Genuswide Acid Tolerance Accounts for the Biogeographical Distribution of Soil Burkholderia Populations

Total Page:16

File Type:pdf, Size:1020Kb

Genuswide Acid Tolerance Accounts for the Biogeographical Distribution of Soil Burkholderia Populations bs_bs_banner Environmental Microbiology (2014) 16(6), 1503–1512 doi:10.1111/1462-2920.12211 Genus-wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations Nejc Stopnisek,1,5 Natacha Bodenhausen,2 of the genus Burkholderia. Our results provide a Beat Frey,3 Noah Fierer,4 Leo Eberl1 and basis for building a predictive understanding of the Laure Weisskopf1,5* biogeographical patterns exhibited by Burkholderia 1Institute of Plant Biology, University of Zurich, Zürich sp. CH-8008, Switzerland. 2Institute of Microbiology, Swiss Federal Institute of Introduction Technology, Zürich CH-8093, Switzerland. 3Snow and Landscape Research, Swiss Federal The genus Burkholderia, which belongs to the β Institute for Forest, Birmensdorf CH-8903, Switzerland. -Proteobacteria class, currently comprises more than 60 4Department of Ecology and Evolutionary Biology, species that are widely distributed and frequently isolated University of Colorado, Boulder, CO 80309-0216, USA. from a large range of natural and clinical environments 5Swiss Federal Research Station for Agronomy and (Compant et al., 2008). The genus Burkholderia can be Nature, Agroscope Reckenholz-Tänikon, Zürich divided phylogenetically into two main clusters: the first CH-8046, Switzerland. one consists mainly of human, animal and plant patho- gens, e.g. the Burkholderia cepacia complex (Bcc) and the rice pathogen B. glumae. However, it is important to Summary note that some strains belonging to Bcc, such as Bacteria belonging to the genus Burkholderia are B. ambifaria or B. lata, also show plant growth-promoting highly versatile with respect to their ecological niches abilities as well as biocontrol activities against and lifestyles, ranging from nodulating tropical plants phytopathogenic fungi. The other cluster consists mainly to causing melioidosis and fatal infections in cystic of plant-beneficial-environmental (PBE) Burkholderia fibrosis patients. Despite the clinical importance and species (Suárez-Moreno et al., 2012). The members of agronomical relevance of Burkholderia species, infor- the first cluster have been extensively studied because of mation about the factors influencing their occurrence, their medical importance, but recently the PBE cluster has abundance and diversity in the environment is been the focus of research efforts with the discovery that scarce. Recent findings have demonstrated that pH is various species of this cluster are able to fix nitrogen the main predictor of soil bacterial diversity and com- (Estrada-De Los Santos et al., 2001; Martínez-Aguilar munity structure, with the highest diversity observed et al., 2008) and to nodulate legumes (Moulin et al., in neutral pH soils. As many Burkholderia species 2001). Burkholderia from the PBE cluster have been have been isolated from low pH environments, we mainly isolated from plant rhizosphere, but they are also hypothesized that acid tolerance may be a general frequently detected in sediment and bulk soil (Salles feature of this genus, and pH a good predictor of their et al., 2002; Lazzaro et al., 2008; Lim et al., 2008; Lepleux occurrence in soils. Using a combination of environ- et al., 2012; Štursová et al., 2012). In addition to their mental surveys at trans-continental and local scales, nitrogen-fixing and nodulating abilities, their versatile as well as in vitro assays, we show that, unlike most metabolism also enables them to survive in harsh condi- bacteria, Burkholderia species have a competitive tions, such as nutrient-limited or polluted environments, advantage in acidic soils, but are outcompeted in and to degrade recalcitrant compounds (Pérez-Pantoja alkaline soils. Physiological assays and diversity et al., 2012). As such, they have been suggested as good analysis based on 16S rRNA clone libraries demon- candidates for use in biotechnology, e.g. for bio- or strate that pH tolerance is a general phenotypic trait phytoremediation, biocontrol and biofertilization. Despite the high relevance of the Burkholderia genus for human health, agronomy and biotechnology, surprisingly little is Received 17 May, 2013; revised 4 July, 2013; accepted 10 July, 2013. *For correspondence. E-mail [email protected]; known about the factors underlying their geographical Tel. (+41) 44 377 72 11; Fax (+41) 44 377 72 01. distribution. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd 1504 N. Stopnisek et al. A was high (8.7), the isolated strains were all able to grow at low pH (4.5). These reports provide anecdotal evidence that Burkholderia might be tolerant to low pH conditions, which enables members of this genus to thrive in niches where others would be inhibited. We, therefore, hypoth- esized (i) that low pH tolerance is an intrinsic phenotypic trait of the Burkholderia genus, and (ii) that the relative abundance and diversity of Burkholderia populations are highest in low pH soils, with the biogeography of Burkholderia predictable from soil pH. To test these pH scale Relative abundance (%) 3 − 4 6.70 hypotheses, we developed a novel quantitative polymer- 4 − 5 5 − 6 2.82 6 − 7 ase chain reaction (qPCR) protocol to analyze the relative 1.08 7 − 8 0.01 8 − 9 0.00 abundance of Burkholderia populations in soils at a trans- B continental and a local scale. Intrageneric diversity and community structure were determined by 16S rRNA- based clone libraries constructed from a selected subset 0 20406080 200 123456 − Relative abundance (%) abundance Relative 0 of the trans-continental scale soil samples. In addition, in 45678 pH vitro physiological assays were used to test the direct −160 −140 −120 −100 −80 −60 −40 effects of pH on Burkholderia species. Fig. 1. Relative abundance of Burkholderia 16S rRNA genes in 44 Results soils. A. Representation of Burkholderia 16S rRNA gene relative Low pH tolerance, a genus-wide property of abundance at the different sites as assessed by qPCR. Relative abundance is represented by the circle size; the colour indicates Burkholderia that largely accounts for its relative the pH of the sampled soils. abundance in soils B. Influence of pH on the relative abundance of Burkholderia 16S rRNA genes. Circles represent the average of three replicates for To test whether the occurrence of Burkholderia species in each soil sample. acidic environments reflects an intrinsic capacity of this genus to tolerate low pH conditions, we tested the ability Soil pH has frequently been shown to be the main of 68 strains of Burkholderia belonging to 31 different predictor of overall soil bacterial community composition, species to grow at a pH range of 3.5–8. All Burkholderia diversity and the relative abundance of many individual strains that were tested in physiological assays grew in taxa (Tiedje et al., 1999; Fierer and Jackson, 2006; Rousk pH as low as pH 4.5. Out of 68 tested strains (31 different et al., 2010; Griffiths et al., 2011). Although it is not known species), 32 (18 species) were growing also at pH 4 and if Burkholderia distributions are related to soil pH, most 15 (8 species) even at pH 3.5, but no species-specific studies that have reported their presence in soil were tolerance could be observed under such conditions investigating acidic environments (Trân Van et al., 2000; (Table S1). Curtis et al., 2002; Salles et al., 2002; 2004; Belova et al., Based on this result, we hypothesized that members of 2006; Garau et al., 2009; Aizawa et al., 2010). For the Burkholderia genus would be favoured in low pH instance, Burkholderia unamae could only be isolated environments. We tested this hypothesis by analyzing the from the rhizosphere of plants growing in soils, with a pH relative abundance of soil Burkholderia in a trans- ranging from 4.5 to 7.1, but not from soils with a pH higher continental sample collection of 44 soils from a broad than 7.5 (Caballero-Mellado et al., 2004). Likewise, a array of ecosystem types that represent a wide range of survey of over 800 Australian soil samples revealed that soil and site characteristics (Table S2). The relative abun- B. pseudomallei was specifically associated with low pH dance of Burkholderia species greatly varied between soils, but not recovered from higher pH soils (Kaestli these different soils sampled across North and South et al., 2009). Burkholderia species have also been iso- America (Fig. 1A). Highest relative abundance was lated from acidic Sphagnum peat bogs (Belova et al., observed in moderately acidic soils (pH 5–pH 6), where 2006; Opelt et al., 2007a; 2007b), from root tissues of the up to 6.7% of the total bacterial population was repre- highly acidifying cluster rooted Lupinus albus (Weisskopf sented by Burkholderia species. It is worthwhile to notice et al., 2011) or from soils as acidic as pH 2.9 (Curtis et al., that within this pH range a large variability in Burkholderia 2002). To the best of our knowledge, only one study relative abundance was observed (standard devia- reported isolation of Burkholderia strains from an alkaline tion =±2.02), spanning from 0.04% to 6.25%, whereas in environment (Estrada-de los Santos et al., 2011). While more acidic soils (pH <4) relative abundances were the pH of the rhizosphere soil investigated in this study approximately 1% or higher. While high relative abun- © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 16, 1503–1512 Preference of Burkholderia sp. for acid soils 1505 3.5 to 6.8), C/N ratio, location and relative abundance of Burkholderia 16S rRNA genes were selected from the R = −0.76 trans-continental scale sampling set for phylogenetic analyses. Clone libraries targeting the 16S rRNA gene were constructed for each of the selected sites, and a total of 675 sequences (590 bp) were obtained, corresponding to 123 operational taxonomical units (OTUs) at a 98% identity threshold between Burkholderia 16S rRNA gene 0.05 0.10 0.15 0.20 sequences (Fig. 3). Diversity and richness of the soil Relative abundance (%) abundance Relative 0.00 Burkholderia communities were highly variable between 4.5 5.0 5.5 6.0 6.5 7.0 7.5 the sites, e.g.
Recommended publications
  • Accurate and Rapid Identification of the Burkholderia Pseudomallei Near-Neighbour, Burkholderia Ubonensis, Using Real-Time PCR
    Accurate and Rapid Identification of the Burkholderia pseudomallei Near-Neighbour, Burkholderia ubonensis, Using Real-Time PCR Erin P. Price1*, Derek S. Sarovich1, Jessica R. Webb1, Jennifer L. Ginther2, Mark Mayo1, James M. Cook2, Meagan L. Seymour2, Mirjam Kaestli1, Vanessa Theobald1, Carina M. Hall2, Joseph D. Busch2, Jeffrey T. Foster2, Paul Keim2, David M. Wagner2, Apichai Tuanyok2, Talima Pearson2, Bart J. Currie1 1 Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia, 2 Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America Abstract Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown’s medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B.
    [Show full text]
  • Iron Transport Strategies of the Genus Burkholderia
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Iron transport strategies of the genus Burkholderia Mathew, Anugraha Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-113412 Dissertation Published Version Originally published at: Mathew, Anugraha. Iron transport strategies of the genus Burkholderia. 2015, University of Zurich, Faculty of Science. Iron transport strategies of the genus Burkholderia Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Anugraha Mathew aus Indien Promotionskomitee Prof. Dr. Leo Eberl (Vorsitz) Prof. Dr. Jakob Pernthaler Dr. Aurelien carlier Zürich, 2015 2 Table of Contents Summary .............................................................................................................. 7 Zusammenfassung ................................................................................................ 9 Abbreviations ..................................................................................................... 11 Chapter 1: Introduction ....................................................................................... 14 1.1.Role and properties of iron in bacteria ...................................................................... 14 1.2.Iron transport mechanisms in bacteria .....................................................................
    [Show full text]
  • Volcanic Soils As Sources of Novel CO-Oxidizing Paraburkholderia and Burkholderia: Paraburkholderia Hiiakae Sp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 21 February 2017 doi: 10.3389/fmicb.2017.00207 Volcanic Soils as Sources of Novel CO-Oxidizing Paraburkholderia and Burkholderia: Paraburkholderia hiiakae sp. nov., Paraburkholderia metrosideri sp. nov., Paraburkholderia paradisi sp. nov., Edited by: Paraburkholderia peleae sp. nov., Svetlana N. Dedysh, Winogradsky Institute of Microbiology and Burkholderia alpina sp. nov. a (RAS), Russia Reviewed by: Member of the Burkholderia cepacia Dimitry Y. Sorokin, The Federal Research Centre Complex “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 1, 2 1 Russia Carolyn F. Weber and Gary M. King * Philippe Constant, 1 Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA, 2 College of Health Sciences, Des INRS-Institut Armand-Frappier, Moines University, Des Moines, IA, USA Canada Paulina Estrada De Los Santos, Instituto Politécnico Nacional, Mexico Previous studies showed that members of the Burkholderiales were important in *Correspondence: the succession of aerobic, molybdenum-dependent CO oxidizing-bacteria on volcanic Gary M. King [email protected] soils. During these studies, four isolates were obtained from Kilauea Volcano (Hawai‘i, USA); one strain was isolated from Pico de Orizaba (Mexico) during a separate Specialty section: study. Based on 16S rRNA gene sequence similarities, the Pico de Orizaba isolate This article was submitted to Terrestrial Microbiology, and the isolates from Kilauea Volcano were provisionally assigned to the genera a section of the journal Burkholderia and Paraburkholderia, respectively. Each of the isolates possessed a form Frontiers in Microbiology I coxL gene that encoded the catalytic subunit of carbon monoxide dehydrogenase Received: 09 December 2016 (CODH); none of the most closely related type strains possessed coxL or oxidized Accepted: 30 January 2017 Published: 21 February 2017 CO.
    [Show full text]
  • Targeting the Burkholderia Cepacia Complex
    viruses Review Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex Philip Lauman and Jonathan J. Dennis * Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-780-492-2529 Abstract: The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy—the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy. Keywords: Burkholderia cepacia complex (Bcc); bacteria; pathogenesis; antibiotic resistance; bacterio- phages; phages; phage therapy; phage therapy treatment strategies; Bcc phage therapy Citation: Lauman, P.; Dennis, J.J.
    [Show full text]
  • Epidemiology of Burkholderia Cepacia Complex in Patients with Cystic Fibrosis, Canada David P
    RESEARCH Epidemiology of Burkholderia cepacia Complex in Patients with Cystic Fibrosis, Canada David P. Speert,* Deborah Henry,* Peter Vandamme,† Mary Corey,‡ and Eshwar Mahenthiralingam* The Burkholderia cepacia complex is an important group of pathogens in patients with cystic fibrosis (CF). Although evidence for patient-to-patient spread is clear, microbial factors facilitating transmission are poorly understood. To identify microbial clones with enhanced transmissibility, we evaluated B. cepacia complex isolates from patients with CF from throughout Canada. A total of 905 isolates from the B. cepacia complex were recovered from 447 patients in 8 of the 10 provinces; 369 (83%) of these patients had genomovar III and 43 (9.6%) had B. multivorans (genomovar II). Infection prevalence differed substantially by region (22% of patients in Ontario vs. 5% in Quebec). Results of typing by random amplified polymor- phic DNA analysis or pulsed-field gel electrophoresis indicated that strains of B. cepacia complex from genomovar III are the most potentially transmissible and that the B. cepacia epidemic strain marker is a robust marker for transmissibility. urkholderia cepacia complex is an important group of and genomovar VII = B. ambifaria. Genomovars I and III can- B pathogens in immunocompromised hosts, notably those not be differentiated phenotypically, nor can B. multivorans with cystic fibrosis (CF) or chronic granulomatous disease and genomovar VI; these species must be distinguished by (1,2). Lung infections with B. cepacia complex in certain genetic methods. Bacteria from each of the genomovars have patients with CF result in rapidly progressive, invasive, fatal been recovered from patients with CF, but the predominant bacteremic disease (3).
    [Show full text]
  • Broad-Spectrum Antimicrobial Activity by Burkholderia Cenocepacia Tatl-371, a Strain Isolated from the Tomato Rhizosphere
    RESEARCH ARTICLE Rojas-Rojas et al., Microbiology DOI 10.1099/mic.0.000675 Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere Fernando Uriel Rojas-Rojas,1 Anuar Salazar-Gómez,1 María Elena Vargas-Díaz,1 María Soledad Vasquez-Murrieta, 1 Ann M. Hirsch,2,3 Rene De Mot,4 Maarten G. K. Ghequire,4 J. Antonio Ibarra1,* and Paulina Estrada-de los Santos1,* Abstract The Burkholderia cepacia complex (Bcc) comprises a group of 24 species, many of which are opportunistic pathogens of immunocompromised patients and also are widely distributed in agricultural soils. Several Bcc strains synthesize strain- specific antagonistic compounds. In this study, the broad killing activity of B. cenocepacia TAtl-371, a Bcc strain isolated from the tomato rhizosphere, was characterized. This strain exhibits a remarkable antagonism against bacteria, yeast and fungi including other Bcc strains, multidrug-resistant human pathogens and plant pathogens. Genome analysis of strain TAtl-371 revealed several genes involved in the production of antagonistic compounds: siderophores, bacteriocins and hydrolytic enzymes. In pursuit of these activities, we observed growth inhibition of Candida glabrata and Paraburkholderia phenazinium that was dependent on the iron concentration in the medium, suggesting the involvement of siderophores. This strain also produces a previously described lectin-like bacteriocin (LlpA88) and here this was shown to inhibit only Bcc strains but no other bacteria. Moreover, a compound with an m/z 391.2845 with antagonistic activity against Tatumella terrea SHS 2008T was isolated from the TAtl-371 culture supernatant. This strain also contains a phage-tail-like bacteriocin (tailocin) and two chitinases, but the activity of these compounds was not detected.
    [Show full text]
  • DISSERTAÇÃO Josineide Neri Monteiro.Pdf
    UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA BIOMÉDICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA BIOMÉDICA JOSINEIDE NERI MONTEIRO IDENTIFICAÇÃO DE BACTÉRIAS DO COMPLEXO Burkholderia cepacia ATRAVÉS DE UTILIZAÇÃO DE FERRAMENTAS COMPUTACIONAIS RECIFE 2017 JOSINEIDE NERI MONTEIRO IDENTIFICAÇÃO DE BACTÉRIAS DO COMPLEXO Burkholderia cepacia ATRAVÉS DE UTILIZAÇÃO DE FERRAMENTAS COMPUTACIONAIS Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Biomédica (PPGEB), da Universidade Federal de Pernambuco (UFPE), como requisito parcial para a obtenção do título de Mestre em Engenharia Biomédica. Área de concentração: Computação Biomédica Linha de pesquisa: Inteligência Artificial e Sistemas Inteligentes ORIENTADOR: Ricardo Yara RECIFE 2017 Catalogação na fonte Bibliotecária Margareth Malta, CRB-4 / 1198 M775i Monteiro, Josineide Neri. Identificação de bactérias do complexo Burkholderia cepacia através de utilização de ferramentas computacionais / Josineide Neri Monteiro. - 2017. 75 folhas, il., gráfs., tabs. Orientador: Prof. Dr. Ricardo Yara. Dissertação (Mestrado) – Universidade Federal de Pernambuco. CTG. Programa de Pós-Graduação em Engenharia Biomédica, 2017. Inclui Referências e Apêndices. 1. Engenharia Biomédica. 2. Burkholderia. 3. Bioinformática. 4. Alinhamento genético. 5. Algoritmos genéticos. 6. Taxonomia. I. Yara, Ricardo. (Orientador). II. Título. UFPE 610.28 CDD (22. ed.) BCTG/2017-299 JOSINEIDE NERI MONTEIRO IDENTIFICAÇÃO DE BACTÉRIAS DO COMPLEXO Burkholderia Cepacia ATRAVÉS DE UTILIZAÇÃO DE FERRAMENTAS COMPUTACIONAIS Esta dissertação foi julgada adequada para a obtenção do título de Mestre em Engenharia Biomédica e aprovada em sua forma final pelo Orientador e pela Banca Examinadora. Orientador: ____________________________________ Prof. Dr. Ricardo Yara (Doutor pela Universidade de São Paulo – São Paulo , Brasil) Banca Examinadora: Prof. Dr. Ricardo Yara, UFPE Doutor pela Universidade de São Paulo – São Paulo, Brasil Prof.
    [Show full text]
  • Molecular Study of the Burkholderia Cenocepacia Division Cell Wall Operon and Ftsz Interactome As Targets for New Drugs
    Università degli Studi di Pavia Dipartimento di Biologia e Biotecnologie “L. Spallanzani” Molecular study of the Burkholderia cenocepacia division cell wall operon and FtsZ interactome as targets for new drugs Gabriele Trespidi Dottorato di Ricerca in Genetica, Biologia Molecolare e Cellulare XXXIII Ciclo – A.A. 2017-2020 Università degli Studi di Pavia Dipartimento di Biologia e Biotecnologie “L. Spallanzani” Molecular study of the Burkholderia cenocepacia division cell wall operon and FtsZ interactome as targets for new drugs Gabriele Trespidi Supervised by Prof. Edda De Rossi Dottorato di Ricerca in Genetica, Biologia Molecolare e Cellulare XXXIII Ciclo – A.A. 2017-2020 Cover image: representation of the Escherichia coli division machinery. Created by Ornella Trespidi A tutta la mia famiglia e in particolare a Diletta Table of contents Abstract ..................................................................................................... 1 Abbreviations ............................................................................................ 3 1. Introduction ........................................................................................... 5 1.1 Cystic fibrosis 5 1.1.1 CFTR defects in CF 5 1.1.2 Pathophysiology of CF 7 1.1.3 CFTR modulator therapies 11 1.2 CF-associated lung infections 12 1.2.1 Pseudomonas aeruginosa 13 1.2.2 Staphylococcus aureus 14 1.2.3 Stenotrophomonas maltophilia 15 1.2.4 Achromobacter xylosoxidans 16 1.2.5 Non-tuberculous mycobacteria 17 1.3 The genus Burkholderia 18 1.3.1 Burkholderia cepacia complex 20 1.3.2 Bcc species as CF pathogens 22 1.4 Burkholderia cenocepacia 23 1.4.1 B. cenocepacia epidemiology 23 1.4.2 B. cenocepacia genome 25 1.4.3 B. cenocepacia pathogenicity and virulence factors 26 1.4.3.1 Quorum sensing 29 1.4.3.2 Biofilm 32 1.4.4 B.
    [Show full text]
  • The Organization of the Quorum Sensing Luxi/R Family Genes in Burkholderia
    Int. J. Mol. Sci. 2013, 14, 13727-13747; doi:10.3390/ijms140713727 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article The Organization of the Quorum Sensing luxI/R Family Genes in Burkholderia Kumari Sonal Choudhary 1, Sanjarbek Hudaiberdiev 1, Zsolt Gelencsér 2, Bruna Gonçalves Coutinho 1,3, Vittorio Venturi 1,* and Sándor Pongor 1,2,* 1 International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, Trieste 32149, Italy; E-Mails: [email protected] (K.S.C.); [email protected] (S.H.); [email protected] (B.G.C.) 2 Faculty of Information Technology, PázmányPéter Catholic University, Práter u. 50/a, Budapest 1083, Hungary; E-Mail: [email protected] 3 The Capes Foundation, Ministry of Education of Brazil, Cx postal 250, Brasilia, DF 70.040-020, Brazil * Authors to whom correspondence should be addressed; E-Mails: [email protected] (V.V.); [email protected] (S.P.); Tel.: +39-40-375-7300 (S.P.); Fax: +39-40-226-555 (S.P.). Received: 30 May 2013; in revised form: 20 June 2013 / Accepted: 24 June 2013 / Published: 2 July 2013 Abstract: Members of the Burkholderia genus of Proteobacteria are capable of living freely in the environment and can also colonize human, animal and plant hosts. Certain members are considered to be clinically important from both medical and veterinary perspectives and furthermore may be important modulators of the rhizosphere. Quorum sensing via N-acyl homoserine lactone signals (AHL QS) is present in almost all Burkholderia species and is thought to play important roles in lifestyle changes such as colonization and niche invasion.
    [Show full text]
  • Identification of the Essential Genome of Burkholderia Cenocepacia K56-2 to Uncover Novel
    Identification of the Essential Genome of Burkholderia cenocepacia K56-2 to Uncover Novel Antibacterial Targets by April S. Gislason A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Microbiology University of Manitoba Winnipeg, Manitoba, Canada Copyright © 2017 April S. Gislason ii Abstract Burkholderia cenocepacia K56-2 is a clinical isolate of the Burkholderia cepacia complex, a group of intrinsically antibiotic resistant opportunistic pathogens, for which few treatment options are available. The identification of essential genes is an important step for exploring new antibiotic targets. Previously, a conditional growth mutant library was created using transposon mutagenesis to insert a rhamnose-inducible promoter into the genome of B. cenocepacia. It was then demonstrated that conditional growth mutants under-expressing an antibiotic target were sensitized to sub-lethal concentrations of that antibiotic. This thesis describes the use of next generation sequencing to measure the enhanced sensitivity of conditional growth mutants after being grown together competitively. Evidence is provided to show that the sensitivity of a GyrB conditional growth mutant to its cognate antibiotic, novobiocin, was enhanced due to competitive growth. Screening eight antibiotics with known mechanisms of action against a pilot conditional growth mutant library revealed a previously uncharacterized two-component system involved antibiotic resistance in B. cenocepacia. With the goal of exploring new Burkholderia antibacterial targets, the essential genome of B. cenocepacia K56-2 was identified by sequencing a high density transposon mutant library. Comparison of the B. cenocepacia K56-2 essential gene set with the essential genomes predicted for B.
    [Show full text]
  • Good and Bad Guys Burkholderia
    F1000Research 2016, 5(F1000 Faculty Rev):1007 Last updated: 17 JUL 2019 REVIEW Members of the genus Burkholderia: good and bad guys [version 1; peer review: 3 approved] Leo Eberl1, Peter Vandamme2 1Department of Plant and Microbial Biology, University Zürich, Zurich, CH-8008, Switzerland 2Laboratory of Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium First published: 26 May 2016, 5(F1000 Faculty Rev):1007 ( Open Peer Review v1 https://doi.org/10.12688/f1000research.8221.1) Latest published: 26 May 2016, 5(F1000 Faculty Rev):1007 ( https://doi.org/10.12688/f1000research.8221.1) Reviewer Status Abstract Invited Reviewers In the 1990s several biocontrol agents on that contained Burkholderia 1 2 3 strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from version 1 the market and a moratorium was placed on the registration of Burkholderia published -containing products, as these strains may pose a risk to human health. 26 May 2016 However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish F1000 Faculty Reviews are written by members of to summarize recent efforts that aim at discerning pathogenic from the prestigious F1000 Faculty. They are beneficial Burkholderia strains. commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations. 1 Gabriele Berg, Graz University of Technology, Graz, Austria 2 Jorge Leitão, Instituto Superior Técnico, Lisboa, Portugal 3 Vittorio Venturi, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy Any comments on the article can be found at the end of the article.
    [Show full text]
  • Genomic Analysis of the Potential for Aromatic Compounds
    bs_bs_banner Environmental Microbiology (2012) 14(5), 1091–1117 doi:10.1111/j.1462-2920.2011.02613.x Minireview Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderialesemi_2613 1091..1117 Danilo Pérez-Pantoja,1 Raúl Donoso,1,2 in the catabolic clusters of these pathways indicating Loreine Agulló,3 Macarena Córdova,3 recent events in its evolutionary history. In addition, a Michael Seeger,3 Dietmar H. Pieper4 and significant bias towards secondary chromosomes, Bernardo González1,2* now termed chromids, is observed in the distribution 1Center for Advanced Studies in Ecology and of catabolic genes across multipartite genomes, Biodiversity. Millennium Nucleus in Plant Functional which is consistent with a genus-specific character. Genomics. Facultad de Ciencias Biológicas, P. Strains isolated from environmental sources such as Universidad Católica de Chile. Santiago, Chile. soil, rhizosphere, sediment or sludge show a higher 2Facultad de Ingeniería y Ciencias, Universidad Adolfo content of catabolic genes in their genomes com- Ibáñez. Santiago, Chile. pared with strains isolated from human, animal or 3Laboratorio de Microbiología Molecular y Biotecnología plant hosts, but no significant difference is found Ambiental, Departamento de Química, Center for among Alcaligenaceae, Burkholderiaceae and Coma- Nanotechnology and Systems Biology, Universidad monadaceae families, indicating that habitat is more Técnica Federico Santa María, Valparaíso, Chile. of a determinant than phylogenetic origin in shaping 4Microbial Interactions and Processes Research Group, aromatic catabolic versatility. Department of Medical Microbiology, HZI – Helmholtz Centre for Infection Research. Braunschweig, Germany. Introduction Aromatic compounds are widespread in nature, being Summary found as lignin and petroleum components, xenobiotic The relevance of the b-proteobacterial Burkholderi- chemicals, aromatic amino acids and constituents of plant ales order in the degradation of a vast array of exudates, among other sources.
    [Show full text]