Exploring Cosmic Origins with CORE: Inflation

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Cosmic Origins with CORE: Inflation Prepared for submission to JCAP Exploring Cosmic Origins with CORE: Inflation Fabio Finelli,1;2 Martin Bucher,3;4 Ana Achúcarro,5;6 Mario Ballardini,7;1;2 Nicola Bartolo,8;9;10 Daniel Baumann,11;12 Sébastien Clesse,13 Josquin Errard,14 Will Handley,15;16 Mark Hindmarsh,17;18;19 Kimmo Kiiveri,18;19 Martin Kunz,20 Anthony Lasenby,15;16 Michele Liguori,8;9;10 Daniela Paoletti,1;2 Christophe Ringeval,21 Jussi Väliviita,18;19 Bartjan van Tent,22 Vincent Vennin,23 Peter Ade,24 Rupert Allison,11 Frederico Arroja,25 Marc Ashdown,16 A. J. Banday,26;27 Ranajoy Banerji,3 James G. Bartlett,3 Soumen Basak,28;29 Jochem Baselmans,30;31 Paolo de Bernardis,32 Marco Bersanelli,33 Anna Bonaldi,34 Julian Borril,35 François R. Bouchet,36 François Boulanger,37 Thejs Brinckmann,13 Carlo Burigana,1;2;38 Alessandro Buzzelli,32;39 Zhen-Yi Cai,40 Martino Calvo,41 Carla Sofia Carvalho,42 Gabriella Castellano,43 Anthony Challinor,11;16;44 Jens Chluba,34 Ivan Colantoni,43 Martin Crook,45 Giuseppe D’Alessandro,32 Guido D’Amico,46 Jacques Delabrouille,3 Vincent Desjacques,47;20 Gianfranco De Zotti,10 Jose Maria Diego,48 Eleonora Di Valentino,49;36 Stephen Feeney,50 James R. Fergusson,11 Raul Fernandez-Cobos,48 Simone Ferraro,51 Francesco Forastieri,38;52 Silvia Galli,36 Juan García-Bellido,53 Giancarlo de Gasperis,54;39 Ricardo T. Génova-Santos,55;56 Martina Gerbino,57 Joaquin González-Nuevo,58 Sebastian Grandis,59;60 Josh Greenslade,49 Steffen Hagstotz,59;60 Shaul Hanany,61 Dhiraj K. Hazra,3 Carlos Hernández-Monteagudo,62 Carlos Hervias-Caimapo,34 Matthew Hills,45 Eric Hivon,36 Bin Hu,63;64 Ted arXiv:1612.08270v2 [astro-ph.CO] 5 Apr 2017 Kisner,35 Thomas Kitching,65 Ely D. Kovetz,66 Hannu Kurki-Suonio,18;19 Luca Lamagna,32 Massimiliano Lattanzi,38;52 Julien Lesgourgues,13 Antony Lewis,67 Valtteri Lindholm,18;19 Joanes Lizarraga,6 Marcos López-Caniego,68 Gemma Luzzi,32 Bruno Maffei,37 Nazzareno Mandolesi,38;1 Enrique Martínez-González,48 Carlos J.A.P. Martins,69 Silvia Masi,32 Darragh McCarthy,70 Sabino Matarrese,8;9;10;71 Alessandro Melchiorri,32 Jean-Baptiste Melin,72 Diego Molinari38;52 Alessandro Monfardini,73 Paolo Natoli,38;52 Mattia Negrello,74 Alessio Notari,64 Filippo Oppizzi,8 Alessandro Paiella,32 Enrico Pajer,75 Guillaume Patanchon,3 Subodh P. Patil,76 Michael Piat,3 Giampaolo Pisano,74 Linda Polastri,38;52 Gianluca Polenta,77;78 Agnieszka Pollo,79;80 Vivian Poulin,13;81 Miguel Quartin,82 Andrea Ravenni,8 Mathieu Remazeilles,34 Alessandro Renzi,29;83 Diederik Roest,84 Matthieu Roman,14 Jose Alberto Rubiño-Martin,55;56 Laura Salvati,31 Alexei A. Starobinsky,85 Andrea Tartari,3 Gianmassimo Tasinato,86 Maurizio Tomasi33;87 Jesús Torrado,17 Neil Trappe,70 Tiziana Trombetti,1;2;38 Carole Tucker,75 Marco Tucci,20 Jon Urrestilla,6 Rien van de Weygaert,88 Patricio Vielva,48 Nicola Vittorio,54;39 Karl Young,61 for the CORE collaboration 1INAF/IASF Bologna, via Gobetti 101, I-40129 Bologna, Italy 2INFN, Sezione di Bologna, via Irnerio 46, I-40127 Bologna, Italy 3APC, Astroparticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/lrfu, Obser- vatoire de Paris Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France 4Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4041, South Africa 5Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, 2333 CA, Leiden, The Nether- lands 6Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48040 Bilbao, Spain 7Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat, 6/2, I-40127 Bologna, Italy 8Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università degli Studi di Padova, Via Marzolo 8, I-35131, Padova, Italy 9INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy 10INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy 11DAMTP, Centre for Mathematical Sciences, University of Cambrige, Wilberforce Road, Cam- bridge, CB3 0WA, UK 12Institute of Physics, University of Amsterdam, Science Park, Amsterdam, 1090 GL, The Nether- lands 13Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen, Germany 14Institut Lagrange, LPNHE, place Jussieu 4, 75005 Paris, France. 15Astrophysics Group, Cavendish Laboratory, Cambridge, CB3 0HE, UK 16Kavli Institute for Cosmology, Cambridge, CB3 0HA, UK 17Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, UK 18Department of Physics, Gustaf Hallstromin katu 2a, University of Helsinki, Helsinki, Finland 19Helsinki Institute of Physics, Gustaf Hallstromin katu 2, University of Helsinki, Helsinki, Finland 20Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24 quai Ansermet, CH–1211 Genève 4, Switzerland 21Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 chemin du Cyclotron, 1348 Louvain-la-Neuve, Belgium 22Laboratoire de Physique Théorique (UMR 8627), CNRS, Université Paris-Sud, Université Paris Saclay, Bâtiment 210, 91405 Orsay Cedex, France 23Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX, United Kingdom 24School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK 25Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taipei, Taiwan (R.O.C.) 26Université de Toulouse, UPS-OMP, IRAP, F-31028 Toulouse Cedex 4, France 27CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse Cedex 4, France 28Department of Physics, Amrita School of Arts and Sciences, Amritapuri, Amrita Vishwa Vidyapeetham, Amrita University, Kerala 690525, India 29SISSA, Astrophysics Sector, via Bonomea 265, 34136, Trieste, Italy 30SRON (Netherlands Institute for Space Research), Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands 31Terahertz Sensing Group, Delft University of Technology, Mekelweg 1, 2628 CD Delft, The Netherlands 32Physics Department "G. Marconi", University of Rome Sapienza and INFN, piazzale Aldo Moro 2, 00185, Rome, Italy 33Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy 34Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K. 35Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 36Institut d’Astrophysique de Paris, UMR7095, CNRS & UPMC Sorbonne Universités, F-75014, Paris, France 37IAS (Institut d’Astrophysique Spatiale), Université Paris Sud, Bâtiment 121 91405 Orsay, France 38Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, via Saragat 1, 44122 Ferrara, Italy 39INFN Roma 2, via della Ricerca Scientifica 1, I-00133, Roma, Italy 40CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, Uni- versity of Science and Technology of China, Hefei, Anhui 230026, China 41Univ. Grenoble Alpes, CEA INAC-SBT, 38000 Grenoble, France 42Institute of Astrophysics and Space Sciences, University of Lisbon, Tapada da Ajuda, 1349-018 Lisbon, Portugal 43Istituto di Fotonica e Nanotecnologie, CNR, Via Cineto Romano 42, 00156, Roma, Italy 44Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK 45STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, UK 46Theoretical Physics Department, CERN, Geneva, Switzerland 47Physics Department, Technion, Haifa 3200003, Israel 48IFCA, Instituto de Física de Cantabria (UC-CSIC), Avenida de Los Castros s/n, 39005 San- tander, Spain 49Sorbonne Universités, Institut Lagrange de Paris (ILP), F-75014, Paris, France 50Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, Lon- don, SW7 2AZ, UK 51Miller Institute for Basic Research in Science, University of California, Berkeley, CA 94720, USA 52INFN, Sezione di Ferrara, Via Saragat 1, 44122 Ferrara, Italy 53Instituto de Física Teórica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain 54Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, I- 00133, Roma, Italy 55Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, La Laguna, Tenerife, Spain 56Departamento de Astrofísica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206 Spain 57The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm Univer- sity, AlbaNova, SE-106 91 Stockholm, Sweden 58Departamento de Física, Universidad de Oviedo, Calle Calvo Sotelo s/n, 33007 Oviedo, Spain 59Faculty of Physics, Ludwig-Maximilians Universität, 81679 Munich, Germany 60Excellence Cluster Universe, Boltzmannstrasse 2, D-85748 Garching, Germany 61School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, Minnesota 55455, United States 62Centro de Estudios de Física del Cosmos de Aragón (CEFCA), Plaza San Juan, 1, planta 2, E-44001, Teruel, Spain 63Department of Astronomy, Beijing Normal University, Beijing 100875, China 64Departament de Física Quàntica i Astrofísica i Institut de Ciències del Cosmos (ICCUB), Uni- versitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain 65Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Darking, Surrey, RH5 6NT, UK 66Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Balti- more, MD 21218, USA 67Department
Recommended publications
  • XIII Publications, Presentations
    XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys.
    [Show full text]
  • Progress with Litebird
    LiteBIRD Lite (Light) Satellite for the Studies of B-mode Polarization and Inflation from Cosmic Background Radiation Detection Progress with LiteBIRD Masashi Hazumi (KEK/Kavli IPMU/SOKENDAI/ISAS JAXA) for the LiteBIRD working group 1 LiteBIRD JAXA Osaka U. Kavli IPMU Kansei U. Tsukuba APC Paris T. Dotani S. Kuromiya K. Hattori Gakuin U. M. Nagai R. Stompor H. Fuke M. Nakajima N. Katayama S. Matsuura H. Imada S. Takakura Y. Sakurai TIT Cardiff U. I. Kawano K. Takano H. Sugai Kitazato U. S. Matsuoka G. Pisano UC Berkeley / H. Matsuhara T. Kawasaki R. Chendra LBNL T. Matsumura Osaka Pref. U. KEK Paris ILP D. Barron K. Mitsuda M. Inoue M. Hazumi Konan U. U. Tokyo J. Errard J. Borrill T. Nishibori K. Kimura (PI) I. Ohta S. Sekiguchi Y. Chinone K. Nishijo H. Ogawa M. Hasegawa T. Shimizu CU Boulder A. Cukierman A. Noda N. Okada N. Kimura NAOJ S. Shu N. Halverson T. de Haan A. Okamoto K. Kohri A. Dominjon N. Tomita N. Goeckner-wald S. Sakai Okayama U. M. Maki T. Hasebe McGill U. P. Harvey Y. Sato T. Funaki Y. Minami J. Inatani Tohoku U. M. Dobbs C. Hill K. Shinozaki N. Hidehira T. Nagasaki K. Karatsu M. Hattori W. Holzapfel H. Sugita H. Ishino R. Nagata S. Kashima MPA Y. Hori Y. Takei A. Kibayashi H. Nishino T. Noguchi Nagoya U. E. Komatsu O. Jeong S. Utsunomiya Y. Kida S. Oguri Y. Sekimoto K. Ichiki NIST R. Keskitalo T. Wada K. Komatsu T. Okamura M. Sekine T. Kisner G. Hilton R. Yamamoto S. Uozumi N.
    [Show full text]
  • Updated Design of the CMB Polarization Experiment Satellite Litebird
    Journal of Low Temperature Physics (2020) 199:1107–1117 https://doi.org/10.1007/s10909-019-02329-w Updated Design of the CMB Polarization Experiment Satellite LiteBIRD H. Sugai, et al. [full author details at the end of the article] Received: 30 August 2019 / Accepted: 26 December 2019 / Published online: 27 January 2020 © The Author(s) 2020 Abstract Recent developments of transition-edge sensors (TESs), based on extensive experi- ence in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA’s H3 rocket. It will accommodate more than 4000 TESs in focal planes of refective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic infation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy’s foreground emission by using spectral dif- ferences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmis- sive half-wave plates at individual apertures for separating sky polarization signals from artifcial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun– Earth Lagrangian point, L2, are planned for 3 years.
    [Show full text]
  • Arxiv:2006.06594V1 [Astro-Ph.CO]
    Mitigating the optical depth degeneracy using the kinematic Sunyaev-Zel'dovich effect with CMB-S4 1, 2, 2, 1, 3, 4, 5, 6, 5, 6, Marcelo A. Alvarez, ∗ Simone Ferraro, y J. Colin Hill, z Ren´eeHloˇzek, x and Margaret Ikape { 1Berkeley Center for Cosmological Physics, Department of Physics, University of California, Berkeley, CA 94720, USA 2Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA 3Department of Physics, Columbia University, New York, NY, USA 10027 4Center for Computational Astrophysics, Flatiron Institute, New York, NY, USA 10010 5Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St George Street, Toronto ON, M5S 3H4, Canada 6David A. Dunlap Department of Astronomy and Astrophysics, University of Toronto, 50 St George Street, Toronto ON, M5S 3H4, Canada The epoch of reionization is one of the major phase transitions in the history of the universe, and is a focus of ongoing and upcoming cosmic microwave background (CMB) experiments with im- proved sensitivity to small-scale fluctuations. Reionization also represents a significant contaminant to CMB-derived cosmological parameter constraints, due to the degeneracy between the Thomson- scattering optical depth, τ, and the amplitude of scalar perturbations, As. This degeneracy subse- quently hinders the ability of large-scale structure data to constrain the sum of the neutrino masses, a major target for cosmology in the 2020s. In this work, we explore the kinematic Sunyaev-Zel'dovich (kSZ) effect as a probe of reionization, and show that it can be used to mitigate the optical depth degeneracy with high-sensitivity, high-resolution data from the upcoming CMB-S4 experiment.
    [Show full text]
  • Science from Litebird
    Prog. Theor. Exp. Phys. 2012, 00000 (27 pages) DOI: 10.1093=ptep/0000000000 Science from LiteBIRD LiteBIRD Collaboration: (Fran¸coisBoulanger, Martin Bucher, Erminia Calabrese, Josquin Errard, Fabio Finelli, Masashi Hazumi, Sophie Henrot-Versille, Eiichiro Komatsu, Paolo Natoli, Daniela Paoletti, Mathieu Remazeilles, Matthieu Tristram, Patricio Vielva, Nicola Vittorio) 8/11/2018 ............................................................................... The LiteBIRD satellite will map the temperature and polarization anisotropies over the entire sky in 15 microwave frequency bands. These maps will be used to obtain a clean measurement of the primordial temperature and polarization anisotropy of the cosmic microwave background in the multipole range 2 ` 200: The LiteBIRD sensitivity will be better than that of the ESA Planck satellite≤ by≤ at least an order of magnitude. This document summarizes some of the most exciting new science results anticipated from LiteBIRD. Under the conservatively defined \full success" criterion, LiteBIRD will 3 measure the tensor-to-scalar ratio parameter r with σ(r = 0) < 10− ; enabling either a discovery of primordial gravitational waves from inflation, or possibly an upper bound on r; which would rule out broad classes of inflationary models. Upon discovery, LiteBIRD will distinguish between two competing origins of the gravitational waves; namely, the quantum vacuum fluctuation in spacetime and additional matter fields during inflation. We also describe how, under the \extra success" criterion using data external to Lite- BIRD, an even better measure of r will be obtained, most notably through \delensing" and improved subtraction of polarized synchrotron emission using data at lower frequen- cies. LiteBIRD will also enable breakthrough discoveries in other areas of astrophysics. We highlight the importance of measuring the reionization optical depth τ at the cosmic variance limit, because this parameter must be fixed in order to allow other probes to measure absolute neutrino masses.
    [Show full text]
  • Macquarie University Researchonline
    Macquarie University ResearchOnline This is the published version of: Anand Sivaramakrishnan ; David Lafrenière ; K. E. Saavik Ford ; Barry McKernan ; Anthony Cheetham ; Alexandra Z. Greenbaum ; Peter G. Tuthill ; James P. Lloyd ; Michael J. Ireland ; René Doyon ; Mathilde Beaulieu ; André Martel ; Anton Koekemoer ; Frantz Martinache ; Peter Teuben " Non- redundant Aperture Masking Interferometry (AMI) and segment phasing with JWST-NIRISS," in Space telescopes and instrumentation 2012 : optical, infared, and millimeter wave 1-6 July 2012 Amsterdam, Netherlands, edited by Mark C. Clampin, Giovanni G. Fazio, Howard A. MacEwen, Jacobus M. Oschmann, Proceedings of SPIE Vol. 8442 (SPIE, Bellingham, WA, 2012) Article CID Number 84422S. Access to the published version: http://dx.doi.org/10.1117/12.925565 Copyright: Copyright 2012 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. Non-Redundant Aperture Masking Interferometry (AMI) and Segment Phasing with JWST-NIRISS Anand Sivaramakrishnana,j, David Lafreni`ereb, K. E. Saavik Fordc,j,k, Barry McKernanc,j,k, Anthony Cheethamd, Alexandra Z. Greenbaume, Peter G. Tuthilld, James P. Lloydf, Michael J. Irelandg, Ren´eDoyonb, Mathilde Beaulieub, Andr´eMartela, Anton Koekemoera, Frantz Martinacheh, Peter Teubeni a Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, United States b D´epartement de Physique, Universit´ede Montr´eal,Montr´eal,Qc, H3C 3J7, Canada c Dept. of Science, Borough of Manhattan Community College, City University of New York, 199 Chambers Street, NY 10007 United States d School of Physics, University of Sydney, NSW 2006, Australia e Johns Hopkins University, Department of Physics & Astronomy, 366 Bloomberg Center, 3400 N.
    [Show full text]
  • Cosmic Microwave Background
    1 29. Cosmic Microwave Background 29. Cosmic Microwave Background Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL). 29.1 Introduction The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T = 2.7255 K. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a 7 blackbody spectrum constrains physical processes over cosmic history at redshifts z ∼< 10 (see earlier versions of this review). Currently the key CMB observable is the angular variation in temperature (or intensity) corre- lations, and to a growing extent polarization [2–4]. Since the first detection of these anisotropies by the Cosmic Background Explorer (COBE) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA’s Planck mission [9,10], which were enhanced by results from the 2015 Planck data release [11, 12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB an- isotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16].
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • JAXA's Planetary Exploration Plan
    Planetary Exploration and International Collaboration Institute of Space and Astronautical Science Japan Aerospace Exploration Agency Yoshio Toukaku, Director for International Strategy and Coordination Naoya Ozaki, Assistant Professor, Dept of Spacecraft Engineering ISAS/JAXA September, 2019 The Path Japanese Planetary Exploration 1985 1995 2010 2018 Sakigake/ Nozomi Akatsuki BepiColombo Suisei MMO/MPO Comet flyby Planned and Venus Climate Mercury Orbiter launched Mars Orbiter orbiter Asteroid Sample Asteroid Sample Martian Moons Lunar probe Return Mission Return Mission explorer Hiten Hayabusa Hayabusa2 MMX 1992 2003 2014 2020s (TBD) Recent Science Missions HAYABUSA 2003-2010 HINODE(SOLAR-B)2006- KAGUYASELENE)2007-2009 Asteroid Explorer SolAr OBservAtion Lunar Exploration AKATSUKI 2010- Venus Meteorology IKAROS 2010 HisAki 2013 SolAr SAil PlAnetary atmosphere HAYABUSA2 2014-2020 Hitomi(ASTRO-H) 2016 ArAse (ERG) 2016 Asteroid Explorer X-Ray Astronomy Van Allen Belt proBe Hayabusa & Hayabusa 2 Asteroid Sample Return Missions “Hayabusa” spacecraft brought back the material of Asteroid Itokawa while establishing innovative ion engines. “Hayabusa2”, while utilizing the experience cultivated in “Hayabusa”, has arrived at the C type Asteroid Ryugu in order to elucidate the origin and evolution of the solar system and primordial materials that would have led to emergence of life. Hayabusa Hayabusa2 Target Itokawa Ryugu Launch 2003 2014 Arrival 2005 2018 Return 2010 2020 ©JAXA Asteroid Ryugu 6 Martian Moons eXploration (MMX) Sample return from Marian moon for detailed analysis. Strategic L-Class A key element in the ISAS roadmap for small body exploration. Phase A n Science Objectives 1. Origin of Mars satellites. - Captured asteroids? - Accreted debris resulting from a giant impact? 2. Preparatory processes enabling to the habitability of the solar system.
    [Show full text]
  • New Year's Address January 4, 2017 Saku Tsuneta, Director General
    New Year’s Address January 4, 2017 Saku Tsuneta, Director General, Institute of Space and Astronautical Science Happy New Year, everyone. I hope most of the staff members of this institute have enjoyed their New Year’s vacation although it was not so long, and I am especially thankful to those people working hard in the critical phase of the Arase mission and those preparing for the launch of SS-520-4, including the support members of manufacturers. Successful launch of Arase and Epsilon launch vehicle In late December, we successfully launched ARASE, or the Exploration of energization and Radiation in Geospace (ERG) satellite, using the Epsilon-2 Launch Vehicle. It was a truly wonderful launch experience for all of us. The Epsilon launch vehicle was developed and launched under the management of the Space Technology Directorate I of JAXA. Hence, the Project Manager, Dr. Yasuhiro Morita led the overall program management and Mr. Takayuki Imoto acted as the sub-manager to command the frontline. I would like to say special thanks to both leaders and the project members of JAXA and ISAS who have been involved in this program. The second-stage rocket of Epsilon-2 has been newly developed to give it higher performance and a lower cost, and the launch capability has increased by about 30 percent from that of Epsilon-1. These newly developed technologies will be used in the solid rocket booster, SRB-3, of the H3 launch vehicle. Then, the SRB-3 booster will be used as the first-stage rocket of Epsilon launch vehicles.
    [Show full text]
  • Litebird Low Frequency Telescope Low Frequency Prototype Pixel
    Development of Space-Optimized Bolometer Arrays for LiteBIRD G. Jaehnig1 , K. Arnold2, J. Austermann3, D. Becker3, S. Duff3, N.W. Halverson1, M. Hazumi4,5,6,7, G. Hilton3, J. Hubmayr3, A.T. Lee8, M. Link3, A. Suzuki9, M. Vissers3, S. Walker1,3, B. Westbrook8 1CU Boulder, 2UC San Diego, 3NIST Boulder, 4KEK, 5Kavli IPMU, 6SOKENDAI, 7ISAS JAXA, 8UC Berkeley, 9LBNL Abstract Science Motivation LiteBIRD Overview International Consortium A primary science goal of cosmic microwave JAXA has selected LiteBIRD for a strategic L-class mission LiteBIRD is an international project with background (CMB) cosmology is measuring the to search for the imprint of gravitational waves from inflation in partners from around the world. JAXA will provide degree-scale B-mode polarization sourced by the polarization of the CMB. The goal is to measure the tensor- the launch vehicle, payload module, 4K cooler, and inflationary gravitational waves. A significant to-scalar ratio with a total uncertainty of �r<0.001. It will be LFT. The European consortium will provide the sub- detection would confirm inflation and aid in launched aboard JAXA’s H3 rocket in 2028 into an L2 orbit K cooler, MFT and HFT. Canada will supply the differentiating various models. The energy scale of where it will observe for three years. It will survey the full sky at warm readout system. The US hardware inflation and the amplitude of the degree-scale B- degree-angular scales in 15 frequency bands from 34 to 448 contributions will be the focal planes with integrated mode polarization are proportional to the tensor- GHz.
    [Show full text]
  • CMB) at Unprecedented Sensitivity
    LiteBIRD LNPC17, April 19-21 @ PACIFICO Yokohama Satoru Uozumi (Okayama Univ.) for the LiteBIRD Phase-A1 team 1 LiteBIRD Lite (Light) Satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection (http://litebird.jp/) LiteBIRD is a next generation scientific satellite aiming to measure polarization of Comic Microwave Background (CMB) at unprecedented sensitivity. Mission Requirements: • Measurement of B-mode polarization spectrum of large angular scale ( by three-year observation of all sky. • Measurement of the tensor-to-scaler ratio r, that represents primordial gravitational waves, at precision σr < 0.001 (w/o subtracting the gravitational lensing effect.) 2 →IPMU Mission Goal : Verificaon of inflaon by detecRng B-mode CMB Foregrounds Primordial GW CMB Dawn of the universe Inflation B moderecombination Big Bang The current universe Age 10-38sec? 380 kyr 13.8 Byr 4 American InsRtute of Phisycs. D. Baumman et Al. Kamionkowski If the inflaon happened, it should make gravitaonal ripples in space. 5 CMB polarizaon @ recombinaon When space became transparent to radiaon, Hot Thomson scaering gives polarizaon to freely travelling photons according to how surroundings are HOT and COLD. Cold Simple Thomson Surrounded by If temperature scaering of electron same temperature is biased… 6 Tilted for 45 degrees W h+ hx Polarizaon a v Polarizaon e y y x x z z z Wave 7 direcon E-mode B-mode 7 Then what makes temperature bias? 2. B-mode 1. E-mode generated only by generated by both temperature Tensor-scalar rao primordial gravitaonal fluctuaon (scalar mode) scalar mode / tensor mode wave (tensor mode) and primordial gravitaonal wave is expected to be very Rny • Proof of the inflaon theory • Dominant, well-measured 0.01~0.001! • Our target !! Should look like this? Measured both by WMAP, Planck (WMAP Komatsu et al.) 8 LiteBIRD Measurement Precision (at r=0.01) B-mode spectrum due to gravitational lensing @95%C.L.
    [Show full text]