY .......................................................................... 46 3.1.3 DESCRIPTION OF DATA SOURCES .......................................................... 47 3.2 PRESENATATION OF DATA SOURCES .......................................................... 48 3.3 DESCRIBTION OF MODELS .............................................................................. 50 3.3.1 CALCULATING THE INVESTMENT COST .............................................. 51 3.3.2 INSTALLATION COST CALCUATIONS ................................................... 51 3.3.3 REFERENCE CLASS FORECASTING ........................................................ 51 3.4 CONCLUSIONS .................................................................................................... 53 CHAPTER 4. APPLICATION OF THE METHODOLOGY AND RESULTS .................... 54 4.1 INVESTMENT COST DERIVATION ................................................................. 54 4.2 INSTALLTION COST DERIVATION ................................................................. 55 4.3 REFERENCE CLASS 1, OFFSHORE WIND FARMS ........................................ 56 4.4 CONTINGACY UPLIFT ....................................................................................... 57 4.5 CONCLUSIONS .................................................................................................... 58 CHAPTER 6. CONCLUSIONS ......................................................................................... 63 5.1 LIMITATIONS ...................................................................................................... 64 5.2 IMPLICATIONS FOR FUTURE RESEARCH .................................................... 65 5.3 REFLECTIONS ..................................................................................................... 66 REFERENCES ......................................................................................................................... 67 viii LIST OF FIGURES Figure 1 Cost breakdown per sector for two offshore wind farms. Source: Hau (2013) . 11 Figure 2 Total investment cost for offshore projects. Source: Taylor et al (2015). ......... 12 Figure 3 Regression line