KR0000090

KAERI/RR-1928/98

Hydrogen Isotope Storage in Zircaioy Scrap

31/30 KAERI/RR-1928/98 5l^M 71.

Hydrogen isotope Storage in Zircaloy Scrap am*!* 1998^E.

1999. 8

: o| el 2. efc

n. t!£ TRF7I-

O| 14

2,000kgS| x|s 5i°HS 0|

-^ X| m. si

PCT iv. e 7K #-^s(- process ^## 1000°C,

chip, strips S^oil qi§|-oi 25°C, 200°C, 400°C<>IW ^± ^r^o[Sl^. chipsl S^- 25°Coi|Ai 30^ ^2f ^ H/M-S 0.35, 1.7, 400°C^|A^ 2.02S ^Eflstcf. stripSl 3^ 25°C, 200°C, 400°Coj| m^oi H/MO| 2|Z| 0.7, 2.0, 2.0°^ t-f-

- iii - - A| -

|o SUMMARY

I. Project Title Hydrogen Isotope Storage in Zircaloy Scrap n. Objective and Importance of Project 8MCi of tritium a year will be produced after Wolsong TRF is in operation. The metal hydride form is one of useful way of tritium storage. The metals in use for metal hydride are , , etc., however uranium is limited to use by regulation, and titanium is relatively costly. Both metals are not produced in country but whole amount is imported. On the other hand 2,000kg of zircaloy scarp is produced by CANDU fabrication process, which is also useful for hydrogen storage. The purpose of this study is to evaluation of hydrogen absorption capacity for zircaloy scrap that is produced as waste by CANDU nuclear fuel fabrication process.

HI. Scope and Contents of the Project - System check and test for high temperature and high pressure - Design and installation of data acquisition and control system - Production of PCT data for various zircaloy scraps - Test of commercial hydrogen absorption metal

IV. Results 1. Activation process The sample evacuated for an hour at 1000°C is adequate for activation process. 2. Zircaloy scrap Hydrogen absorption experiments were conducted for zircaloy chip and strip as well. The H/M which mean the capacity of hydrogen absorption was measured 0.35 for chip in the experimental condition of 25°C, 1.7 at 200°C, 2.0 at 400°C. The strip showed higher capacity:0.7 at 25 °C, 2.0 at 200°C, 2.0

- v - at 400 °C, respectively. 3. Commercial zircaloy sponge The H/M values for commercial zircaloy sponge were 2.0 at 25°C, and 2.0 at 400 °C.

V. Proposal for Application The results of this study will be used and connected directly to the other newly commenced project "Tritium Treating Technology Development" which is funded by MOST.

- vi - 1 2

2 ^ 1 ^ 2 ^ 3 ;g ] 4 ^ Zircaloy-4 Scrap ^ 5 ^ 6 ^

- vii - *ll 1 3- M

.^fe chip4 strip ^ °1 zirconium^: sponged 7|-X|:EL zirconium^:

fe 71^*1

31

^ Titanium Uranium, Zirconium^o] ^o_^ ^7} powder^ *§ ^11- 7>^3i $14

- 1 - decay ^M-

71

0.4 o]

S^^(Liquid Phase Catalytic Exchange process)^- 3~tf-& ^^-W"^(Cryogenic Distillation)^! ^°] 7HV -B-el^ ^A^ 31A13 4 ^ 1-2-H

-^ w^, metal hydride x^VslJl $X°] 61* ^ metal hydride 5£4[l-2-2].

- 2 - TRF (Tritium Removal Facility)^>^fe }3- SX^-v], AECL^

^^^r 3-711 $14. H^ ^1-44 AECL

1. TRF^l

(transfer), ^^ (enrichment)^ (packaging) f-^ 37II -§-^ ^sl- ^ (tritiated heavy water; DTO/D2O) i§l- ^^4i (tritiated v deuterium; DT/D2)S. DT ^^ 7l sfll- ^-^^^

T2 ^^

7] S L si 4. 3^7}

- 3 - ^ 7>^JL Sa^H

•i- . TRF (£5. 99%°l^-)fe 6-L SUS^ -§-71 (Immobilized Tritium Container, ITCH J

71-iS. 0.5 MCi?H

TRF $14. ^ ITCfe t|-fe 4. ^U1"*^ ITC

o]

4.

- 4 - £ 7\<>\ 12.3^^1 helmm-37]- £4.

0.5 6.9 MPa<>ll

TRF^

.^ TRF

molecular sieve

Cu/CuO

^±. getter ^}

2. AECL CRL^] CRLi ^- =?•<%&

2-i-3°fl

7\. #S.«.^-i

fe CRL 10,000

SUS 304 . Box ^ box ifl^-^ «a-^cl 125-375 Pa

box 0.007% Box ^^-^ Ar 7lxfl^ O2, N2, H2O,

- 5 - H2, ^ Ti bed . Ar on-line 7)7] £ box Box S]M ion chamber* GC* °l-g-tb Ar box * box

^11: box

M-. Pumping

Sif mechanical vane $£.7}

turbomolecular ^Sfe . CRL ^ metal spiral |S pumping

^ box ifl 2^: vane |=S ^o!4. o] ^^-^ |£S 20 ml °1 ^S 6 Pa^l ^1^4 500 kPa

^S. 711 shaft seaH ^ ^^-i- 7}x]3L $14. Metal bellows fe- spiral ^S l^^, CRL metal bellows ^^« A}-g-

4. H«-4 ^#^ ^-^^i #1^-^ A]-g-£)^ ££ welded bellows-sealedS. ^S Nupro H4 B ^Bfl . Hoke

- 6 - fe JZ. £•*}£]- £*} Jfs.e|£ seats. o]i^.o^ fyf^ ^S,S}T\\ 2i°i 3-f seat 7} $H

^-H^ seat?]- |7}sl5}7ll ^1-g-^^cll, ^^H seat?]- bellows €«-* Al-g-^^^.^, =^ 7}^H ^BflS] bellows €«-!•

stem1?]:^ ^«^^r butt weld SE^r Cajon VCR^- ^i^Tll A}-g-^jL Vfe retainer* ^fe ^s.^ ^Bfl^ Cajon^ fU-f €• Retainer?]- §ife f]^^^r #S.«.^-i iflofl^ ^^j ^^.1- ^^^ nfl, fitting^ -7H connector^ female6]

bed

$14. ^71 tt4. Bed^i

BedS f-^l-fe fe^gr ^7 sit}-, o]^^ t)-^^ ^-^ <&$. o^oflAi bed stainless wire mesh screen $14. -r-^w ^r^^l-i- ^r1^^: metal ^H<>)H H -g-71 iA^ ^^^ ^^-^. p>^^- 3gSL7\ $14. bellows-sealed yJ^4 ^-o] ^^ ^-f^l^ -fef^- bed7> t£H«|i ^r $11= 2^>^^1 -8-71 (containment)* ^£^- ^^s]^^ W. fe -fsl-w beds] 7fl^£» ^^ 2-1-4^ 44^19X4. ol bedfe NRX He-3 stream^-S^-B] HT# ^r^^7l $\tf{ <>}-%-5\5L $I^cl], -f^w^: stainless steel knitted mesh 3HH £#^t}. -f^H" bed^ #S*.^

- 8 - -fi-Sf-JL $l^r . 6] -8-^-i: 7]-^ -§-71 °I -§-71

, T2 7>^

4.

fecfl, o]

02,

^ 2:71 §

$14. 0.8 bar^l t^^ 40-6 18

514(9.2 X 10""16 W/Bq)7>

- 9 - protium^l deuterium^:A deuterium^!

metal hydridel-

o (leach rates, pyrophoricity) o o o o o o o. -(hydride)^ o o o *& ^-(activation) o o o o

1. Uranium tritide

4^-4

2 X 10~5mbaH

- 10 - i.2bar, UTx ^ 3 ]

UTx ^-^ hydrocarbon^ ^ u] =|7]

uranium4 ^r^^i ^>^-#£i ^^lfe- ^7] 7]*H ^^^ ^ ^-1: zi^ 2-2-1

2. zirconiiim ^ titanium tritide metal hydrides fe ^-^#^ 5,vfe4. °11: metal hydrides^ ^^ ^-^i^i «1|-?- ^^r zirconium, titanium, , yttrium, ^ erbium^^i hydrides7]- . titanium ^ zirconium hydrides^ 10"20 atm^.4 ^±^, 500°C°ll^ 10"2 atmS.4 4^1 ^ 100 ] yttrium ^j- erbium^] hydrides^- 1000°C 10"3 zirconium hydrides^ ^^^ °fl, yittrium^r erbiumdm hydrides^

tri-tritide

. Zirconium hydride-^!

- 11 - metal hydrides^ metal^f

M+-yiI2 -> MHX

f. titanium sponge, titanium chips ^ titanium blocks- titanium hydroxide^] -^ ^£°fl ^r«> ^^f- ^-S^ 4 $14[2-2-2]. 7\y\ A ^-# ^Bfl^ ^ 2^1^ ^^> 1000°C^l^ ^ annealing *H ^ ^A^ ^r^i^ 7>^^ palladium-silver membrane^: ^4 A]^4. 3 2-2-2 fe titanium spongei^^E] titanium hydride^! ^^°11 ^ «3r ^:-§-

60

«fl H/Ti «1^ 0.93. 4$: $\9X^. sponged aUE^}^ chip^lM- plate Ti ^-^^r n. yV-g- ^£.7> ^^4. ZL^ 2-2-3 °)1 titanium chip 2-2-4 «=fl titanium plated tfl^ ^^ ^2|-# 4^-^^4. 25°C i7] ^ titanium chip^r

4. oj x\ £.1= 7^sH ^r^« *1]7itt ^ 4A1 hydride ^^1^. ^ ^^fl hydriding^- hydriding dehydriding ^^^^ ^~ ^J^S ^4€4. titanium chip 5^- fe 300°C ^££q -&S.7} ^.^^ 2-2-4 °fl^ 2L91 7Ax\*g titanium plate M- bars

^^ hydride ^J^j #•§- #£^ ^r-g-^ <>l-g- 7>^ sponge ^]Sfe turnings^ bars^^r

zirconium 2-2-5 °ll M-B|-vfl^c}-. zirconium sponged ^ turnings^ 300 °C7>

- 12 - 3 -i^<*Wfe ^ annealing ££*• °^^A£ HXXTCS. annealed $3. ity€- hydride ^£* £fe ^± ££•» £3*M $!«> titanium sponged °]-g-*H K annealing -&5.^ hydriding ^Hi ^U^ ^^1^1 ^^4. titanium 4 zirconium^ sg^^^-l- «lja«fl iL^ n^ 2-2-7 Q0} ZH Ti^ hydride J±4 ^^r

3.

tfl

7} -o-^U -tcfl^r ^^.^1-4. tH:T"^:3 •n"^6l]^i He-^r ^fl He^: wfl^ ^l^0^ tb4. 7]i^BflS. ^>$1^ He3 ^^#^r NMR l dl# 7lair^ TEMi

$14. nJ-^ vacancy7|- §J^ tifl^

Frenkel defect^ ^^^^i £)sfl ^i-i^l- ^^-^ ^ 514. vacancy-He cluster-complex^ ^«fl

100 kbar^l ^:t3:4. °J^^ 3.71^ 7l£S. £^:^ ^ £33 dislocation

•§• . TEM^ll He7l£7V

- 13 - $14. Hei

1H ^ Hei ^*r ^^H *fl-f ^ ^^^r ^7] 3*Hfe 4^ dead volume^: 7>X]T1| ^ %<>) Sc, Ti, Zr ne]J ditritide^l ^]« ^ 0.1-0.3 . °1 Al^ ^# "accelerated release"^ ^-S.^ ^|^€ ^^> ^r 0.6m2/g

^ tifl7> £1 ^4. ^

0.1-0.3^H^I ^^ ^^^ Eg-^ *fl*M3 ^l ^--8-71^1

^4. "r^^l ^£^51-^71 s He^l §ife -a-f1^^* ^1- ^ $131

helium7l- ^S titanium sponge ^lS.1- hydriding ^1^4. ^ ^4# ^-^ 2-2-8 «fl dt^ ^^r titanium-hydrogen «ll- 0.9-1.0 ^^r*!: ^^cf. helium «1 ^^K}^ 2:7] ofl

. helium^l 0.5%

-^ helium^ blanketing JL^H 71^1 «^fe ^^S. 1- ^r $14. o)?-]^ blanketing jL^Jj-l- ^-^^1^7] 3sH ^"^ a^^l 7}^7> ^ y ^^ ^SJ-sat)-. o]S^ o^^ ^^ 2-2-9 # 3.71] 7l]^i^l-$t4. s,7]d]} helium 6%#

- 14 - 2-2-10 4 go] uranium^ ^-foflS. <£<^4. 4sM uranium bed^j °\}S. blanketing ^§# $\

- 15 - 3

0.022% iH-£]^ &M[2-3-1] ^lfe

0.5-2.5%

(Zr O2+HfO2)

:5]-ffe (Zr, Hf)SiO4 ^ baddelelyte 91 (Zr, Hf)O2

sandS^B] A] 4^0^ ^^^ Zr sponge* XI a«]-^- ^ 1^1 £A]^r>^^^ 615]^. ^^^^1 3}-^^ ^71 ofl zircon sandal 3.^k$. Zr, Hf# €-sl^3l Ir^l-fr XlTi^^ >fl ^4. ^imS ^S.S^AS^-Ei f;}^ ^ ZL

£s]*1NTr «o^^ 4^-^ ^1 7>^1 ^<$*\ ^0} <£B\Z\ $14[2-3-2, 2-3-3].

i ) K2ZrF6^ 4^ ^M^ (multiple recrystallization) ii) thiocyanic addlr "S--rr^>-b chloride -§-^AS^E] methyl isobutyl ketone^: ^l-S-^M hafnium thiocyanate^] ^r'i^'l1 (preferential extraction) iii) tributyl phosphate^ -g-^flS.

iv)

4^4. X|2: XI2: ^-S^^- JL^^H ^Sj^^-i: -S^SMl €4. ^1- ^^ ^H

71

- 16 - 7\. zircon sandS^ HffiJ £3

1) K2ZrF6^ 4^ A^ - S. 2-3-H

H.^4 potassium silico fluoridel-

Zr(Hf)SiO4 + K2SiF6 -»> K2Zr(Hf)F6 + 2SiO2 (2-3-1)

K2Zr(Hf)F6l- ^#§>7l ^«(] KC14 ^ crucible^ ^#JL r sintering^

sintering ^rS.^I-H 4^1^: ^?V soaking &?£ 4^- ^ 100 mesh 3L7]S. grinding salt/1- Hl#

crystallizer tanks. Tlci1i4. (7) K2ZrF6^l multiple recrystallization^l ^|*1H ^-i^—^ -^

30

^ ^?>^ ^ 5

2) hafnium thiocyanate^] ^-^^#(preferential extraction)

Q Zircon sand (ZrO2, SiO2) Zr^: ^R^ crusH Ni, CuiL^S tf zircon sand(Zirconium orthosilicate)7]-

- 17 - ^ Australia7> (2) Ore dressing Zircon^ rutile, ilmenite^ %%$• *N *H#£H flotation, electrostatic process, magnetic process ^-i: *)•-§- £ej, Zircon^ % £ <£^r4. © Ball milling Zircon sand^ CokeM^ carbon^: ball mill# °l-g-*H ground ^M ^^^r 3-A$\ Zircon^f coke^ ^-tH-i" ^€- © First chlorination (sand chlorination) Zircon sand/coke W#-lr l^OOt^l^ chlorine(Cl)3f SV-g- zirconium tetrachlorideCZrCk)2]- silicon tetrachlorideCSiCk)^

ZrCl4, SiCl4^ chlonator off-gas^i partial condensation^^ «fl

(2-3-2) Feed makeup

Sand chlorination ^^^ ^1^}^ ^«H^1 ZrCkfe ^ 2%^ HfCl4S

§>ji Si o.^, ZrCUol] H2O^ NH4CNS1- ^JB. ^-^r sand7>^, carbon •§• 7 ^ ^I^ltr ^, <>14 E^ (ZrCk H2O, NH4CNS) -§-^# Zr/Hf separation system-^-S. JS.^^. © Separation system Liquid/Liquid extraction y<]~^] -i: ^1 -§-"?!: Zr/Hf separation system-c: °^ E1 7fl -^ extraction, stripping, scrubbing column-^-3.*] n1-^ 5) <>| $i

M-. ^l^S^-s] oxidation

C K2ZrF6fe ^£M }£ ^5l«H zirconium hydroxidel: *)l^il: ^r Si4.

# *^rt!r K2ZrF6 <*H

35] ^^Al^ic}. ai^oz^^ hydroxide

- 18 - >s.7fl 5L?%$\ cakeS. . zirconium hydroxide cake- °l^^r 850°C~ 1000°C°1H zirconium dioxide#

Zr(OH)A ca/c/nafton 2) -S-^-^r %^l:3f ^l-§-§}^ hydrous zirconium sulfateS.^ € slurry^ rotary filter^-H ^^^14.

{ZrCU+H2O+NH4) +HCl+MIBK(Methylisobutyl ketone) (2-3-3) -• HfO(CNS)2+Zr(OH)4

hydrous zirconia^ zirconium dioxide* ^^:

4. Zirconium dioxide ^ chlorination Zirconium dioxide^- carbon(coke)^ 4^3 <^^r ZrCl4# ^1S§>^ ^1 chlorination -S-^ Al, Fe, Ti ^^ !r . Zirconium oxide-carbon tir^l chlorination°ll

2C(s)+2Cl2(g) -> ZrCl4(g)+2CO(g) (2-3-4)

ii) 2CO(g) + 2Cl2(g) — Zra4( (2-3-5)

iii) C(s)+2Cl2(g) -* ZrCl4(g) (2-3-6)

ZrO2 142, C 142, ^SH 8,

- 19 - 600 ~ 800VS.

ZrCl4 7> ^>

ZrCl4 7> -g-#,

Ramakrishnan ^-[2-3-1]^: ^r^4, binders^ -i^-i-

zirconium dioxide!- grinding^ 325 mesh)Al?) JL 71-^^ tt llr^fe ZL^£^ ^-i- *]--§-SH, binders.

ZrO2 : C : sugar = 82 : 15 : extruder^ ^ ^^l ^Bfls. n>s. 4^. ^w.^] ^37 100°C

251 chlorinator^l ^fl-f Jl heating *1?14. ^:5 7]- ^1- 250 cc/min^ -^-^S *^ ^^.^^ lOO°C/hr^ rates. 800°C coaking^: ^ © coaking chlorination chamber^] *B^ ^#^4. ^^Sj- ^V-g-^ ^£^ 85 1H • <$± 7>^5] ^-^-^^ ^-^oJ=€-3 -S-T2"^^ 50% . ^^ 71^ ^H^r 150tl- chlorination #-§- ^S. ^ ^ 1 >

$ 7>^1- -B-^J A] ^ A^ ZrCl4 vapourl- ^ 7\ ^ ?14.

] ZrCl4lr S^4.

. Zirconium tetrachloride^l magnesium reduction

Zirconium tetrachloridel- -g-^ *rzLv|1^3}- ^ 800°C^l^

Zr+2MgCl2 (2-3-7)

- 20 - ZrCM *€ ^S: 3.711 4^11 # ^EHH 3$ ^^^ (Mg+NaW

KrolH ^\% ^^[41-i: °l-§-^}3L &4. ZrCU ^•^^l-c-^l ^°1^- Kroll 70cm, cm, 4

3-71 «• ^i ZrCl < ZrCl4 ^ ^5l- I# ^3- a

ojdfl

^*n*Rr zrci4

ZrCU ^°fl ^ ^^. tiV-g-7l# 200°CS

1 ZrCl 7 4 "5 ii -a—r^m JAXI T'X T—S- i—g-^f-r. UT-O"^I ZrCU ^1 Ir !^-

ZrCU f^l^ «];^-i- 7flA] A]^lcf. ZrCU

01

4. ^r-g- ^i-£ MgCl2°l

- 21 - 4) JLOIJL n 4] 6fl Chintamani ^-[2-3-7]°] Zirconium tetrachloride^

7l*£ 2-3-541 Hr 4

a. Stainless Steel Cylindrical Retort. ^M^r AISI 310S quality stainless steel S. ] fl >> flange

^ water cooled neoprene x0' ring gasket^ flanged nozzle opening^: ^<^ ^ -g-g-^-E)|o] MgCl2 -^r sodium inlet line 4 argon purge line, manual bleeder valve, evacuation valve * nozzle ^r

b. Reduction Furnace.

3-zone furnace

c. Pressure Control Panel. Pressure control panels pneumatic ^^.l- ^-g-Al^lfe- =^^S^^ solenoid valves- -^ ^^ 7>>IO11A^ pressure recorder linear purging ^^7l pressure regulator 7> ^f^^ purge meter n^JL ® ]fl ^^S 7]s.^>fe pressure recorder

2) reduction crucible 41 "4

- 22 - fe chloride can^r baffled 4°H ^JL reduction crucible

$) $6\] ,§-3^4. ZrCl4 # chloride cani "43.

3)

7]- ^# ii) ^i 7Vi^ nl 51 ^^511- -gAl-SH S.€-

300°C

450°CS ^i^^l M

Bfl

iii) <$± 7>^^1 conditioning cycle fe 850°CS.

si 71 ^<^1 chloride^! «fl^l€- y VA W>^- ^^^ o H^l 71-1^ 2:71 ^ 6fl-H ZlCl4 4. S. €• process li

Zirconium tetrachloride^l ^^-IMl °l-§-sl^ 2. ^ 1 ^>-g-*>fe bi-metal reduction °14. Chintamani[2-3-7] ^^ (10% Na + Mg) mixturel- ^ zirconium tetrachloride^l #-8-^1: €^1S. ^1^-i 650°C ^ two staged ^r«^>^4. 2«1^ staged fe 850~875°CS. -fi-^lAl^

- 23 - Zr-spongel- <2&4. bi-metal reduction^ } 0.3. ^£ €4 3ft^l: 7>*H ^

chloride^ tfl-st NaCl

MgCl2

4. *li=LiEI^ ^^^]^ MgCl2 1- *#£ £7>"u|fe -L^ 2-3-6^11

900 ~ 920°C7>^] 7}

1) ^^^^-^1 a. ^^-71 (Retort) ^^^ AISI 316L quality stainless steels

^V^-^ water cooling jacket^ systemAS. ^H^lfe separate chameHl "SI^4. ^^1 ^^-714 ^^«t Xfl^S. ^14€ support columns] ^1^1^ 37fl ^1 retainer baffle, salt catcher, crusible support, H2]ai sponge retainer plate *§•<>] ¥°i^l4.

b. Vacuum System

- 24 - •?"-§- oil diffusion pump ^(- rotary mechanical pump7}

c. Furnace furnace^ ^fM^ crucible zone-l: 7}<£t}7] ^Sfl #*]£M x\

2) support column, crucible support structure, salt catcher, baffle plate ^-§- ^^-7] 3] bottom chamber tflS. $*H?14. crucible^ =i^\S. ?]^x\ crucible support ^^-7]!- bottom chamer^- f-^ll 1:S.S. ^^^4. furnace

3) i ) ii) pumping system^: ^r^^]^ ^3:^1 ^>^^> leak test* iii) Ieak7]- ti^.^ ir-n-71 system^}- pumping system-i: 4A1 ^^ 850~870°CS

iv) 30-40 ^]^> -^ 3^1 ^-£# -^^]§|-^ ( Zr-sponge + Mg

Cl2 ) ^-^1 ^

yl-. Sponge Conditioning

oxide film ^-^^1 evacuation

- 25 - %*} f^M^H -fr^ ^-717> 100%3. soaking time^ batch size°fl ^5} 1-2 conditioning ^S. ^ crucible-i:

- 26 - all 4 ^ Zircaloy-4 Scrap ^

1. Zircaloy ^[2-4-1] 6 6 Zirconium^ 1789\1 ^^g- M€ 1 Bfl €4^<£ £ H ^3 O]-§-S]JL XIA^ BWR (Boiling Water Reactor)^ ^<3£ ^fi£^l ^rS. *r-§-=lfe- Zircaloy-2 5]- PWR (Pressurezed Water Reactor) ^ CANDU (Canadian Deuterium Uranium)^ ^^S-^SS.^ ^g_ Aj-g-s}^ Zircaloy-4^ ^£ ^ ^A #33, 71^13 ^-^^r S2-4-1, S2-4-2, S2-4-3i U^y}^- ^:4. Zirconium^ ^4^°il 4^ body-centered cubic (BCC)^l beta phased ^ hexagonal closed-packed (HCP)^l alpha phases ^.t}7\] ^4. °1 ^ equilibrium phase7> %<%$?)Q ^4^}^ transistion phased^ HCP^S 91 martensite phase7|- 7># ^§>7l| ^:^5]JL $i^. S^: orthorhombic Sfe monoclinic-^-S-l: ?^-b widmanstatten precipitates, SE^r zirconium hydride^ 3f^^-7> ^7H^>c] ^ 62.5 S. ^-f body-centered tetragonal (BdWS* #& ^^^(e) phase^ 61.4-62.5 atomic^^^^E. ^-f face-centered cubic (FCC)^S^ delta (5) phase ^ 5phase7> ^r«1)sl]^ ^^1 body-centered tetragonal (BCT) O ^S J gamma(r) phase7r ^^§>JL SH4. Zirconium^] slip system^ (1010) plane°1H <1120> directionAS ^^ 5)^ ^-1-^r (1012), (1121), (1122), (1123)31-

2. Zircaloy^11S^^

Zr^-^o] zircon sandS^-E^ A]2]-§}C^ ^|^s.7(lS.S.^ 4^-^^ zircaloy tube, sheet, bar, rod, wire!- *3#*]-£• ^S: ^^, Zr, Hf# f^^i ^& Zr sponge* ^|2:«r^- 4^^- ^4, Zr sponged ^v >^ zircaloy ingots ^lS^r>^ ^ ^*l, zircaloy ingots 7]-^-§>^ ^^-^^^i^o] TREX(Tube Reduced

Extrusion), Shell, Billet f-^- ^]Sf}fe ^-^4 ^^(|( -,^.^^^«oi TREX

2-4-1i Ir^r zr sponged Zr^^ (zircon sand)-i: ^^^^^1^ <£-|r ' chlorination, separartion, rechlorination, reduction, distillation^-^ •§•

- 27 - Zr sponge* £•§• ^ &4. AA$\ ^^H *fl*H *HI*1 #^^^ 4-§-

® Zircon sand (Z1O2, SiO2)

Zro. ^^ crusH Ni,

zircon sand(Zirconium orthosilicate)7r Australia7> ^S. ^t}5L $14. (2) Ore dressing Zircon^: rutile, ilmenite^^ %^^\- IN ^^sj^ flotation, electrostatic process, magnetic process ^-ir A>-§-*r^ ^2], Zircon^ ^-i: ^^4. @ Ball milling Zircon sand^f Coke^nfl^ carbon-i- ball milM- °l-g-§>^ 41 °1, ground^f ^ ^^g«r 3.71 ^ Zircon^ coke^] ^f-i-1- ^€-4. © First chlorination (sand chlorination) Zircon sand / coke £•$•#•§• l^OO'C^l^ chlorineCCl)^ ^r-g-^]^ zirconium tetrachlorideCZrCU)^ silicon tetrachlorideOiCk) 1 ZrCl4, SiCk^ chlonator off-gas^] partial condensation^ "^ °H

ZrSiOt+4C+4Clr-*ZrClA+Sia4+4CO (2-4-1) Feed makeup Sand chlorination^^i ^§>^ ^

A^, ZrCl4°11 H2O4 NH4CNSI- 4131 2}-^ sand7rf-, carbon ^

4^, H2O, NH4CNS) -g-^ll: Zr/Hf separation systemAS

Separation system Liquid/Liquid extractions^] -%: °l-§-tb Zr/Hf separation system^: <^ si 7"fl extraction, stripping, scrubbing column-5-S^i T2"^^0! $14. Precipitation, rotary vacuum filters Zr-8-^^: %^r4 aV-g-^H hydrous zirconium sulfateS-^i ^^^>JL, ^^i slurry^ rotary filter0!] *1 ^^^4.

(Zra4+H2O+NH4)+HCl+MIBK(Methylisobutyl ketone) (9-A-?) + +H2SO4+NH4OH^HfO(CNS)2 Zr(OH)A Calcination hydrous zirconia^ 1,000"C^l^, rotary kiln^l sl«r^ calcination

- 28 - zirconium oxideS.

Zr(OH)4 -• ZrO2 calcination Second chlorination (pure chlorination) Zirconium oxide^f carbon(coke)^: $5L chlorine^ o] Chlorination^^^ Al, Fe, Ti *§•$

ZrO2+2C+2Cl2->ZrCl4+2CO (2-4-4) Reduction (Kroll process) Zirconium tetrachloridet- ^-

ZrCl4+2Mg-*Zr+2MgCl2 (2-4-5) © Distillation 0 Zr^-^-l: ^1 ^distillation furnace )] "4 3. l,000°CS. 7>^, nf^i ^^rtt porous, sponge-like Zr^-^^- £•§- ^ Si 4. © Breakup Zirconium spongel: breakup pressl- °l-§-*M ^^r ^

3. Zircaloy ingot^12:i?-^ Zircaloy ingot^li^-^^r 4^-^l- ^4. © Pure Zr sponge, reusable, alloying element!" blender-1- °l-§-^}^ 41 •£• ^, hydralic pressl- °]-§-^><^ compact^f^ block-i: ^r€-4. (2) Compact block-i: chamberM] "^AJ 1 plasma 2.^- electron-beam welding ^r ^ ^1^-g-«(!•§- electrode-! ^S^:4. © °1 electrode ^ water-cooled Cu crucible-It ^l-^-^}0^ consumable electode vacuum arc furnaceS^ meltingt!:1^. © Homogeneous -! ^7] -^§>^ 1st melting staged] *\ /$L'Q$. ingot •i: consumable electodeS.A1 °]-§-^|-oi ^^tr^i -§-^^!: vacuum arc furnace melting

- 29 - ingots surface porosity^- melting*] ^ S^^.^ *§••£• 7] -^H machining^: %^A. ©, ©, ©•t^'fl-t! 1st melting^ 31 «H non-consumable cooled Cu electrodel- d]-§-3H, ^iL^r f-^-S^i-t %AQ *h, vacuum arc melting^:

4. Shell, TREX ^ Shell, TREX ^1^}^ ^°1^1 ingots hot forging, hot rolling, cold rolling billet, slab, bar, rod, wire, plate, sheet, strip, coil

Ingots hot foging ^ beta-quenching-I: €^H ^QQ 3.7) s] billet

(3) Billet-i- drilling^ ^§>^ ^^^^1 hole^- ^:#^ extrusion-g- hollow billeti- ^112:^4. © o]e]si- billet-cr lubricants.^ graphite^-AS. coatingtt ^- inductiom heating^- ^%^-, ^ TOOt^ll^ hot extruded hollowS.^ ^S«!:4. © Extruded hollow^ picking^ 3h, cold rolling (Pilger)1^0!] ^i«fl reduc ^ :TL, vacuum annealing ^ broaching-It g$^j-°3 shell S-c- TREX, Super-TREX^: ^

5. Tube 431^^ Cladding tube^i ^S-i- ^-&H ^r-§-slfe f^^^lf-*! zircaloy shell, TREX^l 51^^ i^^-i- ^I^l^ulfe S.^ ^^-x># f-^H °a^§>4. °JaJ: ^AS. 63.5niMO.D.x 10.92mm thicka.7)l: shell £^r Super-TREX5|- ^=.^, 44.5mmO.D.x 7.62mm thick3.7]# TREX&}- 4^-4. Shell Efe TREXS.^-^ cladding tube4^]^1 ^l]2:-§-^^- H^ 2-4-2$}- ^4. a 2-4-4, 2-4-5, 2-4-6 o.^H 2-4-7^ zircaloy-4^ ^L^-^14

- 30 - lxr n^ 2-5-14 g°] ^s\°] &4. $.%) *l^£r stainless steals. $\9X±^ ^>l^fl «-«-^ welding JlS. *i4*M # Ieak7> &7\] ^[^%t\; manifold^ closed system^SA] ^1-71 ^sfl^fe ^-^# cJ-3l^^ reference7]- 41- 7}x]JL $X±= cylinder7]- manifold^

manifold?!:^ fe solenoid valveS. ^^s)^ 4-¥-^ control6] 7>^-§

^r three way valvei ^^4^ €A«fl 44 -B-S.1- M^ ^ij}^ 7l # ^°d^ ^r SIH^- *>^A4 71^1 ^^4} 4 control^ 7}^5}£f ^>^4. rotary vacuum pump^># A>-g-§>c^ ^ lo^torrl: -fM3r£^- metering valve* valve ^^ solenoids. §>^ 4^^ control°] 7>^^}5.s. «>o|t}-. vacuum gauged Granville-Phillips A}^ 275 convectron gaugeS i)tfl 1000 torr, ^1 *] 4 mtorrtr #^1: ^ ^14. %•%: #^i"& T= ilfe- 0mega4 pressure transducer7]- ^-# 1000 psi^l ^-^1- #^% ^ ^ %*%£: multimeters. ^^s]

2.

- 31 - GENIE

evacuation 2HW4. ^ 2-5-1^1 ^1 three way valveS-^-B] solenoid valve

volume measurement

valve 0

activation Slfe oxygenated film-i-

^ 600°C, 800°C, 1000°CS. 7} 3l§Br ^:£7M - ^l ^ valve 01- •i

^.S H/M(metal

tfl^ GEME^I step ^^^ W li

3. H

S. tb ^ manifold^!

- 32 - XJ —I

P • V P V P V P V r i y m r e ' m , r e v c , r e v r (2-5-1) T T T T

P = V = T = = nads -S"-^!"^ (mole) R = gas constant(22400/273) subscript i = y^-%- ^^ m = manifold c = solenoid r = w]:-g-^

if 2-5-2 ^ S. 2-5-1^^ iL^l ' ?t-S- manifold^

^£# 4 ^ 400°C water bath^l

PV P • V T Joo T

P V P P V r e. y r

X=0 logarithmin

- 33 - 6

1. Pressure indicator calibration X\^i$ xfls}

3]7] 7} fe secondary gauged ^^AS fa^o]lAi ^l^- <&%$*] $X^r primary gauge ^ 0*IH 28000 kPa^l ^^1- 7>*|JL SJJI, secondary gauged O^l^i 14000 7^3. $1^^ secondary gauged ^^-^ resolution^: 200 ^ ^4 #^ ^^4 ^-^^^1 ^31^ S. 2-6-14 ^-^-^ °1 2-6-H4.

2. Manifold ^4 ^ activation o] A]^^61J^SI manifold volume^ 58.87 ccS 44^4[l-2-2]. o]^ Hr -0.6, +0.5 51

1^- oxide film-i:

activation^ 6j-^o] ^o]^^ 7^ # ^ Xl§i4. ^ activation yo^^: S7l 4071^, 60 0°C3. -r^l- A]^Efl manifold^ ^£ $• A1S.4 ^^AI^JI, ZL ^ 1000°C

1000 °C

- 34 - - 9£ -

IPPM/H ^lb~t ^Z k #-tefrft aOOOT

ttn I" fe^lH io-o-g^ frfr-9-Z i: I^lY-fe^ft Mb a0001 W& ^9-9-2

IPPVH frlo-

tok -k*£ to^^ ^k UP fee 'zio 'Z -g-b

%X?± WbO,9Z I^^-R- i: I^IY -&-fe§H: klbaOOOT ^^-9-

lr Ibio &4z4v tpU^g x uraig ^ ^-[^H[fe^ 'UIUI t55loIs •^-ofp-a: 4*fek lo-^l^ ^ 1- klb(B) teS-9-Z ^

t-YlbaOOOT "5-Q fe^- UOpBAT^DB to "4a^ #a000T Ibi 9P!x0 &'&'£ {oTT

lb^9 ^•b^L^-o- ^T-fpkOZ fc f-fe-Tp tp^ ^a^lY H^^5 ir -felv ^ "4a 1% 4n4afi % ||PZ-9-Z ^^ ^r[o - 7)3 %^ <£ ^ $14. 2-6-33 (bfe ^ M *1=.^£.°1 chip-l- =L$ (a)3 «1 powderS. ^^^#^^$14. °lfe pulverization

powders. ^«H^4. °1S. 4f- n^ 2-6-5°fl>H i H/M3 S°l

pulverization^ S 40

AS. H/IVH 2.

4. Strip

Striper ^7)17} 3= 0.05mmS. chip<^l a]gfl Pfl^- 9J4. ^^^^^^ strip ^Efll- ZL^ 2-6-7 (a)1 ^Bl-ifl^4. ^Bfl^ JjLsfl^ s.«g=o.s ^^<>1 3: 7mm, ^-^A^ 60° i^ 180° 7>^1 4<&*M1£ ^^ 3= 120° S 4^\i4. °]S nl^- strips

2-6-8^ ^ ^r-g-^rS* 25°CS.

: ^<^1 H/M3 &^r 3= 0.7S.A-] chip3 ^^ 0.35 $2-^ 4^-^4. °1^ strip3 S^^^l chip3

2-6-9^ 200°C3 ^>-S-^£3 ^-r-'ytil chip3 ^-f3- ^ ^^1 H/M

tilHSiH strips ^ 4 2-6-lO^r 400°C ^^-^1^1 ^^1 HUM^l 2.03 3M- S.^^31 $14. 2

- 36 - , 333

—i B3 9-fi-7°] CM— 4=- strip ^-Efll- —t- ^j Lt U l -—I \U/ 1 \^ pulverization °1 ^l*!^ \ Vil-ir^r-^- pulverization°1

5. 2-6-113

3 25°C3 -1- 2-6-12^] ^c]l 25°C3 ^^ tiV-g- Ife H/M3 5t-ir 2. strips

2-6-13^r 400°C3

^3 2-6-11 (b)i iLSa^^l pulverization^]

NEXT PAGE(S) - 37 - left BLANK S!

^ chip4 CANDU

> isHrt-H 100 ^^*t #iis. M-BI-^4. chip^l ^ 25°C4 ^ ^ 30^- ^4 ^ U/M°) 0.35, 200°C 4 1.7, 400°C l 2.0^-S A*\ M- strips ^-f 0.7, 200°C^ 2.0^1

2.0.2. pulverization 31 chip4 ^ powder7> powder7V pulverization 41: strip ^.f 4^-^ft 14 pulverization stripS. ^f-

strips -^ powder

pulverization ^^1 powder^ <>]•%•, sintering process ^^

Sl-i- ^J^-

NEXT PAGE(S) - 39 - left BLANK 1-1-1. , , KEPRI-93N-JO2, ^^Sl, 1995 1-2-1. G.Vasaru, Tritium Isotope Separation, CRC Press, 1993 1-2-2. Sf«l« ^-,u^m 7l«>^^-^x1-^ 711^71^

NEXT PAGE(S) - 41 - left BLANK S. 2-2-1.

Equil. Saturation PressureCTorr) TemperatureCC) TiH,., ZrH,.o 300 2.2E-03 1.5E-06 400 0.33 5.0E-04 500 13.90 3.7E-02 550 63.84 0.21 600 246.29 1.00 647 766.50 3.71 650 4.02 700 13.94 750 42.83 800 118.51 850 299.52 900 699.49 905 758.39

- 43 - 2-3-1. Sl-

•8- n -8- nH • WZr «1

(NH4)2MF6 H2O 0 0.611 0.890 1.46

(NH4)3MF7 H2O 0 0.360 0.425 1.18 K2MF6 0.125N HF 20 0.0655 0.1008 1.54 MOCk 11.6N HCl 20 0.33 0.15 0.46

- 44 - Table 2-4-1 Chemical compositions of Zircaloy-2 and Zircaloy-4

ASTM B353, %

Sn Fe Cr Ni Fe+Cr+Ni Fe+Cr 0 Zircaloy-2 1.20-1.70 0.07-0.20 0.05-0.15 0.03-0.08 0.18-0.38 0.10-0.15 Zircaloy-4 1.20-1.70 0.18-0.24 0.07-0.13 0.28-0.37 0.10-0.15

Table 2-4-2. Typical physical properties of Zr

Property Zr Atomic No. 40 Atomic Weight 91.22 Atomic Radius A (Zero charge) 1.60 - 1.62 A (+4 charge) 0.80 - 0.90 g/cnf at 20 °C 6.490 Crystal Alpha phase (below 865 °C) HCP Beta phase (above 865 °C) BCC Melting Temperature 1845 Boiling Temperature 3577 Transformation Temperature Alpha -* Beta 865 Modulus of Elastility (psi) 14.4 xlO6 Shear Modulus (psi) 5.25 X106 Poisson's Ratio (Ambient temperature) 0.35

- 45 - Table 2-4-3 Typical physical properties of Zr

Condiion Practically Re- stress relieved recrvstallized crvstallized Yield strength, 0.2% •cg/nrf 61 50 38 offset psi 87000 71000 54000

20 °C Tensile strength kg/mnf 80 67 53 psi 114000 95000 75000

Elongation in 2" % 17 24 34 400 °C 340 °C 300 °C (750T) (650T) <570*F) Elevated Yield strength, 0.2% kg/mnf 32 31 15 temperat offset

psi 45500 44000 21000

Tensile strength kg/mnf 45 40 27

psi 64000 57000 38000

Elongation in 2" 20 24 40

- 46 - Table 2-4-4 Chemical composition of the ingot (zircaloy-4 sheets)

Element Nitrogen Hydrogen Spec, (ppm) < 80 < 35 Results 29 ~ 31 20 ~ 16

Table 2-4-5 Mechanical properties

at room temperature Test Spec. Results Ultimate tensile strength (MPa) L >414 507 505 0,2% yield strength (MPa) L >241 375 371 Elongation {%) L ^14 30.4 30.2

Table 2-4-6 Micrographic structure

Grain size Transverse Transverse Specified Finer or equal to 35wn No grain larger than 100#m Results 5.5jm Conform

- 47 - Table 2-4-7 Chemical composition of Zr-4

Elements Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Cr 0.07 0.13 0.10 0.12 0.11 0.11 0.11 Fe 0.18 0.24 0.23 0.22 0.22 0.21 0.22 Fe+Cr 0.28 0.37 0.33 0.34 0.33 0.33 0.33 0 0.090 0.160 0.118 0.123 0.122 0.123 0.118 Sn 1.20 1.70 1.34 1.35 1.33 1.32 1.33 Zr balance Impurities (ppm) Al 75 23 26 26 26 22 B 0.5 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 C 400 118 110 137 113 121 Cd 0.5 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 Co 20 < 6 < 6 < 6 < 6 < 6 Cu 50 < 10 < 10 < 10 < 10 < 10 H 35 8 < 3 4 4 4 Hf 100 50 50 51 51 48 Mg 20 < 10 < 10 < 10 < 10 < 10 Mo 50 < 10 < 10 < 10 < 10 < 10 Mn 50 < 10 < 10 < 10 < 10 < 10 N 80 24 23 25 24 23 Nb 100 < 50 < 50 < 50 < 50 < 50 Ni 70 < 40 < 40 < 40 < 40 < 40 Pb 130 < 20 < 20 < 20 < 20 < 20 Si 120 59 59 57 57 56 Ta 200 < 50 < 50 < 50 < 50 < 50 Ti 50 < 10 < 10 < 10 < 10 < 10 U 3.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 V 50 < 20 < 20 < 20 < 20 < 20 W 100 < 20 < 20 < 20 < 20 < 20

- 48 - 5. 2-5-1. System Lineal Profile

f-^r^S 400°C$\ ^^rJE 200V 5] ^•gri 25°C£]

Tl 400 200 26

T2 199 87 27

T3 98 47 27

T4 72 42 27

T5 50 37 27

T6 43 34 27

T7 35 29 27

T8 30 27 27

T9 29 27 27

T10 28 27 27

- 49 - 5. 2-6-1 Calibration curve for mV vs. Pressure(atm) pressure(kPa/atm) multimeter(mV) PC readout

9.02 x 10-3 -0.59 -0.06

1020 kPa 4.07 0.41 (10.07 atm) 2000 kPa 8.36 0.85 (19.74 atm) 3050 kPa 12.58 1.27 (30.11 atm) 4000 kPa 16.83 1.70 (39.49 atm) 5000 kPa 21.58 2.18 (49.36 atm) 6000 kPa 25.91 2.62 (59.23 atm)

- 50 - D20

HTC To Stack Expansion Tin

To Stack

I High Tritium Cold Box (HTCB)

Low Tritium Cold Box (LTCB) Tritium Immobilization System To Stack or Air Clean-up System To Air Clean-up System or Detritiated D2O High Activity Clean-up System

1-2-1. LPCE + CD CANDU Tritium Removal Facility Reactor (TRF) D2O+DTO

Moderator

TRANSFER D,+DT ENRICHMENT PACKAGING

Upgrader VPCE Cryogenic Metal Hydride LPCE Distillation orDT CECE D, DE

D2O Heat Transpor

2-1-1.

- 52 - Primary Pressure Immobiliza Uranium Volume Pump tion Bed Assay Vessel

Heater Heater

Auxiliary

i Immobiliza i tion Vessel

Heater

2-1-2.

- 53 - GAS VOLUME ,PRESSURE

TRANSFER PORT

GLOVE BOX GAS PURIFICATION Tz UNIT U-BED REACTOR PUMP

PUMPING SYSTEM

2-1-3.

- 54 - INSULATION- POROUS - STAINLESS STEEL FILTER

URANIUM POWDER - IN STAINLESS ELECTRICAL. STEEL MESH HEATER

BELLOWS SEALED VALVE' CARRYING PACKAGE

\\\\\\\\\\\\\\\\\\\\V^

2-1-4. bed

- 55 - ,_•- 2.5

2.0

•// —•— 500 Torr M rati o r —•— 200 Torr

1.0 - // —A—100 Torr

0.5

0.01 1 I 0 12 3 4 5 Time (minutes)

2-2-1. uranium hydride & Z.7]

- 56 - 2.5

2.0

1.5 g TO initial temp. —•— 25°C 1.0 -•-100' 'C

-A- 200''C 0.5 -T- 300''C -•-600'

0.01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time (minutes)

2-2-2. titanium sponge titanium hydride

- 57 - g 05

0.5 -

0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time (minutes)

2-2-3. titanium chips °lH2l titanium hydride

- 58 - tc

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time (minutes)

2-2-4. titanium plate °1H^ titanium hydride

- 59 - 2.0 V 1.6 - -9- Rods at 610-615 °C ll -V • Sponge at 25 °C -•- Prehydrided rod at 324-326°C

— 1-2 • 03 •s en s .8 • ll

.4

0.0 4 6 8 10 14 Time (min)

2-2-5. hydride^

- 60 annealing temp. —•— 800°C —•- 600°C

-A- 410°C —r- 300°c —o-1000°C

0.5

0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Time (minutes)

2-2-6. annealing -&S.7} titanium hydride

- 61 - 800

CD TiH1.1 600 - - "ZrHI.O CO CO CD / / 400

CO / / O 200 co CO b

200 400 600 800 1000

Temperature (cleg. C)

2-2-7. Titanium*}- Zirconium^

- 62 - g

o.o 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Time (minutes)

2-2-8. titanium hydride helium

- 63 - 0.8 with gas circulation

0.6

titaniumsponge ro 0.4 ini. temp.: 25°C

circulation on 0.2 static gas

0.01 _j i t i I |_ 0 2 4 6 8 10 12 14 16 18 20 Time (minutes)

.2-2-9. titanium hydride

- 64 - g "Jo

-0 0.4 - —•—0.1% helium —A— 0.5% helium 0.2 - —T— 2.0% helium

0.0 2 3 4 Time (minutes)

2-2-10. uranium hydride lfe helium 7}^

- 65 - ZrSiCX Zr(+impurities)

K2SiFe

i r

Crude K2ZrF6

Recrystallization r

Pure K2ZrF6

Ammonia r

Zr(OH)4

Calcination(850C) f

ZrO2

Chlorination

• r

ZrCU

Mg Reduction & Vacuum Distillation

Zr-Sponge

2-3-1. *}sL3.^ ±.

- 66 - CROSS OVER CLEAN-OUT PORT PIPE

FEEO PORT

OFF-GAS VENT

NICKEL CONOENSER

HOT OIL/ AIR INLET

2-3-2. zirconium dioxide^ wV-g-7l

- 67 - -• cw A.gL ays.- •• CO -• CD —I— -I-l I—! C3 -

ZrCU

XH^SF ZrCU

DF3LII'

Zr + MgCI2

•• MgCb

Zr ±

2-3-3. Kroll

- 68 - UIDIS

2-3-4. Kroll-2! magnesium reduction

- 69 - MANUAL BLEEDER VALVE

PNEUMATIC ARGON ADMITTENCE \ PNEUMATIC BLEEDER VALVE VACUUM VAVLE

T.•CC<2H

T.C

T.C

T.C

2-3-5. Magnesium reduction

- 70 - T.C

STEEL MEZZANINE

CRUCIBLE SUPPORT

WATER COOLING JACKET

GAUGE

T.C

MACHANICAL / PUMP

RETORT SUPPORT

2-3-6. Vacuum distillation

- 71 - Zircon Sand ZrO2, SiO2 T Zr/Hf Separation, Chlorination I Reduction, Kroll Process I Zirconiumr Sponge Alloying, Vacuum Melting I

Zircaloy Ingot

Forging and Beta Quenching I Hot Rolling Extrusion Hot Rolling I i 1 Cold Rolling Shell, Trex Cold Rolling I 1 1 Annealing Pilgering and Annealing Annealing 1 1 i Sheet Tubing Biller, Bar, Wire

2-4-1. Overview on zircaloy technology

- 72 - TREX, SHELL T Pilgering <+ I Cleaning I Recycle Vacuum Annealing I Pickling — I Straightening I I . D . Sand Blasting I O . D . Grinding I Cleaning i Ultarsonic Inspection : Dimensions, Flaws I QC Inspection I Packing

2-4-2. Typical flow of zircaloy cladding tube manufacture

- 73 - Computer

PCLD PCL-818HG -786

ADAM-3014 Pressure Transducer

Multimeter Three way yalvie -O He Gas Valve 1

Vacuum Gauge '. Valve 2 Valye 0 Vacuum \6-r-

Needle valve Valve 3

Reactor 1

2-5-1.

- 74 - T10 T9

Solenoid Valve

4.5cm

10cm m

'— Water "_ "Bath

Heater

Reactor

2-5-2. System Line^ -&•£ Profile

- 75 - rtVvs. Ftessue(drr) £tm=1.275+2243 *m

70.0

i 60.0

50.0

/ 40.0

30 0 • cka I - —cd aided

20.0

10.0

/ 0.0

-10.0 -5.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 m

2-6-1 Calibration curve

- 76 - activation process

30 _t • ; '; 25 J ' s 20 i s 1, • 'i V- ;"',' — V— r. k' f.' 2? 15 >•:.. _,- :,=:• V »1i-ri .-:• •exp.data CO 10 CO :-,• -,. .; .*: -.: 'si * ."-..-• Mi CD 1 5 V r - '•• • •,* Q. - 0 1 * '. • • • •• • -5 'I 0 10 20 30 40 50 GO 70 time(min)

2-6-2 Activation process

- 77 - 2-6-3. *1 =.

- 78 - H/M

u

f I o 8 6* H2 absorption in Zr chip(200C)

2 —i—

1.8 —' —»i 1.6 ~i —1 —I— 1.4

1.2

I ^ —j— - 2S| — 3S| 0.8 _j. 1

0.6

0.4

0.2 i

0 10 15 20 25 30 time(min)

2-6-5 H2 absorption in Zr chip at 200 °C

- 80 - H2 absorption in Zr chip(400C)

I i |

' -i . 2 «*• Hi **• 1 "»» U i 1 " 1 7. I 1 1 1.5 IttI t i . tL P 1 I : r 1 : J J. I I | ; I i 0.5 1! | } i I 1 iff iti i •«. \ • toi i fnh n 10 15 20 25 30 time(min)

2-6-6 H2 absorption in Zr chip at 400 °C

- 81 - 2-6-7. *1 S.%3,*] strips

- 82 - P

a •C

N

o +3 oo o 1/1 •8

oo

CO

rl

W/H H? absorption in Zr strip(200C)

! _i i ;

I I ( 1 2 . 1 i 1 rAHA W1 > ST "T1 ir **1 j I 1 i i 1.5 i ! 141 l • - 261 , I —341 1 1 | 1 ! 1 i 1 j 1 t i j 1 i O.S ! I | j ;

Hi*** tkirfKt •d iM Hi, hc- n Mru

2-6-9 H2 absorption in Zr strip at 200°C

- 84 - H2 absorption in Zr strip(400C)

1 !

I ! i 2 JL. 1 i • r Vi "V, 1 rtv / i r ;

; i 1.5

; 3SI 1 1

; 1 0.5 i I 1 All ™ rjft n m u 10 15 20 25 30 1ime(min)

2-6-10 H2 absorption in Zr strip at 400°C

- 85 - (b)

2-6-11. ^]S3t sponged

- 86 - H2 absoiption in Zr sponoe(25C)

AA, 2 A* •Vi "irf

l I 1.5 I i 13

3S] 1 - ;

0.5 I I I 2 MM A. I vk 10 15 20 25 30 time(min)

2-6-12 H2 absorption in Zr sponge at 25 °C

- 87 - H2 absorption in Zr sponge(400C)

2.5 1

1 fl i&A 1 II, A , fa MA |\MI fit MMft ,| |U Juy •H T" m

! 1.5 i

... 241 341

0.5 1

1 JJrT3l?3?^^l*33'*J7^.7TC'*TO 10 15 20 25 30 time(min)

2-6-13 H2 absorption in Zr sponge at 400 °C

- 88 - NEXT PAGE(S) left BLANK - 89 - 1. evacuation^- GENIE structure(file:vacuum.gni)

TASK run time elapsed time

pressure read Task 1 free N/A data logging system initialize - all valves closed vlave (0,0) Task 2 5 sec (1,0) (2,0) (3,0) 5 sec gas input valve 1 controlled(set pressure) Task 3 valve (0,0) 2 min 55sec (2,0) (3,0) 3 min system vacuum(small flow) valve (0,0) Task 4 (1,0) 2 min (2,0) (3,1) 5 min system vacuum (large flow) valve (0,1) Task 5 (1,0) free N/A (2,1) (3,0)

- 91 - 2. He-i- GENIE structure(file:helium.gni) He-4- free

TASK run time elapsed time

pressure read Task 1 ree N/A data logging 3HJ Hj-Ji t}7] QQ programmed Task 1 50 min N/A script all valves closed vlave (0,0) Task 2 (1,0) 5 sec N/A (2,0) (3,0) gas input valve 1 controlled(set pressure) Task 3 valve (0,0) 3 min 55sec N/A (2,0) (3,0) Equilibrium Task 4 reactor valve open (0,1) 3 min N/A the rest colsed system vacuum(small flow) valve (0,0) Task 5 (1,0) 2 min N/A (2,0) (3,1) system vacuumdarge flow) valve (0,1) Task 6 (1,0) 6 min N/A (2,1) (3,0)

- 92 - Basic script

Sub SCRK) dim TElapse as VARIANT dim Tint as integer dim Tvar as integer dim iter as integer dim rtime as integer dim MyTime as Tag dim MyTask2 as ScanTask dim MyTask3 as ScanTask dim MyTask4 as ScanTask dim MyTask5 as ScanTask dim MyTask6 as ScanTask

set MyTime = GetTag("Taskl","ETl") set MyTask2 = GetScanTask("Task2") set MyTask3 = GetScanTask("Task3") set MyTask4 = GetScanTask("Task4") set MyTask5 = GetScanTask("Task5") set MyTask6 = GetScanTask("Task6")

iter = 3 rtime = 15*60

TElapse = MyTime.value Tint = TElapse

outputi 7,Tint

if ( Tint < iter*rtime ) then

Tvar = Tint Mod rtime outputi 6,Tvar Select Case Tvar Case 0 to 5 MyTask2.Start Case 5 to 4*60 MyTask2.Stop MyTask3.Start Case 4*60 to 7*60

- 93 - MyTask3.Stop MyTask4.Start Case 7*60 to 9*60 MyTask4.Stop MyTask5.Start Case 9*60 to 15*60-5 MyTask5.Stop MyTask6.Start Case Else MyTask6.Stop End Select

else

MyTask6.Start

end if

End Sub

- 94 - 3. lOOOt:°H*1 activation process'-GENE structure(file:activ.gni)

oxide film

TASK run time elapsed time pressure read Task 1 free N/A data logging all valves closed vlave (0,0) Task 2 (1,0) 5 sec (2,0) (3.0) 5 sec gas input up to 20 atm valve 1 controlled(set pressure) Task 3 valve (0,0) 4 min 55sec (2,0) (3,0) 5 min

Task 4 reactor valve open (0,1) 30 min the rest colsed 35 min system vacuum (small flow) valve (0,0) Task 5 (1,0) 5 min (2,0) (3,1) 40 min system vacuum (large flow) valve (0,1) Task 6 (1,0) 20 min (2,1) (3,0) 60 min

- 95 - 4. <>]•%• ft structure(file:helium.gni)

*! 3)5.

TASK run time elapsed time pressure read Task 1 data logging L50 min 3^1 'ib^r *r7l $[ tb programmed script [50 min all valves closed vlave (0,0) Task 2 (1,0) 5 sec (2,0) (3,0) 5 sec gas input valve 1 controlled (set pressure) Task 3 valve (0,0) 4 min 55sec (2,0) (3,0) 5 min

Equilibrium Task 4 reactor valve open (0,1) 30 min the rest colsed 35 min system vacuum (small flow) valve (0,0) Task 5 (1,0) 2 min (2,0) (3,1) 37 min system vacuumdarge flow) valve (0,1) Task 6 (1,0) 13 min (2,1) (3,0) 50 min

- 96 - ^ 2 1. The semi-infinite rod. Steady temperatures[l]. rod* tfl-el- tr^°fl I^tr ££5. ^-^1^?1JL rod^l 5.^3.^ radiation0) ^^M-^ °1 rod7> JftttlT ^-T-^1 -gr£°ll tfltb governing equation^: 4-§-2r

f = 0

, V = Hp/cpW K = conductivity p = density c = specific heat capacity p = perimeter w = cross sectional area H = surface conductance

governing equation-^ Sflfe x=0°)]^s] ^-£7}- V0S.

u = y»\ (2-2) where ]i = v/fc

^•g ]p7r nj|-f €• finite bar£] ^-f^ (2-2)5] sfl# 3)^ ^-§-^]€ ^r Si4.

2. The finite rod. Ends at fixed temperatures. Steady temperature[l] rod7V finite^: ^-T- O. sfl-c- # c] ^•^"«l];5l4. °1 ''fl -^1 governing equation ^ boundary condition-S:

-7-r - P2u = 0 (0

P2 = Hp/Kw

u = AeB'+ B e'vx Vi = i4 + B vl v! V2 = A e + B e~ (2-4)

- 97 - v ~ sinhu/

3. infinite^ *\ (2-2)4 finite^

T07> 600t:y ^-f #^^ ££ profiled

reactor reactor tip solenoid water bath I 1 1 1 1 x=0 6 15 24.5 40.5 cm T=600 176 96 60 18"C

Fig. 2-1 Schematic of reactor assembly

finite models 3-f Vi£ 600°C, V2^ 18°C, L=40.5cm <>13L n^e)-^ ^ (2-5)°fl parameters. s)oj o.^ 2-12] -g^l dataS-^-E^ regression^] s]*H T1^^ €4. 0 D infinite models ^-f V0=600°C ]^ Vo^ 600"CS- s]

S. 2-2 finite model 4 infinite model

X T(C),exp mu T.cal difr 2 mu2 T,cal2 difr 2 0 600 0.1734 600 0 0.1735 600 0 6 176 212.04 1298 .6 211.81 1282.7 15 96 44.733 2628.3 44.429 2659.6

24.5 60 9.6641 2533 .7 8.5446 2647.7 40.5 18 18 0 0.5319 305.13

sum 6460.6 sum 6895.1

- 98 - temp, profile

700

• exp - - - fin infin

0 10 20 30 40 50

2-2 finite model 4 infinite model

2-14 ^ 2-2°fl*i iL^l finite model* infinite model* S}o]7> £4. ^ a 2-1 °)H -S*)l data4 sum ^-^l safeifl a Sr«>l finite^ 3-f 6460, infinite^ =9-f 6895S. f 8314. T-EI ^o]^ Ai^EflojiA-is] ^-s. profiled JE-€?1 infinite S"t-§- profile* £4«fet11 ^-5^7]- 8314.

4.

{2W*\ connector^g-^ fe connector^^r^l tfl connector

L —PA^ (2-6) /•

dx (2-7) Tul L Jo T

exponential

- 99 - T = ae'bx (2-8)

a, bxr T° = a (2-9) bL TL=ae~ or b = -j- ln( To/ TL)

_L rL i L Jo ae'bx _1__L_1_/ bL_-t\ ~ L a b{ e l) (2-10) = _L_1 L ( To _ ( l> L To ln(T0/TL) TL 1 , 1 _ 1 V K } \n(TQ/TL) TL To

—•& -^4—i-3j logarithmic mean^-S. LM 1 L * 0

[1] H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, 2nd ed., Oxford University Press, 1959

- 100 - INIS

KAERI/RR-192a/98

1999. 8

<=>] 100 p. s. a sa-g-( v), &•§•( > 26 Cm.

'98

V ),

TRF7> 8MCiS)

oxide film*

. chip, strips] ^^o)} r)|^^ 25TC, 200"C, 400il^ chipS] 30^- ^4 ^ H/M^ 0.35, 200^^1^^ 1.7, 400*0 <*Hfe 2.0^-S. strips] 3-f 25r, 200'C, 400

Performing Org. Sponsoring Org. Stamdard Report No. IMS Subject Code Report No. Report No.

KAERI/RR-1928/98

Title/ Hydrogen Isotope Storage in Zircaloy Scrap Subtitle

Project Manager H. S. Lee ( Nuclear Chemical Engineering Research Team) and Department Researcher and I. H. Kuk (HANARO Utilization Research Group), H. Chung, D. H. Department S. W. Paek, H. S. Kang (Nuclear Chemical Engineering Research TE

Publicatior! Publicatior Taejon Publisher KAERI 1999. 8. Place Date

Page 100 p. 111. & Tab. Yes( V ), No ( ) Size 26 Cm.

Note '98 Basic Research Project

Classified Open( V ), Restricted( ), Report Type Research Report Class Document

Sponsoring Org. Contract No.

Abstract (15-20 Lines)

8MCi of tritium a year will be produced after Wolsong TRF is in operation. The metal hydride form is one of useful way of tritium storage. The metals in use for metal hydride are uranium, titanium, etc., however uranium is limited to use by regulation, and titanium i relatively costly. Both metals are not produced in country but whole amount is imported. On the other hand 2,000kg of zircaloy scarp is produced by CANDU nuclear fuel fabricatioi process, which is also useful for hydrogen storage. The purpose of this study is t< evaluation of hydrogen absorption capacity for zircaloy scrap that is produced as waste b XANDU nuclear fuel fabrication process. The sample evacuated for an hour at 1000 t is adequate for activation process. Hydrogei absorption experiments were conducted for zircaloy chip and strip as well. The H/M which mean the capacity of hydrogen absorption was measured 0.35 for chip in the experimental condition of 25"C, 1.7 at 200"C, 2.0 at 4001. The strip showed higher capacity:0.7 at 25*0 2.0 at 200 "C, 2.0 at 400*0, respectively. The H/M values for commercial zircaloy sponge wen 2.0 at 25TC, and 2.0 at 400°C.

Subject Keywords Tritium, Hydrogen storage, Zircaloy, Uranium, Titanium, Ac (About 10 words) process, H/M