Culture-Dependent and -Independent Identification of Polyphosphate-Accumulating Dechloromonas Spp

Total Page:16

File Type:pdf, Size:1020Kb

Culture-Dependent and -Independent Identification of Polyphosphate-Accumulating Dechloromonas Spp Microbes Environ. Vol. 31, No. 4, 449-455, 2016 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME16097 Culture-Dependent and -Independent Identification of Polyphosphate-Accumulating Dechloromonas spp. Predominating in a Full-Scale Oxidation Ditch Wastewater Treatment Plant MIA TERASHIMA1,2†, AYANO YAMA1,3, MEGUMI SATO1,3, ISAO YUMOTO1,2, YOICHI KAMAGATA1,2, and SOUICHIRO KATO1,2* 1Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062–8517, Japan; 2Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido 060–8589, Japan; and 3Hokkaido High-Technology College, 2–12–1 Megumino-kita, Eniwa, Hokkaido 061–1374, Japan (Received June 4, 2016—Accepted October 2, 2016—Published online November 19, 2016) The oxidation ditch process is one of the most economical approaches currently used to simultaneously remove organic carbon, nitrogen, and also phosphorus (P) from wastewater. However, limited information is available on biological P removal in this process. In the present study, microorganisms contributing to P removal in a full-scale oxidation ditch reactor were investigated using culture-dependent and -independent approaches. A microbial community analysis based on 16S rRNA gene sequencing revealed that a phylotype closely related to Dechloromonas spp. in the family Rhodocyclaceae dominated in the oxidation ditch reactor. This dominant Dechloromonas sp. was successfully isolated and subjected to fluorescent staining for polyphosphate, followed by microscopic observations and a spectrofluorometric analysis, which clearly demonstrated that the Dechloromonas isolate exhibited a strong ability to accumulate polyphosphate within its cells. These results indicate the potential key role of Dechloromonas spp. in efficient P removal in the oxidation ditch wastewater treatment process. Key words: wastewater treatment, oxidation ditch, biological phosphorus removal, Dechloromonas sp., polyphosphate accumulation Nutrients such as organic carbon (C), nitrogen (N), and on the microbiology of P removal are less comprehensive. phosphorus (P) have to be removed from sewage/wastewater Microbial P removal is generally performed by a group to avoid the eutrophication of aquatic water systems. Diverse of microorganisms referred to as polyphosphate (polyP)- types of wastewater treatment plants (WWTPs) that rely on accumulating organisms (PAOs) (28, 53). PAOs have the microbial metabolic activities have been developed and ability to utilize intracellular polyP as an energy source utilized to achieve the efficient removal of nutrients. Aerobic during the anaerobic phase, during which they sequester treatment processes, such as activated sludge plants, are available carbon sources. They then take up phosphate in commonly utilized as sewage treatments. Aerobic processes wastewater and accumulate polyP in their cells under subse- are generally efficient for C removal, but not for N or P quent aerobic conditions, which results in efficient P removal removal. Since the biological removal of N and P involves from wastewater. The most well-known PAO group is aerobic and anaerobic metabolism, conventional aerobic Candidatus Accumulibacter phosphatis (hereafter called processes require additional reactors with different dissolved Accumulibacter spp.), classified into the familyRhodocyclaceae oxygen concentrations. The simultaneous removal of C, N, of class Betaproteobacteria, which has yet to be isolated in and P may be achieved in one reactor by alternating between axenic cultures. Microbial community analyses based on 16S aerobic and anaerobic phases. These processes are often rRNA gene sequences, and also polyP staining combined referred to as simultaneous nitrification, denitrification, and with fluorescentin situ hybridization (FISH) and fluorescence- phosphate removal (SNDPR) (54, 55). activated cell sorting (FACS) demonstrated that Accumulibacter Microbial metabolism related to N removal in WWTPs has spp. are the main contributors in diverse full-scale and lab- been extensively examined (35). Ammonia-N in wastewater scale P-removing WWTPs (32, 52, 57, 58). In addition, a is primarily converted into nitrate (nitrification) under aerobic diverse range of species, including Actinobacteria, uncul- conditions by the combination of ammonium-oxidizing bac- tured Halomonadaceae, and Rhodocyclaceae bacteria (not teria (e.g., Nitrosomonas spp.) and nitrite-oxidizing bacteria Accumulibacter spp.) have been identified as putative PAOs (e.g., Nitrospira spp.) or potentially by complete ammonia- in full-scale SNDPR WWTPs (4, 22, 30, 31, 50). However, the oxidizing (comammox) bacteria (46). Nitrate is subsequently paucity of pure-culture experiments has hampered furthering converted to N2 (denitrification) under anoxic conditions by understanding on the ecophysiology of these microorganisms. diverse nitrate-reducing microorganisms. In contrast, studies The oxidation ditch process is one of the most economical and efficient SNDPR techniques that simultaneously remove C, N, and P from actual sewage with repetitive aerobic/ * Corresponding author. E-mail: [email protected]; Tel: +81–11–857–8968; FAX: +81–11–857–8915. anaerobic treatment phases (7, 25, 36). Although biological C † Present address: Institute of Low Temperature Science, Hokkaido and N removal in oxidation ditch WWTPs has been exten- University, Kita-19 Nishi-8, Kita-ku, Sapporo, Hokkaido 060–0819, sively investigated (9, 12, 15), limited information is cur- Japan. rently available on biological P removal. In the present study, 450 TERASHIMA et al. we investigated microorganisms related to P removal in a inoculated onto the medium and incubated at 25°C under aerobic full-scale oxidation ditch WWTP in Japan with culture- conditions. After a 10-d incubation, colonies were randomly selected, dependent and -independent approaches. Microbial commu- and further purified with the same medium at least three times. The whole length of the 16S rRNA gene sequence was measured by nity analyses based on 16S rRNA gene sequencing revealed direct sequencing of the DNA fragment derived from PCR amplification that bacteria classified into the family Rhodocyclaceae, par- using the primer pair of 27F and 1492R as described previously (17). ticularly Dechloromonas spp., predominated in the oxidation ditch WWTP. Some Rhodocyclaceae bacteria, including the Microscopic observations and quantification of microbial polyP dominant Dechloromonas strains, were isolated from the accumulation oxidation ditch WWTP, and their polyP accumulation abili- The isolated strains and E. coli K-12 (as a reference strain) were ties were examined in order to demonstrate their possible cultivated to the early stationary phases in the basal media described above and supplemented with 10 mM sodium lactate. In the micros- involvement in P removal from actual sewage. copy analysis, 1 mL of cell suspension was collected by centrifuga- tion (8,000×g, 5 min), resuspended in 1 mL of phosphate-buffered Materials and Methods saline (PBS), and stained with 4ʹ6-diamidino-2-phenylindole (DAPI) at a final concentration of 10 μg mL–1 for 30 min. After staining, cells Sample collection from the oxidation ditch WWTP were collected by centrifugation and resuspended in PBS. PolyP Sludge samples for the microbial community analysis and isola- fluorescence and DNA fluorescence were observed using a fluores- tion of microorganisms were collected from the oxidation ditch cence microscope (DMI 4000 B, Leica) with 340–380 nm excitation WWTP in Okishima, Omihachiman, Shiga, Japan. This plant receives and 425 LP emission filters. In the spectrofluorometric polyP analy- domestic wastewater with an annual average influent flow of sis, 1 mL of cell suspension was stained with DAPI following the same 210 m3 d–1. The plant is generally operated with a repetitive cycle of procedure used for microscopy. After staining and centrifugation, 4-h aerobic and 6-h anaerobic phases. The aerobic (dissolved oxygen cells were resuspended in 200 μL PBS and loaded onto a 96-well of >0.5 mg L–1) and anaerobic (dissolved oxygen of <0.5 mg L–1) flat-bottom microplate. Cells were excited at 355 nm, polyP fluores- phases are switched by the operation of mechanical aerators. Mixed cence was captured at 535 nm emission, and DNA fluorescence was liquor suspended solids are maintained at 5.0–8.0 g L–1. The annual captured at 450 nm emission using bottom fluorescence reading on a averages of biological oxygen demand, total nitrogen, and total SPECTRAmax Gemini XS (Molecular Devices, Tokyo, Japan) phosphorus in the influent/effluent are 167±93/5.0±1.2 mg L–1, microplate reader. In the emission scan analysis, cells were excited 28.8±6.2/4.3±1.8 mg L–1, and 3.9±1.6/0.6±0.2 mg L–1, respectively, at 355 nm and fluorescence emission was recorded between 425 nm which suggests that the efficient removal of C, N, and P is achieved and 595 nm at 5-nm intervals. All excitation and emission wave- in the oxidation ditch WWTP. Sludge samples were recovered from lengths had a bandwidth of 9 nm. Relative polyP fluorescence values the reactor during the aerobic phase. were obtained by normalizing polyP fluorescence with DNA fluo- rescence (21). Fluorometric experiments to monitor DNA and polyP Microbial community and phylogenetic analyses fluorescence were conducted in triplicate and the Student’s t-test Microbial genomic DNA
Recommended publications
  • Metagenomic Insights Into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines
    Lawrence Berkeley National Laboratory Recent Work Title Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines. Permalink https://escholarship.org/uc/item/9xc5s0v5 Journal Frontiers in microbiology, 7(FEB) ISSN 1664-302X Authors Vavourakis, Charlotte D Ghai, Rohit Rodriguez-Valera, Francisco et al. Publication Date 2016 DOI 10.3389/fmicb.2016.00211 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH published: 25 February 2016 doi: 10.3389/fmicb.2016.00211 Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines Charlotte D. Vavourakis 1, Rohit Ghai 2, 3, Francisco Rodriguez-Valera 2, Dimitry Y. Sorokin 4, 5, Susannah G. Tringe 6, Philip Hugenholtz 7 and Gerard Muyzer 1* 1 Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands, 2 Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain, 3 Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Ceskéˇ Budejovice,ˇ Czech Republic, 4 Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia, 5 Department of Biotechnology, Delft University of Technology, Delft, Netherlands, 6 The Department of Energy Joint Genome Institute, Walnut Creek, CA, USA, 7 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration Edited by: of sodium carbonates in the absence of major divalent cations.
    [Show full text]
  • Functional Structure of the Bromeliad Tank Microbiome Is Strongly Shaped by Local Geochemical Conditions
    Environmental Microbiology (2017) 19(8), 3132–3151 doi:10.1111/1462-2920.13788 Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions Stilianos Louca,1,2* Saulo M. S. Jacques,3,4 denitrification steps, ammonification, sulfate respira- Aliny P. F. Pires,3 Juliana S. Leal,3,5 tion, methanogenesis, reductive acetogenesis and 6 1,2,7 Angelica L. Gonzalez, Michael Doebeli and anoxygenic phototrophy. Overall, CO2 reducers domi- Vinicius F. Farjalla3 nated in abundance over sulfate reducers, and 1Biodiversity Research Centre, University of British anoxygenic phototrophs largely outnumbered oxy- Columbia, Vancouver, BC, Canada. genic photoautotrophs. Functional community 2Department of Zoology, University of British Columbia, structure correlated strongly with environmental vari- Vancouver, BC, Canada. ables, between and within a single bromeliad species. 3Department of Ecology, Biology Institute, Universidade Methanogens and reductive acetogens correlated Federal do Rio de Janeiro, Rio de Janeiro, Brazil. with detrital volume and canopy coverage, and exhib- 4Programa de Pos-Graduac ¸ao~ em Ecologia e ited higher relative abundances in N. cruenta.A Evoluc¸ao,~ Universidade Estadual do Rio de Janeiro, Rio comparison of bromeliads to freshwater lake sedi- de Janeiro, Brazil. ments and soil from around the world, revealed stark differences in terms of taxonomic as well as func- 5Programa de Pos-Graduac ¸ao~ em Ecologia, tional microbial community structure. Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. 6Biology Department & Center for Computational & Introduction Integrative Biology, Rutgers University, Camden, NJ, USA. Bromeliads (fam. Bromeliaceae) are plants found through- 7Department of Mathematics, University of British out the neotropics, with many species having rosette-like Columbia, Vancouver, BC, Canada.
    [Show full text]
  • 2018 Issn: 2456-8643
    International Journal of Agriculture, Environment and Bioresearch Vol. 3, No. 05; 2018 ISSN: 2456-8643 METAGENOMIC ANALYSIS OF BACTERIAL COMMUNITIES IN THE RHIZOSPHERE OF STIPA CAPILLATA AND CENTAUREA DIFFUSA Oleg Zhurlov and Nataliya Nemtseva Institute For Cellular And Intracellular Symbiosis, Ural Branch Russian Academy Of Sciences, Pio-nerskaya St.11, 46000, Orenburg, Russia. ABSTRACT The effectiveness of bioremediation of unproductive agricultural lands and marginal lands, not only on the zonal climatic conditions and physico-chemical parameters of soil, but also on the used plants and rhizosphere microorganisms. The use of xerophytic perennial grasses, adapted to the regional climatic conditions and physico-chemical parameters of soils, will improve the efficiency of bioremediation of unproductive agricultural lands and marginal lands. The article presents the results of a comparative analysis of the prokaryotic communities of the rhizosphere of the two representatives of the xerophytes herbs - Stipa capillata and Centaurea diffusa. We have shown that the dominant position in the prokaryotic communities of the rhizosphere of Stipa capillata and Centaurea diffusa is the phyla Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia, Planctomycetes and Chloroflexi. The microorganisms with cellulolytic activity and the destructors of aromatic compounds included in the composition of prokaryotic communities in the rhizosphere of Stipa capillata and Centaurea diffusa. Keywords: Stipa capillata, Centaurea diffusa, 16s rRNA gene, bioremediation 1. INTRODUCTION Soil is not only the main means of agricultural production, but also an important component of terrestrial biocenoses, a regulator of the composition of the atmosphere, hydrosphere and a reliable barrier to the migration of pollutants. However, this irreplaceable component of the biosphere undergoes significant degradation as a result of anthropogenic impact.
    [Show full text]
  • Taxonomy JN869023
    Species that differentiate periods of high vs. low species richness in unattached communities Species Taxonomy JN869023 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 JN674641 Bacteria; Bacteroidetes; [Saprospirae]; [Saprospirales]; Chitinophagaceae; Sediminibacterium JN869030 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 U51104 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Limnohabitans JN868812 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae JN391888 Bacteria; Planctomycetes; Planctomycetia; Planctomycetales; Planctomycetaceae; Planctomyces HM856408 Bacteria; Planctomycetes; Phycisphaerae; Phycisphaerales GQ347385 Bacteria; Verrucomicrobia; [Methylacidiphilae]; Methylacidiphilales; LD19 GU305856 Bacteria; Proteobacteria; Alphaproteobacteria; Rickettsiales; Pelagibacteraceae GQ340302 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales JN869125 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae New.ReferenceOTU470 Bacteria; Cyanobacteria; ML635J-21 JN679119 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae HM141858 Bacteria; Acidobacteria; Holophagae; Holophagales; Holophagaceae; Geothrix FQ659340 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; auto67_4W AY133074 Bacteria; Elusimicrobia; Elusimicrobia; Elusimicrobiales FJ800541 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; R4-41B JQ346769 Bacteria; Acidobacteria; [Chloracidobacteria]; RB41; Ellin6075
    [Show full text]
  • Ice-Nucleating Particles Impact the Severity of Precipitations in West Texas
    Ice-nucleating particles impact the severity of precipitations in West Texas Hemanth S. K. Vepuri1,*, Cheyanne A. Rodriguez1, Dimitri G. Georgakopoulos4, Dustin Hume2, James Webb2, Greg D. Mayer3, and Naruki Hiranuma1,* 5 1Department of Life, Earth and Environmental Sciences, West Texas A&M University, Canyon, TX, USA 2Office of Information Technology, West Texas A&M University, Canyon, TX, USA 3Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA 4Department of Crop Science, Agricultural University of Athens, Athens, Greece 10 *Corresponding authors: [email protected] and [email protected] Supplemental Information 15 S1. Precipitation and Particulate Matter Properties S1.1 Precipitation Categorization In this study, we have segregated our precipitation samples into four different categories, such as (1) snows, (2) hails/thunderstorms, (3) long-lasted rains, and (4) weak rains. For this categorization, we have considered both our observation-based as well as the disdrometer-assigned National Weather Service (NWS) 20 code. Initially, the precipitation samples had been assigned one of the four categories based on our manual observation. In the next step, we have used each NWS code and its occurrence in each precipitation sample to finalize the precipitation category. During this step, a precipitation sample was categorized into snow, only when we identified a snow type NWS code (Snow: S-, S, S+ and/or Snow Grains: SG). Likewise, a precipitation sample was categorized into hail/thunderstorm, only when the cumulative sum of NWS codes for hail was 25 counted more than five times (i.e., A + SP ≥ 5; where A and SP are the codes for soft hail and hail, respectively).
    [Show full text]
  • The Antarctic Mite, Alaskozetes Antarcticus, Shares Bacterial Microbiome Community Membership but Not Abundance Between Adults and Tritonymphs
    Polar Biology (2019) 42:2075–2085 https://doi.org/10.1007/s00300-019-02582-5 ORIGINAL PAPER The Antarctic mite, Alaskozetes antarcticus, shares bacterial microbiome community membership but not abundance between adults and tritonymphs Christopher J. Holmes1 · Emily C. Jennings1 · J. D. Gantz2,3 · Drew Spacht4 · Austin A. Spangler1 · David L. Denlinger4 · Richard E. Lee Jr.3 · Trinity L. Hamilton5 · Joshua B. Benoit1 Received: 14 January 2019 / Revised: 3 September 2019 / Accepted: 4 September 2019 / Published online: 16 September 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The Antarctic mite (Alaskozetes antarcticus) is widely distributed on sub-Antarctic islands and throughout the Antarctic Peninsula, making it one of the most abundant terrestrial arthropods in the region. Despite the impressive ability of A. ant- arcticus to thrive in harsh Antarctic conditions, little is known about the biology of this species. In this study, we performed 16S rRNA gene sequencing to examine the microbiome of the fnal immature instar (tritonymph) and both male and female adults. The microbiome included a limited number of microbial classes and genera, with few diferences in community membership noted among the diferent stages. However, the abundances of taxa that composed the microbial community difered between adults and tritonymphs. Five classes—Actinobacteria, Flavobacteriia, Sphingobacteriia, Gammaproteobac- teria, and Betaproteobacteria—comprised ~ 82.0% of the microbial composition, and fve (identifed) genera—Dermacoccus, Pedobacter, Chryseobacterium, Pseudomonas, and Flavobacterium—accounted for ~ 68.0% of the total composition. The core microbiome present in all surveyed A. antarcticus was dominated by the families Flavobacteriaceae, Comamonadaceae, Sphingobacteriaceae, Chitinophagaceae and Cytophagaceae, but the majority of the core consisted of operational taxonomic units of low abundance.
    [Show full text]
  • Status Report on Innovative in Situ Treatment Technologies Available to Remediate Perchlorate- Contaminated Groundwater
    (ITRC, 2005) Status Report on Innovative In Situ Remediation Technologies Available to Treat Perchlorate-Contaminated Groundwater August 2006 Prepared By Jennifer Raye Hoponick National Network for Environmental Management Studies Fellow for U.S. Environmental Protection Agency Office of Superfund Remediation & Technology Innovation Technology Innovation & Field Services Division Washington, D.C. www.epa.gov www.clu-in.org Status Report on In Situ Treatment Technologies to Remediate Perchlorate-Contaminated Groundwater NOTICE This document was prepared by a National Network of Environmental Management studies grantee under a fellowship from the U.S. Environmental Protection Agency. This report was not subject to EPA peer review or technical review. The EPA makes no warranties, expressed or implied, including without limitation, warranty for completeness, accuracy, or usefulness of the information, warranties as to the merchantability, or fitness for a particular purpose. Moreover, the listing of any technology, corporation, company, person, or facility in this report does not constitute endorsement, approval, or recommendation by the EPA. The report contains information attained from a wide variety of currently available sources, including project documents, reports, periodicals, Internet websites, and personal communication with both academically and commercially employed sources. No attempts were made to independently confirm the resources used. It has been reproduced to help provide federal agencies, states, consulting engineering firms, private industries, and technology developers with information on the current status of this project. About the National Network for Environmental Management Studies The National Network for Environmental Management Studies (NNEMS) is a comprehensive fellowship program managed by the Environmental Education Division of EPA. The purpose of the NNEMS Program is to provide students with practical research opportunities and experiences.
    [Show full text]
  • Proposal of Vibrionimonas Magnilacihabitans Gen. Nov., Sp
    Marquette University e-Publications@Marquette Civil and Environmental Engineering Faculty Civil and Environmental Engineering, Department Research and Publications of 2-1-2014 Proposal of Vibrionimonas magnilacihabitans gen. nov., sp. nov., a Curved Gram Negative Bacterium Isolated From Lake Michigan Water Richard A. Albert Marquette University, [email protected] Daniel Zitomer Marquette University, [email protected] Michael Dollhopf Marquette University, [email protected] Anne Schauer-Gimenez Marquette University Craig Struble Marquette University, [email protected] See next page for additional authors Accepted version. International Journal of Systematic and Evolutionary Microbiology, Vol. 64, No. 2 (February 2014): 613-620. DOI. © 2014 Society for General Microbiology. Used with permission. Authors Richard A. Albert, Daniel Zitomer, Michael Dollhopf, Anne Schauer-Gimenez, Craig Struble, Michael King, Sona Son, Stefan Langer, and Hans-Jürgen Busse This article is available at e-Publications@Marquette: https://epublications.marquette.edu/civengin_fac/8 NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page. Proposal of Vibrionimonas magnilacihabitans gen. nov., sp. nov., a Curved Gram-Stain-Negative Bacterium Isolated from Lake Water Richard A. Albert Water Quality Center, Marquette University, Milwaukee, WI Daniel Zitomer Water Quality Center, Marquette University, Milwaukee, WI Michael Dollhopf Water Quality Center, Marquette University, Milwaukee, WI A.E. Schauer-Gimenez Water Quality Center, Marquette University, Milwaukee, WI Craig Struble Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI International Journal of Systematic and Evolutionary Microbiology, Vol. 64, No. 2 (February 2014): pg.
    [Show full text]
  • Physiology and Biochemistry of Aromatic Hydrocarbon-Degrading Bacteria That Use Chlorate And/Or Nitrate As Electron Acceptor
    Invitation for the public defense of my thesis Physiology and biochemistry of aromatic hydrocarbon-degrading of aromatic and biochemistry Physiology bacteria that use chlorate and/or nitrate as electron acceptor as electron nitrate and/or use chlorate that bacteria Physiology and biochemistry Physiology and biochemistry of aromatic hydrocarbon-degrading of aromatic hydrocarbon- degrading bacteria that bacteria that use chlorate and/or nitrate as electron acceptor use chlorate and/or nitrate as electron acceptor The public defense of my thesis will take place in the Aula of Wageningen University (Generall Faulkesweg 1, Wageningen) on December 18 2013 at 4:00 pm. This defense is followed by a reception in Café Carré (Vijzelstraat 2, Wageningen). Margreet J. Oosterkamp J. Margreet Paranimphs Ton van Gelder ([email protected]) Aura Widjaja Margreet J. Oosterkamp ([email protected]) Marjet Oosterkamp (911 W Springfield Ave Apt 19, Urbana, IL 61801, USA; [email protected]) Omslag met flap_MJOosterkamp.indd 1 25-11-2013 5:58:31 Physiology and biochemistry of aromatic hydrocarbon-degrading bacteria that use chlorate and/or nitrate as electron acceptor Margreet J. Oosterkamp Thesis-MJOosterkamp.indd 1 25-11-2013 6:42:09 Thesis committee Thesis supervisor Prof. dr. ir. A. J. M. Stams Personal Chair at the Laboratory of Microbiology Wageningen University Thesis co-supervisors Dr. C. M. Plugge Assistant Professor at the Laboratory of Microbiology Wageningen University Dr. P. J. Schaap Assistant Professor at the Laboratory of Systems and Synthetic Biology Wageningen University Other members Prof. dr. L. Dijkhuizen, University of Groningen Prof. dr. H. J. Laanbroek, University of Utrecht Prof.
    [Show full text]
  • A Web-Tool to Search for a Root-Zone Associated CORE Microbiome
    bioRxiv preprint doi: https://doi.org/10.1101/147009; this version posted September 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Root-zone associated core microbiome 1 COREMIC: a web-tool to search for a root-zone associated CORE MICrobiome 2 Richard R. Rodriguesa,b,*, Nyle C. Rodgersc, Xiaowei Wud, and Mark A. Williams a,e 3 aInterdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg 24061, Virginia, 4 United States of America. 5 bDepartment of Pharmaceutical Sciences, Oregon State University, Corvallis 97331, Oregon, United States of America. 6 cDepartment of Electrical and Computer Engineering, Virginia Tech, Blacksburg 24061, Virginia, United States of America. 7 dDepartment of Statistics, Virginia Tech, Blacksburg 24061, Virginia, United States of America. 8 eDepartment of Horticulture, Virginia Tech, Blacksburg 24061, Virginia, United States of America. 9 10 Richard Rodrigues ([email protected]) 11 Nyle Rodgers ([email protected]) 12 Xiaowei Wu ([email protected]) 13 Mark Williams ([email protected]) 14 Contact: Richard Rodrigues ([email protected]); 409 Pharmacy Bldg., Oregon State University, Corvallis OR 97331 15 *To whom correspondence should be addressed. 16 17 Abstract 18 Microbial diversity on earth is extraordinary, and soils alone harbor thousands of species per gram of soil. Understanding 19 how this diversity is sorted and selected into habitat niches is a major focus of ecology and biotechnology, but remains 20 only vaguely understood.
    [Show full text]
  • Determining Lineage-Specific Bacterial Growth Curves with a Novel
    The ISME Journal (2018) 12:2640–2654 https://doi.org/10.1038/s41396-018-0213-y ARTICLE Determining lineage-specific bacterial growth curves with a novel approach based on amplicon reads normalization using internal standard (ARNIS) 1 2 3 2 1,4 3 Kasia Piwosz ● Tanja Shabarova ● Jürgen Tomasch ● Karel Šimek ● Karel Kopejtka ● Silke Kahl ● 3 1,4 Dietmar H. Pieper ● Michal Koblížek Received: 10 January 2018 / Revised: 1 June 2018 / Accepted: 9 June 2018 / Published online: 6 July 2018 © The Author(s) 2018. This article is published with open access Abstract The growth rate is a fundamental characteristic of bacterial species, determining its contributions to the microbial community and carbon flow. High-throughput sequencing can reveal bacterial diversity, but its quantitative inaccuracy precludes estimation of abundances and growth rates from the read numbers. Here, we overcame this limitation by normalizing Illumina-derived amplicon reads using an internal standard: a constant amount of Escherichia coli cells added to samples just before biomass collection. This approach made it possible to reconstruct growth curves for 319 individual OTUs during the 1234567890();,: 1234567890();,: grazer-removal experiment conducted in a freshwater reservoir Římov. The high resolution data signalize significant functional heterogeneity inside the commonly investigated bacterial groups. For instance, many Actinobacterial phylotypes, a group considered to harbor slow-growing defense specialists, grew rapidly upon grazers’ removal, demonstrating their considerable importance in carbon flow through food webs, while most Verrucomicrobial phylotypes were particle associated. Such differences indicate distinct life strategies and roles in food webs of specific bacterial phylotypes and groups. The impact of grazers on the specific growth rate distributions supports the hypothesis that bacterivory reduces competition and allows existence of diverse bacterial communities.
    [Show full text]
  • Enhanced Nitrous Oxide Production in Denitrifying Dechloromonas Aromatica Strain RCB Under Salt Or Alkaline Stress Conditions
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 6-5-2019 Enhanced Nitrous Oxide Production in Denitrifying Dechloromonas aromatica Strain RCB Under Salt or Alkaline Stress Conditions H Han BK Song Virginia Institute of Marine Science MJ Song S Yoon Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Microbiology Commons Recommended Citation Han, H; Song, BK; Song, MJ; and Yoon, S, "Enhanced Nitrous Oxide Production in Denitrifying Dechloromonas aromatica Strain RCB Under Salt or Alkaline Stress Conditions" (2019). VIMS Articles. 1668. https://scholarworks.wm.edu/vimsarticles/1668 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. fmicb-10-01203 June 3, 2019 Time: 16:1 # 1 ORIGINAL RESEARCH published: 05 June 2019 doi: 10.3389/fmicb.2019.01203 Enhanced Nitrous Oxide Production in Denitrifying Dechloromonas aromatica Strain RCB Under Salt or Alkaline Stress Conditions Heejoo Han1, Bongkeun Song1,2, Min Joon Song1 and Sukhwan Yoon1* 1 Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea, 2 Department of Biological Sciences, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, United States Salinity and pH have direct and indirect impacts on the growth and metabolic activities of microorganisms. In this study, the effects of salt and alkaline stresses on the kinetic balance between nitrous oxide (N2O) production and consumption in the denitrification Edited by: pathway of Dechloromonas aromatica strain RCB were examined.
    [Show full text]