Strawberry Plant Structure and Growth Habit E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shrubs, Trees and Contingent Evolution of Wood Anatomical Diversity Using Croton (Euphorbiaceae) As a Model System
Annals of Botany 119: 563–579, 2017 doi:10.1093/aob/mcw243, available online at www.aob.oxfordjournals.org Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system Rafael Are´valo1,2,*, Benjamin W. van Ee3, Ricarda Riina4, Paul E. Berry5 and Alex C. Wiedenhoeft1,2 1Center for Wood Anatomy Research, USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, USA, 2Department of Botany, University of Wisconsin, Madison, WI 53706, USA, 3University of Puerto Rico at Mayagu¨ez Herbarium, Department of Biology, Universidad de Puerto Rico, Call Box 9000, Mayagu¨ez, 00680, Puerto Rico, 4Real Jardın Botanico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain and 5University of Michigan, Ecology and Evolutionary Biology Department and Herbarium, Ann Arbor, MI 48108, USA *For correspondence. E-mail [email protected] Received: 7 July 2016 Returned for revision: 3 September 2016 Accepted: 5 October 2016 Published electronically: 8 January 2017 Background and Aims Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Methods Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phy- logeny of the genus to date. Key Results Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit. -
Heterospory: the Most Iterative Key Innovation in the Evolutionary History of the Plant Kingdom
Biol. Rej\ (1994). 69, l>p. 345-417 345 Printeii in GrenI Britain HETEROSPORY: THE MOST ITERATIVE KEY INNOVATION IN THE EVOLUTIONARY HISTORY OF THE PLANT KINGDOM BY RICHARD M. BATEMAN' AND WILLIAM A. DiMlCHELE' ' Departments of Earth and Plant Sciences, Oxford University, Parks Road, Oxford OXi 3P/?, U.K. {Present addresses: Royal Botanic Garden Edinburiih, Inverleith Rojv, Edinburgh, EIIT, SLR ; Department of Geology, Royal Museum of Scotland, Chambers Street, Edinburgh EHi ijfF) '" Department of Paleohiology, National Museum of Natural History, Smithsonian Institution, Washington, DC^zo^bo, U.S.A. CONTENTS I. Introduction: the nature of hf^terospon' ......... 345 U. Generalized life history of a homosporous polysporangiophyle: the basis for evolutionary excursions into hetcrospory ............ 348 III, Detection of hcterospory in fossils. .......... 352 (1) The need to extrapolate from sporophyte to gametophyte ..... 352 (2) Spatial criteria and the physiological control of heterospory ..... 351; IV. Iterative evolution of heterospory ........... ^dj V. Inter-cladc comparison of levels of heterospory 374 (1) Zosterophyllopsida 374 (2) Lycopsida 374 (3) Sphenopsida . 377 (4) PtiTopsida 378 (5) f^rogymnospermopsida ............ 380 (6) Gymnospermopsida (including Angiospermales) . 384 (7) Summary: patterns of character acquisition ....... 386 VI. Physiological control of hetcrosporic phenomena ........ 390 VII. How the sporophyte progressively gained control over the gametophyte: a 'just-so' story 391 (1) Introduction: evolutionary antagonism between sporophyte and gametophyte 391 (2) Homosporous systems ............ 394 (3) Heterosporous systems ............ 39(1 (4) Total sporophytic control: seed habit 401 VIII. Summary .... ... 404 IX. .•Acknowledgements 407 X. References 407 I. I.NIRODUCTION: THE NATURE OF HETEROSPORY 'Heterospory' sensu lato has long been one of the most popular re\ie\v topics in organismal botany. -
Fruits: Kinds and Terms
FRUITS: KINDS AND TERMS THE IMPORTANT PART OF THE LIFE CYCLE OFTEN IGNORED Technically, fruits are the mature ovaries of plants that contain ripe seeds ready for dispersal • Of the many kinds of fruits, there are three basic categories: • Dehiscent fruits that split open to shed their seeds, • Indehiscent dry fruits that retain their seeds and are often dispersed as though they were the seed, and • Indehiscent fleshy fruits that turn color and entice animals to eat them, meanwhile allowing the undigested seeds to pass from the animal’s gut We’ll start with dehiscent fruits. The most basic kind, the follicle, contains a single chamber and opens by one lengthwise slit. The columbine seed pods, three per flower, are follicles A mature columbine follicle Milkweed seed pods are also large follicles. Here the follicle hasn’t yet opened. Here is the milkweed follicle opened The legume is a similar seed pod except it opens by two longitudinal slits, one on either side of the fruit. Here you see seeds displayed from a typical legume. Legumes are only found in the pea family Fabaceae. On this fairy duster legume, you can see the two borders that will later split open. Redbud legumes are colorful before they dry and open Lupine legumes twist as they open, projecting the seeds away from the parent The bur clover modifies its legumes by coiling them and providing them with hooked barbs, only opening later as they dry out. The rattlepods or astragaluses modify their legumes by inflating them for wind dispersal, later opening to shed their seeds. -
Categorical Versus Geometric Morphometric Approaches To
[Palaeontology, 2020, pp. 1–16] CATEGORICAL VERSUS GEOMETRIC MORPHOMETRIC APPROACHES TO CHARACTERIZING THE EVOLUTION OF MORPHOLOGICAL DISPARITY IN OSTEOSTRACI (VERTEBRATA, STEM GNATHOSTOMATA) by HUMBERTO G. FERRON 1,2* , JENNY M. GREENWOOD1, BRADLEY DELINE3,CARLOSMARTINEZ-PEREZ 1,2,HECTOR BOTELLA2, ROBERT S. SANSOM4,MARCELLORUTA5 and PHILIP C. J. DONOGHUE1,* 1School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK; [email protected], [email protected], [email protected] 2Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, C/ Catedratic Jose Beltran Martınez 2, 46980, Paterna, Valencia, Spain; [email protected], [email protected] 3Department of Geosciences, University of West Georgia, Carrollton, GA 30118, USA; [email protected] 4School of Earth & Environmental Sciences, University of Manchester, Manchester, M13 9PT, UK; [email protected] 5School of Life Sciences, University of Lincoln, Riseholme Hall, Lincoln, LN2 2LG, UK; [email protected] *Corresponding authors Typescript received 2 October 2019; accepted in revised form 27 February 2020 Abstract: Morphological variation (disparity) is almost aspects of morphology. Phylomorphospaces reveal conver- invariably characterized by two non-mutually exclusive gence towards a generalized ‘horseshoe’-shaped cranial mor- approaches: (1) quantitatively, through geometric morpho- phology and two strong trends involving major groups of metrics; -
Chapter 2. Vegetative Morphology of Plants Vegetative Morphology of Plants
Chapter 2. Vegetative morphology of plants Vegetative morphology of plants INTRODUCTION: THE PLANT’S BASIC BODY PLAN Most plants are photosynthetic machines: they capture the energy contained in sunlight and transform solar radiation into chemical energy stored the form of bonds in chains of carbon molecules. Through the process of photosynthesis, light and atmospheric CO2 are combined in the leaves of green plants to form simple carbohydrates, which are then used to build other organic molecules such as cellulose, starch, oils, waxes, proteins, or DNA. Six molecules of CO2 (and some 72 photons of light) are needed to form one molecule of glucose: sunlight 6 CO2 + 6 H2O → C6H12O6 + 6 O2 As a byproduct of the process, six molecules of oxygen are formed and dissipated from the leaf tissue into the atmosphere. To achieve this remarkable feat of turning atmospheric carbon dioxide into living molecules while releasing oxygen into the earth’s atmosphere, plants have evolved highly specialized organs. The light-intercepting structure par excellence is the leaf. The set of leaves in the upper aerial part of the plant form the plant’s canopy, where the plant exchanges gases with the atmosphere and intercepts light from the sun. But in order to work its chemical wonder up in the leaves, the plant also needs water and mineral nutrients such as phosphorus, essential for the synthesis of DNA, or nitrogen, essential for manufacturing proteins. In order to obtain these, plants have developed the root —a complex network of underground stem-like organs— whose role is the absorption of water and mineral nutrients from the soil, and, in doing so, anchoring the plant to the ground. -
Annals of the Missouri Botanical Garden 1988
- Annals v,is(i- of the Missouri Botanical Garden 1988 # Volume 75 Number 1 Volume 75, Number ' Spring 1988 The Annals, published quarterly, contains papers, primarily in systematic botany, con- tributed from the Missouri Botanical Garden, St. Louis. Papers originating outside the Garden will also be accepted. Authors should write the Editor for information concerning arrangements for publishing in the ANNALS. Instructions to Authors are printed on the inside back cover of the last issue of each volume. Editorial Committee George K. Rogers Marshall R. Crosby Editor, Missouri B Missouri Botanical Garden Editorial is. \I,,S ouri Botanu •al Garde,, John I). Dwyer Missouri Botanical Garden Saint Louis ( niversity Petei • Goldblatt A/I.S.S ouri Botanic al Garder Henl : van der W< ?rff V//.S.S ouri Botanic tor subscription information contact Department IV A\NM.S OK Tin: Missot m Boi >LM« M G\KDE> Eleven, P.O. Box 299, St. Louis, MO 63166. Sub- (ISSN 0026-6493) is published quarterly by the scription price is $75 per volume U.S., $80 Canada Missouri Botanical Garden, 2345 Tower Grove Av- and Mexico, $90 all other countries. Airmail deliv- enue, St. Louis, MO 63110. Second class postage ery charge, $35 per volume. Four issues per vol- paid at St. Louis, MO and additional mailing offices. POSTMAS'IKK: Send ad«lrt— changes to Department i Botanical Garden 1988 REVISED SYNOPSIS Grady L. Webster2 and Michael J. Huft" OF PANAMANIAN EUPHORBIACEAE1 ABSTRACT species induded in \ • >,H The new taxa ai I. i i " I ! I _- i II • hster, Tragia correi //,-," |1 U !. -
Plant Endophytes Promote Growth and Alleviate Salt Stress in Arabidopsis Thaliana Di Fan, Sowmyalakshmi Subramanian & Donald L
www.nature.com/scientificreports OPEN Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana Di Fan, Sowmyalakshmi Subramanian & Donald L. Smith* Plant growth promoting rhizobacteria (PGPR) are a functionally diverse group of microbes having immense potential as biostimulants and stress alleviators. Their exploitation in agro-ecosystems as an eco-friendly and cost-efective alternative to traditional chemical inputs may positively afect agricultural productivity and environmental sustainability. The present study describes selected rhizobacteria, from a range of origins, having plant growth promoting potential under controlled conditions. A total of 98 isolates (ectophytic or endophytic) from various crop and uncultivated plants were screened, out of which four endophytes (n, L, K and Y) from Phalaris arundinacea, Solanum dulcamara, Scorzoneroides autumnalis, and Glycine max, respectively, were selected in vitro for their vegetative growth stimulating efects on Arabidopsis thaliana Col-0 seedlings with regard to leaf surface area and shoot fresh weight. A 16S rRNA gene sequencing analysis of the strains indicated that these isolates belong to the genera Pseudomonas, Bacillus, Mucilaginibacter and Rhizobium. Strains were then further tested for their efects on abiotic stress alleviation under both Petri-plate and pot conditions. Results from Petri-dish assay indicated strains L, K and Y alleviated salt stress in Arabidopsis seedlings, while strains K and Y conferred increases in fresh weight and leaf area under osmotic stress. Results from subsequent in vivo trials indicated all the isolates, especially strains L, K and Y, distinctly increased A. thaliana growth under both normal and high salinity conditions, as compared to control plants. The activity of antioxidant enzymes (ascorbate peroxidase, catalase and peroxidase), proline content and total antioxidative capacity also difered in the inoculated A. -
Chapter 1 Definitions and Classifications for Fruit and Vegetables
Chapter 1 Definitions and classifications for fruit and vegetables In the broadest sense, the botani- Botanical and culinary cal term vegetable refers to any plant, definitions edible or not, including trees, bushes, vines and vascular plants, and Botanical definitions distinguishes plant material from ani- Broadly, the botanical term fruit refers mal material and from inorganic to the mature ovary of a plant, matter. There are two slightly different including its seeds, covering and botanical definitions for the term any closely connected tissue, without vegetable as it relates to food. any consideration of whether these According to one, a vegetable is a are edible. As related to food, the plant cultivated for its edible part(s); IT botanical term fruit refers to the edible M according to the other, a vegetable is part of a plant that consists of the the edible part(s) of a plant, such as seeds and surrounding tissues. This the stems and stalk (celery), root includes fleshy fruits (such as blue- (carrot), tuber (potato), bulb (onion), berries, cantaloupe, poach, pumpkin, leaves (spinach, lettuce), flower (globe tomato) and dry fruits, where the artichoke), fruit (apple, cucumber, ripened ovary wall becomes papery, pumpkin, strawberries, tomato) or leathery, or woody as with cereal seeds (beans, peas). The latter grains, pulses (mature beans and definition includes fruits as a subset of peas) and nuts. vegetables. Definition of fruit and vegetables applicable in epidemiological studies, Fruit and vegetables Edible plant foods excluding -
Functional Transition in the Floral Receptacle of the Sacred Lotus (Nelumbo Nucifera): from Thermogenesis to Photosynthesis
University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2009 Functional transition in the floral receptacle of the sacred lotus (Nelumbo nucifera): from thermogenesis to photosynthesis R. E. Miller University of Wollongong, [email protected] J. R. Watling University of Adelaide, [email protected] Sharon A. Robinson University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Miller, R. E.; Watling, J. R.; and Robinson, Sharon A.: Functional transition in the floral receptacle of the sacred lotus (Nelumbo nucifera): from thermogenesis to photosynthesis 2009. https://ro.uow.edu.au/scipapers/160 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Functional transition in the floral receptacle of the sacred lotus (Nelumbo nucifera): from thermogenesis to photosynthesis Abstract The receptacle of the sacred lotus is the main source of heat during the thermogenic stage of floral development. Following anthesis, it enlarges, greens and becomes a fully functional photosynthetic organ. We investigated development of photosynthetic traits during this unusual functional transition. There were two distinct phases of pigment accumulation in receptacles. Lutein and photoprotective -
What Does Optimization Theory Actually Predict About Crown Profiles Of
bs_bs_banner Plant, Cell and Environment (2013) 36, 1547–1563 doi: 10.1111/pce.12091 What does optimization theory actually predict about crown profiles of photosynthetic capacity when models incorporate greater realism? THOMAS N. BUCKLEY1, ALESSANDRO CESCATTI2 & GRAHAM D. FARQUHAR3 1Department of Biology, Sonoma State University, Rohnert Park, CA, 94928, USA, 2European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy and 3Research School of Biology, The Australian National University, Canberra, Australia ABSTRACT Amthor 1994). This assumption is popular for two reasons: firstly, it is widely perceived to be identical to optimal N Measured profiles of photosynthetic capacity in plant crowns allocation and, therefore, consistent with natural selection typically do not match those of average irradiance: the ratio (Field 1983a; Hirose & Werger 1987; Sands 1995), and sec- of capacity to irradiance decreases as irradiance increases. ondly, if leaf absorptance is invariant among leaves and if the This differs from optimal profiles inferred from simple time-averaged and instantaneous profiles of irradiance are models. To determine whether this could be explained by equivalent, it renders models of leaf photosynthesis scale- omission of physiological or physical details from such invariant, and therefore applicable at crown scales (Farquhar models, we performed a series of thought experiments using 1989). Most data indeed show that photosynthetic capacity is a new model that included more realism than previous positively correlated with local irradiance within crowns. models. We used ray-tracing to simulate irradiance for 8000 However, the correlation is not linear; instead, it seems to leaves in a horizontally uniform canopy. For a subsample of saturate at high light, such that the photosynthetic capacity 500 leaves, we simultaneously optimized both nitrogen allo- per unit of incident irradiance declines up through the crown cation (among pools representing carboxylation, electron (e.g. -
Crown Area Equations for 13 Species of Trees and Shrubs in Northern California and Southwestern Oregon
United States Department of Crown Area Equations for 13 Agriculture Forest Service Pacific Southwest Species of Trees and Shrubs in Research Station Research Paper Northern California and PSW-RP-227-Web 1996 Southwestern Oregon Fabian C.C. Uzoh Martin W. Ritchie Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: PO Box 245, Berkeley CA US Department of Agriculture 94701-0245 510 559-6300 http://www.pswfs.gov July 1996 Abstract: Uzoh, Fabian C.C.; Ritchie, Martin W. 1996. Crown area equations for 13 species of trees and shrubs in northern California and southwestern Oregon. Res. Paper PSW-RP-227-Web. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; 13 p. The equations presented predict crown area for 13 species of trees and shrubs which may be found growing in competition with commercial conifers during early stages of stand development. The equations express crown area as a function of basal area and height. Parameters were estimated for each species individually using weighted nonlinear least square regression. Retrieval terms: growth and yield, simulators Authors Fabian C.C. Uzoh and Martin W. Ritchie are Research Forester and Research Statistician, respectively, in the Station’s Conifer Silviculture Research unit, 2400 Washington Avenue, Redding, CA 96001. Acknowledgments The data used in this analysis were provided by Dr. Robert J. Laacke of Pacific Southwest Research Station, 2400 Washington Avenue, Redding, CA 96001. Crown Area Equations for 13 Species of Trees and Shrubs in Northern California and Southwestern Oregon Fabian C.C. Uzoh Martin W. Ritchie Pacific Southwest Contents Research Station USDA Forest Service Research Paper In Brief ..................................................................................................................... -
Phylogeny of Malpighiaceae: Evidence from Chloroplast NDHF and TRNL-F Nucleotide Sequences
Phylogeny of Malpighiaceae: Evidence from Chloroplast NDHF and TRNL-F Nucleotide Sequences The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Davis, Charles C., William R. Anderson, and Michael J. Donoghue. 2001. Phylogeny of Malpighiaceae: Evidence from chloroplast NDHF and TRNL-F nucleotide sequences. American Journal of Botany 88(10): 1830-1846. Published Version http://dx.doi.org/10.2307/3558360 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2674790 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA American Journal of Botany 88(10): 1830±1846. 2001. PHYLOGENY OF MALPIGHIACEAE: EVIDENCE FROM CHLOROPLAST NDHF AND TRNL-F NUCLEOTIDE SEQUENCES1 CHARLES C. DAVIS,2,5 WILLIAM R. ANDERSON,3 AND MICHAEL J. DONOGHUE4 2Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA; 3University of Michigan Herbarium, North University Building, Ann Arbor, Michigan 48109-1057 USA; and 4Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut 06520 USA The Malpighiaceae are a family of ;1250 species of predominantly New World tropical ¯owering plants. Infrafamilial classi®cation has long been based on fruit characters. Phylogenetic analyses of chloroplast DNA nucleotide sequences were analyzed to help resolve the phylogeny of Malpighiaceae. A total of 79 species, representing 58 of the 65 currently recognized genera, were studied.