Biodegradación De Hidrocarburos Alifáticos En Sedimentos Marinos Subantárticos: Estudios Poblacionales Y Metagenómicos

Total Page:16

File Type:pdf, Size:1020Kb

Biodegradación De Hidrocarburos Alifáticos En Sedimentos Marinos Subantárticos: Estudios Poblacionales Y Metagenómicos Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Tesis de Doctorado Biodegradación de Hidrocarburos Alifáticos en Sedimentos Marinos Subantárticos: Estudios Poblacionales y Metagenómicos Presentada por Lilian Marcela Guibert Rosario, Argentina 2014 Biodegradación de Hidrocarburos Alifáticos en Sedimentos Marinos Subantárticos: Estudios Poblacionales y Metagenómicos Lilian Marcela Guibert Licenciada en Biotecnología Universidad Nacional de Rosario Esta Tesis es presentada como parte de los requisitos para optar al grado académico de Doctor en Ciencias Biológicas, de la Universidad de Rosario y no ha sido presentada previamente para la obtención de otro título en esta u otra Universidad. La misma contiene los resultados obtenidos en investigaciones llevadas a cabo en Laboratorio de Microbiología Ambiental, Centro Nacional Patagónico, dependiente del CONICET, durante el período comprendido entre el 17 de diciembre de 2009 y el 12 de diciembre de 2014, bajo la dirección de las Dras. Mariana Lozada y Hebe Dionisi. A mi familia y a Ezequiel Agradecimientos No se confundan, esta es la parte más importante de la tesis, porque sin la ayuda y el apoyo de estas personas nada de esto hubiera sido posible. Quiero agradecer a mi familia, por su apoyo incondicional, por la confianza, por escuchar, por los consejos, por las visitas y los llamados que ayudaron a acortar las distancias. A Eze, por todo, por estar a mi lado en los buenos y en los malos momentos, por hacerme reir, por la paciencia y la contención, por bajarme a la realidad, y por la asistencia informática. A la familia de Eze, por integrarme a su familia y hacerme sentir cómoda. A los padres de Eze por su ayuda y su confianza. A Pili por su magia y su hermosura. Quiero agradecer a mis directoras Mariana y Hebe, por su trabajo de dirección y acompañamiento a lo largo de esta tesis, y todo lo que eso implica. Por las correcciones a último momento (hasta altas horas de la noche, Mariana sabe de lo que estoy hablando…), los consejos, y las levantadas de ánimo para seguir adelante. Quiero agradecer a mis grandes compañeras de aventuras laboratoriles y demás: Magui y Clau, por estar desde el principio, haciendo el aguante, haciendo mucho mejor el trabajo de cada día, por los mates revividores y los tererés de gustos exóticos. Por integrarme a la vida de Madryn, y ayudarme a que no me sintiera sola. Al resto de mis amigos de Madryn, Sole, Agus, Nati Muffin, Juli, Jime, Lau, Poly, Ana, Gabi, Noe, Marian, Nati Pessaq, Jose, Gastón, Juanpi, Lucas, Lucio, también por su amistad, por las risas y los momentos compartidos, y (ya se los dije) por enseñarme que los amigos también pueden ser familia. Sole, roommate compañera de aventuras de la casa cero!. Agus, Clau, Juli, Mari, compañeras de aventuras pileteras, confidentes, y a las “lechuzas” gracias por el fútbol!. Muffin, gracias por la compañía, las llamadas de larga duración, y las visitas. Magui, Clau, Agus, Sole y Muffin, gracias por el apoyo desde que volví a Rosario para darme fuerzas para terminar esta tesis. A mis amigos de toda la vida: Ana, Maru, Vir, y Fede, por tantos años de amistad y momentos compartidos, por hacerme sentir que nada había cambiado a pesar de la distancia. A todos mis compañeros del CENPAT, en especial a los integrantes del Laboratorio de Oceanografía y Contaminación de Aguas del CENPAT, por permitirme utilizar sus instalaciones, por los análisis, y por recolectar las muestras de Bahía Ushuaia. Al trabajo y la predisposición de mis tutores Christian Magni y Alejandra Mussi. Por último, quisiera agradecer al CONICET por otorgarme las becas doctorales que permitieron financiar mis estudios. Parte de los resultados que se describen en el presente trabajo de Tesis fueron divulgados en las revistas y congresos que se detallan a continuación: Trabajos publicados: Guibert LM, Loviso CL, Marcos MS, Commendatore MG, Dionisi HM, Lozada M. Alkane Biodegradation Genes from Chronically Polluted Subantarctic Coastal Sediments and Their Shifts in Response to Oil Exposure. Microb Ecol (2012) 64:605–616. DOI 10.1007/s00248-012- 0051-9. (Capítulos 1 y 2). Trabajos en preparación: Guibert LM, Loviso CL, Jansson J, Dionisi HM, Lozada M. Contribution of Bacteroidetes and Planctomycetes to alkane biodegradation potential in the metagenome of Subantarctic marine sediments. (Manuscrito en preparación, fecha probable de envío a la revista Microbial Ecology: fines del 2014 o principios del 2015). (Capítulo 3). Loviso CL, Guibert LM, Sarango-Cárdenas SV, Lozada M, Dionisi HM. Metagenomic fragments containing multiple ring-hydroxylating oxygenase genes belong to ecologically- relevant bacteria inhabiting polluted Subantarctic sediments. (Enviado para publicación, revista International Microbiology). (Capítulo 3) Trabajos presentados en congresos: Guibert, L., Loviso, C., Jansson, J., Dionisi, H., Lozada, M. Identification of gene clusters involved in alkane biodegradation from polluted subantarctic sediments by two complementary metagenomic approaches. IX Congreso de Microbiología General Sociedad Argentina de Microbiología General (SAMIGE). Rosario, 5-7 agosto 2013. Loviso, C., Guibert, L., Sarango, S., Lozada, M., Dionisi, H. Screening of a Metagenomic Library from Polluted Subantarctic Sediments for the Identification of Gene Clusters Involved in Hydrocarbon Biodegradation. American Society for Microbiology 113th General Meeting. Denver, EEUU, 18–21 mayo 2013. Guibert, L., Loviso, C., Sarango, S., Marcos, M., Lozada, M., Dionisi, H. Culture-independent and metagenomic analyses of hydrocarbon-degrading bacteria from polluted subantarctic marine sediments. VI Simpósio de Microbiología Aplicada. Porto Alegre, Brasil, 5-8 noviembre 2012. Loviso, C., Guibert, L., Marcos, M., Di Marzio, W., Lozada M., Dionisi, H. Characterization and metagenomic analysis of bacterial genes encoding key enzymes for hydrocarbon degradation in Subantarctic marine sediments. New Horizons in Biotechnology. Trivandrum, India, 21 -24 noviembre 2011. Guibert, L., Loviso, C., Marcos, M., Commendatore, M., Dionisi, H., Lozada, M. Comunidades bacterianas de sedimentos costeros subantárticos y sus cambios como consecuencia de la exposición a petróleo crudo. II Jornada de Becarios del CENPAT-CONICET. Puerto Madryn, 11 noviembre 2011. ISBN 978-987-26951-0-1 Guibert, L., Loviso, C., Marcos, M., Dionisi, H., Lozada, M. Alkane monooxygenase gene diversity in subantarctic marine sediments. XLVI Reunión Anual de la Sociedad Argentina de Investigación en Bioquímica y Biología Molecular (SAIB). Puerto Madryn, 30 noviembre - 3 diciembre 2010. Loviso, C., Guibert, L., Marcos, M., Di Marzio, W., Lozada, M., Dionisi, H. Metagenomic analysis of aromatic ring-hydroxylating dioxygenases from cold marine environments. XLVI Reunión Anual SAIB. Puerto Madryn, 30 noviembre - 3 diciembre 2010. Marcos, M., Loviso, C., Guibert, L., Lozada, M., Dionisi, H. Novel molecular approaches for studying microbiol communities. XLV Reunión Anual SAIB. Tucumán, noviembre 2009. Índice General ÍNDICE GENERAL Abreviaturas y símbolos ............................................................................................. i Lenguaje especial ........................................................................................................ iii 1 Resumen ................................................................................................................... 1 2 Introducción ............................................................................................................ 4 2.1 Los hidrocarburos ......................................................................................................... 4 2.1.1 Fuentes de hidrocarburos en el ambiente marino ........................................................ 4 2.1.2 Fuentes de hidrocarburos en la costa Patagónica ......................................................... 5 2.2 Biodegradación de alcanos ........................................................................................ 6 2.2.1 Mecanismos de acceso.............................................................................................................. 7 2.2.2 Enzimas involucradas en la activación aeróbica de alcanos ..................................... 8 2.2.2.1 Metano monooxigenasas (MMO) ..................................................................................................... 9 2.2.2.2 Enzimas relacionadas a la familia MMO .................................................................................... 10 2.2.2.3 Alcano hidroxilasas de la familia AlkB........................................................................................ 10 2.2.2.4 Monooxigenasas citocromo P450 ................................................................................................. 12 2.2.2.5 Alcano hidroxilasas para alcanos de cadena larga ................................................................ 12 2.2.3 Organización génica y mecanismos de regulación ...................................................... 13 2.2.3.1 Pseudomonas putida ......................................................................................................................... 14 2.2.3.2 Alcanivorax borkumensis ................................................................................................................ 17 2.2.4 Evolución molecular y transferencia horizontal .......................................................... 18 2.2.5 Biodegradación en el ambiente marino ..........................................................................
Recommended publications
  • Targeted Manipulation of Abundant and Rare Taxa in the Daphnia Magna Microbiota With
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.07.286427; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Targeted manipulation of abundant and rare taxa in the Daphnia magna microbiota with 2 antibiotics impacts host fitness differentially 3 4 Running title: Targeted microbiota manipulation impacts fitness 5 6 Reilly O. Coopera#, Janna M. Vavraa, Clayton E. Cresslera 7 1: School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA 8 9 Corresponding Author Information: 10 Reilly O. Cooper 11 [email protected] 12 13 14 Competing Interests: The authors have no competing interests to declare. 15 16 17 18 19 20 21 22 23 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.07.286427; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 Abstract 25 Host-associated microbes contribute to host fitness, but it is unclear whether these contributions 26 are from rare keystone taxa, numerically abundant taxa, or interactions among community 27 members. Experimental perturbation of the microbiota can highlight functionally important taxa; 28 however, this approach is primarily applied in systems with complex communities where the 29 perturbation affects hundreds of taxa, making it difficult to pinpoint contributions of key 30 community members. Here, we use the ecological model organism Daphnia magna to examine 31 the importance of rare and abundant taxa by perturbing its relatively simple microbiota with 32 targeted antibiotics.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Multilevel Social Structure and Diet Shape the Gut Microbiota of the Gelada Monkey, the Only Grazing Primate Pål Trosvik 1*, Eric J
    Multilevel social structure and diet shape the gut microbiota of the gelada monkey, the only grazing primate Pål Trosvik 1*, Eric J. de Muinck 1, Eli K. Rueness 1, Peter J. Fashing 2, Evan C. Beierschmitt 3, Kadie R. Callingham 4, Jacob B. Kraus 5, Thomas H. Trew 6, Amera Moges 7, Addisu Mekonnen 1,8 , Vivek V. Venkataraman 9, Nga Nguyen 2 Supplementary information: Supplementary Figures 1-17, Supplementary Tables 1-10. Figure S1. Relative abundances of the eight most prevalent phyla in the gelada samples. Data are shown for all samples combined, as well as split into samples collected during the dry or wet season. The category “Other” includes OTUs that could not be classified to the phylum level with a probability higher than 0.5. Figure S2. Between-sample weighted (a) and unweighted (b) UniFrac distances in gelada samples collected during the dry (n=142) or the wet (n=174) season. Each box represents the interquartile range, with the horizontal lines representing the medians and the whiskers representing 1.5 times the interquartile range. Points outside the whiskers represent outliers. For both comparisons the difference in mean distance was highly significant (t<<0.001 for both comparisons, unpaired t-tests). Figure S3. Non-metric multidimensional scaling of all primate samples based on weighted (a) and unweighted (b) UniFrac distances. The plot shows the two main dimensions of variation, with plotted characters color coded according to sample type. Clustering according to samples type was highly significant, explaining 46.2% and 63.1% of between-sample variation, respectively (p<<0.001 for both tests, PERMANOVA).
    [Show full text]
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]
  • Taxonomy JN869023
    Species that differentiate periods of high vs. low species richness in unattached communities Species Taxonomy JN869023 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 JN674641 Bacteria; Bacteroidetes; [Saprospirae]; [Saprospirales]; Chitinophagaceae; Sediminibacterium JN869030 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 U51104 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Limnohabitans JN868812 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae JN391888 Bacteria; Planctomycetes; Planctomycetia; Planctomycetales; Planctomycetaceae; Planctomyces HM856408 Bacteria; Planctomycetes; Phycisphaerae; Phycisphaerales GQ347385 Bacteria; Verrucomicrobia; [Methylacidiphilae]; Methylacidiphilales; LD19 GU305856 Bacteria; Proteobacteria; Alphaproteobacteria; Rickettsiales; Pelagibacteraceae GQ340302 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales JN869125 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae New.ReferenceOTU470 Bacteria; Cyanobacteria; ML635J-21 JN679119 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae HM141858 Bacteria; Acidobacteria; Holophagae; Holophagales; Holophagaceae; Geothrix FQ659340 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; auto67_4W AY133074 Bacteria; Elusimicrobia; Elusimicrobia; Elusimicrobiales FJ800541 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; R4-41B JQ346769 Bacteria; Acidobacteria; [Chloracidobacteria]; RB41; Ellin6075
    [Show full text]
  • Pedobacter Ghigonii Sp. Nov., Isolated from the Microbiota of the Planarian Schmidtea Mediterranea
    Article Pedobacter ghigonii sp. nov., Isolated from the Microbiota of the Planarian Schmidtea mediterranea Luis Johnson Kangale 1,2 , Didier Raoult 2,3,4 and Fournier Pierre-Edouard 1,2,* 1 UMR VITROME, SSA, Aix-Marseille University, IRD, AP-HM, IHU-Méditerranée-Infection, 13385 Marseille, France; [email protected] 2 IHU-Méditerranée-Infection, 13385 Marseille, France; [email protected] 3 Department of Epidemiology of Parasitic Diseases, Aix Marseille University, IRD, AP-HM, MEPHI, 13385 Marseille, France 4 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia * Correspondence: [email protected]; Tel.: +33-0413732401; Fax: +33-0413732402 Abstract: The planarian S. mediterranea is a platyhelminth with worldwide distribution that can regenerate any part of its body after amputation and has the capacity to eliminate a large spectrum of human bacterial pathogens. Surprisingly, the microbiota of S. mediterranea remains poorly investi- gated. Using the culturomics strategy to study the bacterial component of planarians, we isolated a new bacterial strain, Marseille-Q2390, which we characterized with the taxono-genomic approach that associates phenotypic assays and genome sequencing and analysis. Strain Marseille-Q2390 exhibited a 16S rRNA sequence similarity of 99.36% with Pedobacter kyungheensis strain THG-T17T, the closest phylogenetic neighbor. It is a white-pigmented, Gram-negative, and rod-shaped bacterium. It grows in aerobic conditions and belongs to the family Sphingobacteriaceae. The genome of strain Marseille-Q2390 is 5,919,359 bp-long, with a G + C content of 40.3%. By comparing its genome with Citation: Kangale, L.J.; Raoult, D.; other closely related strains, the highest Orthologous Average Nucleotide Identity (Ortho-ANI) and Pierre-Edouard, F.
    [Show full text]
  • Ice-Nucleating Particles Impact the Severity of Precipitations in West Texas
    Ice-nucleating particles impact the severity of precipitations in West Texas Hemanth S. K. Vepuri1,*, Cheyanne A. Rodriguez1, Dimitri G. Georgakopoulos4, Dustin Hume2, James Webb2, Greg D. Mayer3, and Naruki Hiranuma1,* 5 1Department of Life, Earth and Environmental Sciences, West Texas A&M University, Canyon, TX, USA 2Office of Information Technology, West Texas A&M University, Canyon, TX, USA 3Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA 4Department of Crop Science, Agricultural University of Athens, Athens, Greece 10 *Corresponding authors: [email protected] and [email protected] Supplemental Information 15 S1. Precipitation and Particulate Matter Properties S1.1 Precipitation Categorization In this study, we have segregated our precipitation samples into four different categories, such as (1) snows, (2) hails/thunderstorms, (3) long-lasted rains, and (4) weak rains. For this categorization, we have considered both our observation-based as well as the disdrometer-assigned National Weather Service (NWS) 20 code. Initially, the precipitation samples had been assigned one of the four categories based on our manual observation. In the next step, we have used each NWS code and its occurrence in each precipitation sample to finalize the precipitation category. During this step, a precipitation sample was categorized into snow, only when we identified a snow type NWS code (Snow: S-, S, S+ and/or Snow Grains: SG). Likewise, a precipitation sample was categorized into hail/thunderstorm, only when the cumulative sum of NWS codes for hail was 25 counted more than five times (i.e., A + SP ≥ 5; where A and SP are the codes for soft hail and hail, respectively).
    [Show full text]
  • University of California Riverside
    UNIVERSITY OF CALIFORNIA RIVERSIDE Selective Association Between the Free-Living Nematode Acrobeloides maximus and Soil Bacteria A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Genetics, Genomics and Bioinformatics by Sammy Farid Sedky June 2013 Thesis Committee: Dr. Paul De Ley, Chairperson Dr. Paul Orwin Dr. David Crowley Copyright by Sammy Farid Sedky 2013 The Thesis of Sammy Farid Sedky is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGMENTS This master thesis would not have been possible without the help of several individuals who contributed their time, assistance, and expertise to the completion of this work: • To my advisor, Dr. Paul De Ley: Thank you for giving me a lab I could call home, where I was welcome and where I could grow as a researcher and scholar. Your assistance in navigating the labyrinth of challenges involved in the writing and completion of this document has been invaluable. Thank you for your guidance and support. • To Dr. Paul Orwin: I will always be grateful for the kind tutelage you provided during your sabbatical stay at UCR. This study could not have been completed without your vigilance. • To Dr. David Crowley: Thank you for allowing us to use Science Lab I 308 to perform most of the wet lab work and for your assistance as a committee member in the review and editing of this thesis. • To my colleagues, Dr. JP Baquiran and Brian Thater: It was a blast working with you both. Thanks for the laughs and good times. iv UCR DEDICATIONS • To my friend and protégé, Rosalynn Duong: I could not have chosen a better undergraduate assistant.
    [Show full text]
  • A Noval Investigation of Microbiome from Vermicomposting Liquid Produced by Thai Earthworm, Perionyx Sp
    International Journal of Agricultural Technology 2021Vol. 17(4):1363-1372 Available online http://www.ijat-aatsea.com ISSN 2630-0192 (Online) A novel investigation of microbiome from vermicomposting liquid produced by Thai earthworm, Perionyx sp. 1 Kraisittipanit, R.1,2, Tancho, A.2,3, Aumtong, S.3 and Charerntantanakul, W.1* 1Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand; 2Natural Farming Research and Development Center, Maejo University, Chiang Mai, Thailand; 3Faculty of Agricultural Production, Maejo University, Thailand. Kraisittipanit, R., Tancho, A., Aumtong, S. and Charerntantanakul, W. (2021). A noval investigation of microbiome from vermicomposting liquid produced by Thai earthworm, Perionyx sp. 1. International Journal of Agricultural Technology 17(4):1363-1372. Abstract The whole microbiota structure in vermicomposting liquid derived from Thai earthworm, Perionyx sp. 1 was estimated. It showed high richness microbial species and belongs to 127 species, separated in 3 fungal phyla (Ascomycota, Basidiomycota, Mucoromycota), 1 Actinomycetes and 16 bacterial phyla (Acidobacteria, Armatimonadetes, Bacteroidetes, Balneolaeota, Candidatus, Chloroflexi, Deinococcus, Fibrobacteres, Firmicutes, Gemmatimonadates, Ignavibacteriae, Nitrospirae, Planctomycetes, Proteobacteria, Tenericutes and Verrucomicrobia). The OTUs data analysis revealed the highest taxonomic abundant ratio in bacteria and fungi belong to Proteobacteria (70.20 %) and Ascomycota (5.96 %). The result confirmed that Perionyx sp. 1
    [Show full text]
  • Genome Sequence of Pedobacter Glucosidilyticus Dd6b, Isolated from Zooplankton Daphnia Magna Anja Poehlein1, Rolf Daniel1 and Diliana D
    Poehlein et al. Standards in Genomic Sciences (2015) 10:100 DOI 10.1186/s40793-015-0086-x SHORT GENOME REPORT Open Access Genome sequence of Pedobacter glucosidilyticus DD6b, isolated from zooplankton Daphnia magna Anja Poehlein1, Rolf Daniel1 and Diliana D. Simeonova2,3* Abstract The phosphite assimilating bacterium, P. glucosidilyticus DD6b, was isolated from the gut of the zooplankton Daphnia magna. Its 3,872,381 bp high-quality draft genome is arranged into 93 contigs containing 3311 predicted protein-coding and 41 RNA-encoding genes. This genome report presents the specific properties and common features of P. glucosidilyticus DD6b genome in comparison with the genomes of P. glucosidilyticus type strain DSM 23,534, and another five Pedobacter type strains with publicly available completely sequenced genomes. Here, we present the first journal report on P. glucosidilyticus genome sequence and provide information on a new specific physiological determinant of P. glucosidilyticus species. Keywords: Pedobacter glucosidilyticus, Phosphite assimilation, Sphingobacteriia Introduction 2-AEP or ciliatine serves as a precursor in the biosynthesis Pedobacter glucosidilyticus strain DD6b was isolated from of phosphonolipids in marine single celled organisms, sea the crustacean Daphnia magna gut microbial community. anemones or ciliated protozoan. Recently, a sphingo- During a study on nutritional needs of D. magna, the gut phosphonolipid was found in Bacteriovorax stolpii,a microbiota was investigated over time, under starvation facultative predator that parasitizes larger Gram-negative stress and after host death [1, 2]. bacteria [16]. Daphnia spp. are small members of the zooplankton Tests with newly isolated P. glucosidilyticus DD6b re- and key organisms in freshwater food webs.
    [Show full text]
  • Flavobacterium Gliding Motility: from Protein Secretion to Cell Surface Adhesin Movements
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations August 2019 Flavobacterium Gliding Motility: From Protein Secretion to Cell Surface Adhesin Movements Joseph Johnston University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Biology Commons, Microbiology Commons, and the Molecular Biology Commons Recommended Citation Johnston, Joseph, "Flavobacterium Gliding Motility: From Protein Secretion to Cell Surface Adhesin Movements" (2019). Theses and Dissertations. 2202. https://dc.uwm.edu/etd/2202 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. FLAVOBACTERIUM GLIDING MOTILITY: FROM PROTEIN SECRETION TO CELL SURFACE ADHESIN MOVEMENTS by Joseph J. Johnston A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Sciences at The University of Wisconsin-Milwaukee August 2019 ABSTRACT FLAVOBACTERIUM GLIDING MOTILITY: FROM PROTEIN SECRETION TO CELL SURFACE ADHESIN MOVEMENTS by Joseph J. Johnston The University of Wisconsin-Milwaukee, 2019 Under the Supervision of Dr. Mark J. McBride Flavobacterium johnsoniae exhibits rapid gliding motility over surfaces. At least twenty genes are involved in this process. Seven of these, gldK, gldL, gldM, gldN, sprA, sprE, and sprT encode proteins of the type IX protein secretion system (T9SS). The T9SS is required for surface localization of the motility adhesins SprB and RemA, and for secretion of the soluble chitinase ChiA. This thesis demonstrates that the gliding motility proteins GldA, GldB, GldD, GldF, GldH, GldI and GldJ are also essential for secretion.
    [Show full text]
  • Gordonia Bronchialis Type Strain (3410)
    Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Gordonia bronchialis type strain (3410). Permalink https://escholarship.org/uc/item/4c00p3q7 Journal Standards in genomic sciences, 2(1) ISSN 1944-3277 Authors Ivanova, Natalia Sikorski, Johannes Jando, Marlen et al. Publication Date 2010-01-28 DOI 10.4056/sigs.611106 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 2:19-28 DOI:10.4056/sigs.611106 Complete genome sequence of Gordonia bronchialis type strain (3410T) Natalia Ivanova1, Johannes Sikorski2, Marlen Jando2, Alla Lapidus1, Matt Nolan1, Susan Lu- cas1, Tijana Glavina Del Rio1, Hope Tice1, Alex Copeland1, Jan-Fang Cheng1, Feng Chen1, David Bruce1,3, Lynne Goodwin1,3, Sam Pitluck1, Konstantinos Mavromatis1, Galina Ovchin- nikova1, Amrita Pati1, Amy Chen4, Krishna Palaniappan4, Miriam Land1,5, Loren Hauser1,5, Yun-Juan Chang1,5, Cynthia D. Jeffries1,5, Patrick Chain1,3, Elizabeth Saunders1,3, Cliff Han1,3, John C. Detter1,3, Thomas Brettin1,3, Manfred Rohde6, Markus Göker2, Jim Bristow1, Jona- than A. Eisen1,7, Victor Markowitz4, Philip Hugenholtz1, Hans-Peter Klenk2, and Nikos C. Kyrpides1* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 7 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Nikos C.
    [Show full text]