Airborne Bacteria in Show Caves from Southern Spain

Total Page:16

File Type:pdf, Size:1020Kb

Airborne Bacteria in Show Caves from Southern Spain Research Report www.microbialcell.com Airborne bacteria in show caves from Southern Spain Irene Dominguez-Moñino1, Valme Jurado1, Miguel Angel Rogerio-Candelera1, Bernardo Hermosin1 and Cesareo Saiz-Jimenez1,* 1 Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 41012 Sevilla, Spain. * Corresponding Author: Cesareo Saiz-Jimenez, Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 41012 Sevilla, Spain; E-mail: [email protected] ABSTRACT This work presents a study on the airborne bacteria recorded in doi: xxx three Andalusian show caves, subjected to different managements. The main Received originally: 11.06.2021; differences within the caves were the absence of lighting and phototrophic In revised form: 13.07.2021, Accepted 21.07.2021, biofilms in Cueva de Ardales, the periodic maintenance and low occurrence of Published 26.07.2021. phototrophic biofilms in Gruta de las Maravillas, and the abundance of pho- totrophic biofilms in speleothems and walls in Cueva del Tesoro. These factors conditioned the diversity of bacteria in the caves and therefore there are Keywords: aerobiology, airborne large differences among the CFU m-3, determined using a suction impact col- bacteria, phototrophic biofilms, lector, equipment widely used in aerobiological studies. The study of the bac- Bacillus, Arthrobacter, Micrococcus. terial diversity, inside and outside the caves, indicates that the air is mostly populated by bacteria thriving in the subterranean environment. In addition, the diversity seems to be related with the presence of abundant phototrophic biofilms, but not with the number of visitors received by each cave. INTRODUCTION ing, or massive visits. The introduction of this ecological The region of Andalusia, Southern Spain, has an important indicator was possible due to the well-characterized air- number of show caves and shelters, most of them contain- borne fungal patterns, but unfortunately, this cannot be ing Paleolithic art and with high cultural interest. Nerja, extended to bacteria. Indeed, bacteria do not present defi- Tesoro, Piletas, Ardales and Murcielagos, are some repre- nite patterns in aerobiological studies, thus avoiding fore- sentative caves with rock art, receiving different numbers casting of bacterial outbreaks in caves. As a consequence, of visitors and adopting distinct conservation and man- aerobiological studies should be adopted for each cave agement protocols [1]. Other caves are visited by its geo- individually in order to measure airborne bacteria and logical interest and the occurrence of characteristic speleo- adopt preventive conservation actions. The literature rec- thems, such as Gruta de las Maravillas [2]. ords several studies on bacteria in cave air [7, 10-16], but One of the management practices, not frequently reports different conclusions. adopted in cave conservation, is a periodic aerobiological The three show caves studied are located in Andalusia monitoring. In fact, the major threat for a show cave is (Southern Spain) and were Cueva del Tesoro, Cueva de derived from the presence and colonization of microorgan- Ardales and Gruta de las Maravillas. Cueva del Tesoro and isms in the air, water pools, sediments and speleothems. Cueva de Ardales contain valuable Paleolithic paintings and This is particularly important when bacteria and fungi engravings, which can be observed by the visitors, while threat the paintings. A few and well-known examples can Gruta de las Maravillas, without paintings, holds rare spe- be found in Altamira [3-5] and Lascaux caves [6-8]. leothems. Comprehensive data on these caves were re- To help in the cave management of airborne fungi, Por- ported in a previous work investigating the aerobiological ca et al. [9] launched an ecological indicator that provides behavior of fungi [17]. The data previously reported in- data on the amount of fungal spores and marks the limits clude number of visitors at the sampling time, geomor- of danger for the conservation of Paleolithic paintings. phology and microclimatological data (temperature, con- These authors categorized caves into five classes, from one centration of carbon dioxide and radon) inside the caves. without fungal problems to the worst case, a cave with Briefly, in the sampling year the visits ranged from 130,314 irreversible ecological disturbance. The two last classes peoples in Gruta de las Maravillas to 4,018 in Cueva de generally corresponded to caves experiencing fungal out- Ardales. Cueva del Tesoro received 28,257 visitors. Cave breaks, phototrophic biofilms resulting from artificial light- OPEN ACCESS | www.microbialcell.com 1 Microbial Cell | in press I. Dominguez- Moñino et al. (2021) Airborne bacteria in Spanish show caves FIGURE 1: Map and sampling locations in the caves. (A) Cueva de Ardales; (B) Cueva del Tesoro; (C) Gruta de las Maravillas. OPEN ACCESS | www.microbialcell.com 2 Microbial Cell | in press I. Dominguez- Moñino et al. (2021) Airborne bacteria in Spanish show caves lengths were from about 1,500 to 2,130 m. Temperatures riod, has an enormous influence on the dispersal of out- inside the caves ranged between 14.8°C and 17.4°C [17]. door airborne bacteria and their increase in the cave air. The main differences in the caves were the absence of These stagnation and ventilation periods are common in lighting and phototrophic biofilms in Cueva de Ardales, the caves. periodic maintenance and scarce occurrence of photo- In Cueva del Tesoro 130 different bacterial species were trophic biofilms in Gruta de las Maravillas, and the abun- isolated from cave air and 34 outside, from which 17 were dance of phototrophic biofilms in the speleothems and also recorded inside. walls, in all the rooms and galleries, of Cueva del Tesoro. M. luteus was abundant in all the seasons, and Micro- Cleaning and removal of biofilms were carried out in 2015, coccus endophyticus in spring and summer, but some other after this study [18]. bacteria attained important abundances, such as Knoellia In this paper we present an aerobiological study of locipacati in spring and summer, and Streptomyces kurssa- three Andalusian show caves subjected to different man- novii in autumn and winter. M. luteus was also abundant agements. The caves cover examples from western to outdoor in spring, autumn and winter, whereas in summer eastern Andalusia and are separated by more than 300 km. Brevibacterium aurantiacum, Glutamicibacter spp. and Samplings were carried out along four seasons and the Pseudarthrobacter psychrotolerans comprised about 63% colony-forming units per cubic meter (CFU m-3) in different of the abundance (Supplementary Tables S5-S8). galleries and rooms were assessed (Figure 1). Gruta de las Maravillas exhibited a high abundance of bacteria in a few rooms. The greater CFU m-3 were found in RESULTS autumn (Sala de las Conchas and Exit Passage), although There are large differences among the CFU m-3 in rooms other rooms also displayed important CFU m-3 (Sala del and galleries, along the four seasons, in the three caves, as Volcan, Sala del Lago 2). In most rooms, the CFU m-3 was depicted in Figure 2 and Supplementary Tables S1-S12. The twice the number of bacteria outdoor. In winter, the abun- cave less frequented by visitors (Cueva de Ardales) pre- dance of airborne bacteria inside decreased with respect to sented the lowest amount of bacteria in the air, with a autumn between 7.5 and 1.5 times, but outdoor the bacte- maximum of 200 CFU m-3 counted at the end of the cave ria increased 3 times. In the stagnation period (spring and stair in spring, which was in agreement with the high quan- summer) the amount of bacteria in the air varied consider- tity of bacteria outdoor (320 CFU m-3). Summer was the ably. The lower abundances were obtained in summer; the season with a lower amount of bacteria inside and outside maximum reached 130 CFU m-3 in Sala del Lago 2, while the cave. Autumn and winter were the seasons with high outside the amount was 690 CFU m-3. Slightly higher rates and comparable airborne bacteria, both deepest in the were recorded in spring (100-250 CFU m-3), except for Sala cave and outside (180-110 CFU m-3), as corresponded to a del Lago 2, with 710 CFU m-3, although outdoor the rate ventilation period. In this period, the air outside is colder was the lowest (210 CFU m-3) of all the seasonal samplings. and denser with respect to inside and enters into the cave 94 species of bacteria were retrieved inside Gruta de las transporting airborne bacteria. Maravillas and 48 outside, but only 18 of these were also 41 different species were recorded inside this cave and isolated inside the cave. 40 outside. Only eight of the bacteria recorded outside Similar to Cueva del Tesoro, M. luteus and Micrococcus were also found inside the cave. endophyticus were also the most abundant bacteria in Gru- The most abundant bacteria identified inside Cueva de ta de las Maravillas. Other relevant bacteria, including Ardales were Pseudarthrobacter spp. and Micrococcus lu- members of ten genera (Aerococcus, Bacillus, Brevundimo- teus in spring; Bacillus altitudinis, Peribacillus simplex and nas, Staphylococcus, Kocuria, Corynebacterium, Empedo- Arthrobacter methylotrophus in summer; M. luteus in au- bacter, Microbacterium, Agrococcus, Glutamicibacter) tumn; M. luteus and Arthrobacter citreus in winter. Out- reached abundances above 20% in different rooms and door, the most abundant bacteria were Pseudarthrobacter seasons. Outside the cave a high diversity of bacteria was spp. in spring, and summer, Arthrobacter spp. in winter, recorded of which M. luteus stood out (Supplementary and M. luteus in autumn (Supplementary Tables S1-S4). Tables S9-S12). In Cueva del Tesoro the higher CFU m-3 of bacteria were obtained in the air of Sala de la Virgen and Sala del Volcan DISCUSSION (spring) and Galeria hacia Lagos and Galeria Breuil (sum- The wide difference in bacterial diversity inside and outside mer), whereas the lower one was recorded outdoor.
Recommended publications
  • The Role of Earthworm Gut-Associated Microorganisms in the Fate of Prions in Soil
    THE ROLE OF EARTHWORM GUT-ASSOCIATED MICROORGANISMS IN THE FATE OF PRIONS IN SOIL Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Taras Jur’evič Nechitaylo aus Krasnodar, Russland 2 Acknowledgement I would like to thank Prof. Dr. Kenneth N. Timmis for his guidance in the work and help. I thank Peter N. Golyshin for patience and strong support on this way. Many thanks to my other colleagues, which also taught me and made the life in the lab and studies easy: Manuel Ferrer, Alex Neef, Angelika Arnscheidt, Olga Golyshina, Tanja Chernikova, Christoph Gertler, Agnes Waliczek, Britta Scheithauer, Julia Sabirova, Oleg Kotsurbenko, and other wonderful labmates. I am also grateful to Michail Yakimov and Vitor Martins dos Santos for useful discussions and suggestions. I am very obliged to my family: my parents and my brother, my parents on low and of course to my wife, which made all of their best to support me. 3 Summary.....................................................………………………………………………... 5 1. Introduction...........................................................................................................……... 7 Prion diseases: early hypotheses...………...………………..........…......…......……….. 7 The basics of the prion concept………………………………………………….……... 8 Putative prion dissemination pathways………………………………………….……... 10 Earthworms: a putative factor of the dissemination of TSE infectivity in soil?.………. 11 Objectives of the study…………………………………………………………………. 16 2. Materials and Methods.............................…......................................................……….. 17 2.1 Sampling and general experimental design..................................................………. 17 2.2 Fluorescence in situ Hybridization (FISH)………..……………………….………. 18 2.2.1 FISH with soil, intestine, and casts samples…………………………….……... 18 Isolation of cells from environmental samples…………………………….……….
    [Show full text]
  • Hidden Images in Atxurra Cave (Northern Spain) a New Proposal for Visibility Analyses of Palaeolithic Rock Art in Subterranean
    Quaternary International 566-567 (2020) 163–170 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint Hidden images in Atxurra Cave (Northern Spain): A new proposal for visibility analyses of Palaeolithic rock art in subterranean environments T Iñaki Intxaurbea,d, Olivia Riverob,Ma Ángeles Medina-Alcaidec, Martín Arriolabengoad, Joseba Ríos-Garaizare, Sergio Salazarb, Juan Francisco Ruiz-Lópezf, Paula Ortega-Martínezg, ∗ Diego Garatea, a Instituto Internacional de Investigaciones Prehistóricas de Cantabria (IIIPC, Gobierno de Cantabria, Universidad de Cantabria, Santander). Edificio Interfacultativo, Avda. Los Castros s/n, 39005, Santander, Spain b Dpto. Prehistoria, Historia Antigua y Arqueología, Universidad de Salamanca, 37008, Salamanca, Spain c Dpto. Historia, Facultad de Letras, Universidad de Córdoba, 14071, Córdoba, Spain d Dpto. Mineralogía y Petrología. Euskal Herriko Unibertsitatea/Universidad del País Vasco, 48940, Leioa, Spain e Archaeology Program, Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain f Dpto. de Historia. Universidad de Castilla – La Mancha, 16001, Cuenca, Spain g Independent Researcher ARTICLE INFO ABSTRACT Keywords: Visibility has been the subject of study in Palaeolithic rock art research ever since the discovery of Altamira Cave Cave art in 1879. Nevertheless, until now, the different approaches have been based on subjective assessments, due to Viewshed computational limitations for a more objective methodology. Nowadays, cutting-edge technologies such as GIS Archaeological context allow us to address spatial studies in caves and overcome their geomorphologically complex and closed char- Cave geomorphology acteristics. Here we describe an innovative methodology that uses computing tools available to any researcher to GIS study the viewsheds of the graphic units in decorated caves.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Kaistella Soli Sp. Nov., Isolated from Oil-Contaminated Soil
    A001 Kaistella soli sp. nov., Isolated from Oil-contaminated Soil Dhiraj Kumar Chaudhary1, Ram Hari Dahal2, Dong-Uk Kim3, and Yongseok Hong1* 1Department of Environmental Engineering, Korea University Sejong Campus, 2Department of Microbiology, School of Medicine, Kyungpook National University, 3Department of Biological Science, College of Science and Engineering, Sangji University A light yellow-colored, rod-shaped bacterial strain DKR-2T was isolated from oil-contaminated experimental soil. The strain was Gram-stain-negative, catalase and oxidase positive, and grew at temperature 10–35°C, at pH 6.0– 9.0, and at 0–1.5% (w/v) NaCl concentration. The phylogenetic analysis and 16S rRNA gene sequence analysis suggested that the strain DKR-2T was affiliated to the genus Kaistella, with the closest species being Kaistella haifensis H38T (97.6% sequence similarity). The chemotaxonomic profiles revealed the presence of phosphatidylethanolamine as the principal polar lipids;iso-C15:0, antiso-C15:0, and summed feature 9 (iso-C17:1 9c and/or C16:0 10-methyl) as the main fatty acids; and menaquinone-6 as a major menaquinone. The DNA G + C content was 39.5%. In addition, the average nucleotide identity (ANIu) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain DKR-2T and phylogenically closest members were below the threshold values for species delineation. The polyphasic taxonomic features illustrated in this study clearly implied that strain DKR-2T represents a novel species in the genus Kaistella, for which the name Kaistella soli sp. nov. is proposed with the type strain DKR-2T (= KACC 22070T = NBRC 114725T). [This study was supported by Creative Challenge Research Foundation Support Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2020R1I1A1A01071920).] A002 Chitinibacter bivalviorum sp.
    [Show full text]
  • Bibliography
    Bibliography Many books were read and researched in the compilation of Binford, L. R, 1983, Working at Archaeology. Academic Press, The Encyclopedic Dictionary of Archaeology: New York. Binford, L. R, and Binford, S. R (eds.), 1968, New Perspectives in American Museum of Natural History, 1993, The First Humans. Archaeology. Aldine, Chicago. HarperSanFrancisco, San Francisco. Braidwood, R 1.,1960, Archaeologists and What They Do. Franklin American Museum of Natural History, 1993, People of the Stone Watts, New York. Age. HarperSanFrancisco, San Francisco. Branigan, Keith (ed.), 1982, The Atlas ofArchaeology. St. Martin's, American Museum of Natural History, 1994, New World and Pacific New York. Civilizations. HarperSanFrancisco, San Francisco. Bray, w., and Tump, D., 1972, Penguin Dictionary ofArchaeology. American Museum of Natural History, 1994, Old World Civiliza­ Penguin, New York. tions. HarperSanFrancisco, San Francisco. Brennan, L., 1973, Beginner's Guide to Archaeology. Stackpole Ashmore, w., and Sharer, R. J., 1988, Discovering Our Past: A Brief Books, Harrisburg, PA. Introduction to Archaeology. Mayfield, Mountain View, CA. Broderick, M., and Morton, A. A., 1924, A Concise Dictionary of Atkinson, R J. C., 1985, Field Archaeology, 2d ed. Hyperion, New Egyptian Archaeology. Ares Publishers, Chicago. York. Brothwell, D., 1963, Digging Up Bones: The Excavation, Treatment Bacon, E. (ed.), 1976, The Great Archaeologists. Bobbs-Merrill, and Study ofHuman Skeletal Remains. British Museum, London. New York. Brothwell, D., and Higgs, E. (eds.), 1969, Science in Archaeology, Bahn, P., 1993, Collins Dictionary of Archaeology. ABC-CLIO, 2d ed. Thames and Hudson, London. Santa Barbara, CA. Budge, E. A. Wallis, 1929, The Rosetta Stone. Dover, New York. Bahn, P.
    [Show full text]
  • Seed Interior Microbiome of Rice Genotypes Indigenous to Three
    Raj et al. BMC Genomics (2019) 20:924 https://doi.org/10.1186/s12864-019-6334-5 RESEARCH ARTICLE Open Access Seed interior microbiome of rice genotypes indigenous to three agroecosystems of Indo-Burma biodiversity hotspot Garima Raj1*, Mohammad Shadab1, Sujata Deka1, Manashi Das1, Jilmil Baruah1, Rupjyoti Bharali2 and Narayan C. Talukdar1* Abstract Background: Seeds of plants are a confirmation of their next generation and come associated with a unique microbia community. Vertical transmission of this microbiota signifies the importance of these organisms for a healthy seedling and thus a healthier next generation for both symbionts. Seed endophytic bacterial community composition is guided by plant genotype and many environmental factors. In north-east India, within a narrow geographical region, several indigenous rice genotypes are cultivated across broad agroecosystems having standing water in fields ranging from 0-2 m during their peak growth stage. Here we tried to trap the effect of rice genotypes and agroecosystems where they are cultivated on the rice seed microbiota. We used culturable and metagenomics approaches to explore the seed endophytic bacterial diversity of seven rice genotypes (8 replicate hills) grown across three agroecosystems. Results: From seven growth media, 16 different species of culturable EB were isolated. A predictive metabolic pathway analysis of the EB showed the presence of many plant growth promoting traits such as siroheme synthesis, nitrate reduction, phosphate acquisition, etc. Vitamin B12 biosynthesis restricted to bacteria and archaea; pathways were also detected in the EB of two landraces. Analysis of 522,134 filtered metagenomic sequencing reads obtained from seed samples (n=56) gave 4061 OTUs.
    [Show full text]
  • A Numerical Taxonomy of 604 Strains of the Genera Arthrobacter, Aureo
    J. Gen. Appl. Microbiol., 39, 135-214 (1993) NUMERICAL CLASSIFICATION OF CORYNEFORM BACTERIA AND RELATED TAXA PETER KAMPFER,* HERI3ERT SEILER,' AND WOLFGANG DOTT Fachgebiet Hygiene, Technische Universitat Berlin, Amrumerstr. 32, D-13353 Berlin, Federal Republic of Germany 'Suddeutsche Versuchs - and Forschungsanstalt fur Milchwirtschaft, Vottingerstr. 45, D-85354 Freising, Federal Republic of Germany (Received August 14, 1992) A numerical taxonomy of 604 strains of the genera Arthrobacter, Aureo- bacterium, Brevibacterium, Cellulomonas, Clavibacter, Corynebacterium, Curtobacterium, Microbacterium, Nocardia, Nocardioides, Rhodococcus, Terrabacter and Tsukamurella was undertaken based on 280 physiological characters with the aid of miniaturized tests. Clustering was by the unweighted pair group method (UPGMA) with 12 different measures of similarity. Test error, overlap between the phena and cophenetic correla- tion coefficients for the classifications obtained with the Jaccard coefficient (SJ), the Pearson coefficient (SP), the simple-matching coefficient (SsM), and the Dice coefficient (SE,) as measures of similarity were within acceptable limits. Clusters were defined at the 55.0 to 70.5% levels (SJ). The compositions of clusters corresponded largely the delineations of 81.1 to 93.5% (SSM),29.1 to 55.0% (Se), and 55.3 to 81.1% (SD). A total of 31 major clusters (containing five or more strains), 41 minor clusters and subclusters (containing less than five strains), and 54 single-member clusters were obtained in the UPGMA/SJ study. The following conclu- sions were reached: (i) A high degree of similarity between the genera Aureobacterium, Cellulomonas, Clavibacter, Curtobacterium and Microbac- terium found in phylogenetic-based studies could be shown also pheneti- cally. Strains belonging to these genera were found in SJ clusters 1 to 45, often representing closely related, or single species.
    [Show full text]
  • 65 X 54 154 X 109 400 X
    65 x 54 154 x 109 400 x 163 Para intercambio o suscripción: CENTRO DE DOCUMENTACIÓN “JORDI LLORET” Y MUSEO DE LA ESPELEOLOGÍA Correspondencia: Apartado de correos 1.251 - 18080 GRANADA (España) Domicilio: Carretera Granada Dílar, 20 - 18150 GÓJAR (Granada) Correo electrónico: [email protected] http://espeleologiabibliograia.blogspot.com I.S.S.N.: 1132-1725 Depósito Legal: GR-1412-1991 Edita: Centro de Documentación “Jordi Lloret” y Museo de la Espeleología PORTADA: Banderín, chapa y folleto, de las 5as Jornadas Espeleológicas Vasco-Navarras, celebradas en Larra (Navarra) en 1906. Organizadas por el Gripo Principe de Viana. 1 OIER GOROSABEL LARRAÑAGA. Atxurra: tres siglos de descubrimientos ......... 3 GENER AYMAMI DOMINGO. Los talleres falsarios de moneda en algunas cuevas de Cataluña ................................................................................................. 21 MANUEL J. GONZÁLEZ RÍOS. Billetes de la Lotería Nacional de España, relacio- nados con las cavidades naturales y su entorno .................................................. 27 ANTONIO MORENO ROSA. Juan Alcalá-Zamora Yébenes. Priego de Córdoba (7-9-1938/29-11-2019). .................................................................................... 31 JOSÉ ENRIQUE SÁNCHEZ. José Antonio Berrocal Pérez (2-8-1950 - 22-2-2020) ..... 34 MONTSERRAT UBACH. Juan A. Bonilla Serrano. Haro (La Rioja), 12-6-1931- Burgos 12-10-2020 ........................................................................................... 36 DONACIONES .............................................................................................
    [Show full text]
  • Improved Taxonomy of the Genus Streptomyces
    UNIVERSITEIT GENT Faculteit Wetenschappen Vakgroep Biochemie, Fysiologie & Microbiologie Laboratorium voor Microbiologie Improved taxonomy of the genus Streptomyces Benjamin LANOOT Scriptie voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen (Biochemie) Promotor: Prof. Dr. ir. J. Swings Co-promotor: Dr. M. Vancanneyt Academiejaar 2004-2005 FACULTY OF SCIENCES ____________________________________________________________ DEPARTMENT OF BIOCHEMISTRY, PHYSIOLOGY AND MICROBIOLOGY UNIVERSITEIT LABORATORY OF MICROBIOLOGY GENT IMPROVED TAXONOMY OF THE GENUS STREPTOMYCES DISSERTATION Submitted in fulfilment of the requirements for the degree of Doctor (Ph D) in Sciences, Biochemistry December 2004 Benjamin LANOOT Promotor: Prof. Dr. ir. J. SWINGS Co-promotor: Dr. M. VANCANNEYT 1: Aerial mycelium of a Streptomyces sp. © Michel Cavatta, Academy de Lyon, France 1 2 2: Streptomyces coelicolor colonies © John Innes Centre 3: Blue haloes surrounding Streptomyces coelicolor colonies are secreted 3 4 actinorhodin (an antibiotic) © John Innes Centre 4: Antibiotic droplet secreted by Streptomyces coelicolor © John Innes Centre PhD thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. Publicly defended in Ghent, December 9th, 2004. Examination Commission PROF. DR. J. VAN BEEUMEN (ACTING CHAIRMAN) Faculty of Sciences, University of Ghent PROF. DR. IR. J. SWINGS (PROMOTOR) Faculty of Sciences, University of Ghent DR. M. VANCANNEYT (CO-PROMOTOR) Faculty of Sciences, University of Ghent PROF. DR. M. GOODFELLOW Department of Agricultural & Environmental Science University of Newcastle, UK PROF. Z. LIU Institute of Microbiology Chinese Academy of Sciences, Beijing, P.R. China DR. D. LABEDA United States Department of Agriculture National Center for Agricultural Utilization Research Peoria, IL, USA PROF. DR. R.M. KROPPENSTEDT Deutsche Sammlung von Mikroorganismen & Zellkulturen (DSMZ) Braunschweig, Germany DR.
    [Show full text]
  • Assessing Relationships Between Human Adaptive Responses and Ecology Via Eco-Cultural Niche Modeling William E
    Assessing relationships between human adaptive responses and ecology via eco-cultural niche modeling William E. Banks To cite this version: William E. Banks. Assessing relationships between human adaptive responses and ecology via eco- cultural niche modeling. Archaeology and Prehistory. Universite Bordeaux 1, 2013. hal-01840898 HAL Id: hal-01840898 https://hal.archives-ouvertes.fr/hal-01840898 Submitted on 11 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse d'Habilitation à Diriger des Recherches Université de Bordeaux 1 William E. BANKS UMR 5199 PACEA – De la Préhistoire à l'Actuel : Culture, Environnement et Anthropologie Assessing Relationships between Human Adaptive Responses and Ecology via Eco-Cultural Niche Modeling Soutenue le 14 novembre 2013 devant un jury composé de: Michel CRUCIFIX, Chargé de Cours à l'Université catholique de Louvain, Belgique Francesco D'ERRICO, Directeur de Recherche au CRNS, Talence Jacques JAUBERT, Professeur à l'Université de Bordeaux 1, Talence Rémy PETIT, Directeur de Recherche à l'INRA, Cestas Pierre SEPULCHRE, Chargé de Recherche au CNRS, Gif-sur-Yvette Jean-Denis VIGNE, Directeur de Recherche au CNRS, Paris Table of Contents Summary of Past Research Introduction ..................................................................................................................
    [Show full text]
  • Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 1 Microalgae 2 Richard G. Do
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley,
    [Show full text]
  • The Bacterial Communities of Sand-Like Surface Soils of the San Rafael Swell (Utah, USA) and the Desert of Maine (USA) Yang Wang
    The bacterial communities of sand-like surface soils of the San Rafael Swell (Utah, USA) and the Desert of Maine (USA) Yang Wang To cite this version: Yang Wang. The bacterial communities of sand-like surface soils of the San Rafael Swell (Utah, USA) and the Desert of Maine (USA). Agricultural sciences. Université Paris-Saclay, 2015. English. NNT : 2015SACLS120. tel-01261518 HAL Id: tel-01261518 https://tel.archives-ouvertes.fr/tel-01261518 Submitted on 25 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2015SACLS120 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N°577 Structure et Dynamique des Systèmes Vivants Spécialité de doctorat : Sciences de la Vie et de la Santé Par Mme Yang WANG The bacterial communities of sand-like surface soils of the San Rafael Swell (Utah, USA) and the Desert of Maine (USA) Thèse présentée et soutenue à Orsay, le 23 Novembre 2015 Composition du Jury : Mme. Marie-Claire Lett , Professeure, Université Strasbourg, Rapporteur Mme. Corinne Cassier-Chauvat , Directeur de Recherche, CEA, Rapporteur M. Armel Guyonvarch, Professeur, Université Paris-Sud, Président du Jury M.
    [Show full text]