Issue 2019-1 December 2019 FACS a C T S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure Interpretation of Text Formats
1 1 Structure Interpretation of Text Formats 2 3 SUMIT GULWANI, Microsoft, USA 4 VU LE, Microsoft, USA 5 6 ARJUN RADHAKRISHNA, Microsoft, USA 7 IVAN RADIČEK, Microsoft, Austria 8 MOHAMMAD RAZA, Microsoft, USA 9 Data repositories often consist of text files in a wide variety of standard formats, ad-hoc formats, aswell 10 mixtures of formats where data in one format is embedded into a different format. It is therefore a significant 11 challenge to parse these files into a structured tabular form, which is important to enable any downstream 12 data processing. 13 We present Unravel, an extensible framework for structure interpretation of ad-hoc formats. Unravel 14 can automatically, with no user input, extract tabular data from a diverse range of standard, ad-hoc and 15 mixed format files. The framework is also easily extensible to add support for previously unseen formats, 16 and also supports interactivity from the user in terms of examples to guide the system when specialized data extraction is desired. Our key insight is to allow arbitrary combination of extraction and parsing techniques 17 through a concept called partial structures. Partial structures act as a common language through which the file 18 structure can be shared and refined by different techniques. This makes Unravel more powerful than applying 19 the individual techniques in parallel or sequentially. Further, with this rule-based extensible approach, we 20 introduce the novel notion of re-interpretation where the variety of techniques supported by our system can 21 be exploited to improve accuracy while optimizing for particular quality measures or restricted environments. -
The Marriage of Effects and Monads
The Marriage of Effects and Monads PHILIP WADLER Avaya Labs and PETER THIEMANN Universit¨at Freiburg Gifford and others proposed an effect typing discipline to delimit the scope of computational ef- fects within a program, while Moggi and others proposed monads for much the same purpose. Here we marry effects to monads, uniting two previously separate lines of research. In partic- ular, we show that the type, region, and effect system of Talpin and Jouvelot carries over di- rectly to an analogous system for monads, including a type and effect reconstruction algorithm. The same technique should allow one to transpose any effect system into a corresponding monad system. Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages— Operational semantics General Terms: Languages, Theory Additional Key Words and Phrases: Monad, effect, type, region, type reconstruction 1. INTRODUCTION Computational effects, such as state or continuations, are powerful medicine. If taken as directed they may cure a nasty bug, but one must be wary of the side effects. For this reason, many researchers in computing seek to exploit the benefits of computational effects while delimiting their scope. Two such lines of research are the effect typing discipline, proposed by Gifford and Lucassen [Gifford and Lucassen 1986; Lucassen 1987], and pursued by Talpin and Jouvelot [Talpin and Jouvelot 1992, 1994; Talpin 1993] among others, and the use of monads, proposed by Moggi [1989, 1990], and pursued by Wadler [1990, 1992, 1993, 1995] among others. Effect systems are typically found in strict languages, such as FX [Gifford et al. -
A Universal Modular ACTOR Formalism for Artificial
Artificial Intelligence A Universal Modular ACTOR Formalism for Artificial Intelligence Carl Hewitt Peter Bishop Richard Steiger Abstract This paper proposes a modular ACTOR architecture and definitional method for artificial intelligence that is conceptually based on a single kind of object: actors [or, if you will, virtual processors, activation frames, or streams]. The formalism makes no presuppositions about the representation of primitive data structures and control structures. Such structures can be programmed, micro-coded, or hard wired 1n a uniform modular fashion. In fact it is impossible to determine whether a given object is "really" represented as a list, a vector, a hash table, a function, or a process. The architecture will efficiently run the coming generation of PLANNER-like artificial intelligence languages including those requiring a high degree of parallelism. The efficiency is gained without loss of programming generality because it only makes certain actors more efficient; it does not change their behavioral characteristics. The architecture is general with respect to control structure and does not have or need goto, interrupt, or semaphore primitives. The formalism achieves the goals that the disallowed constructs are intended to achieve by other more structured methods. PLANNER Progress "Programs should not only work, but they should appear to work as well." PDP-1X Dogma The PLANNER project is continuing research in natural and effective means for embedding knowledge in procedures. In the course of this work we have succeeded in unifying the formalism around one fundamental concept: the ACTOR. Intuitively, an ACTOR is an active agent which plays a role on cue according to a script" we" use the ACTOR metaphor to emphasize the inseparability of control and data flow in our model. -
Biology, Bioinformatics, Bioengineering, Biophysics, Biostatistics, Neuroscience, Medicine, Ophthalmology, and Dentistry
Biology, Bioinformatics, Bioengineering, Biophysics, Biostatistics, Neuroscience, Medicine, Ophthalmology, and Dentistry This section contains links to textbooks, books, and articles in digital libraries of several publishers (Springer, Elsevier, Wiley, etc.). Most links will work without login on any campus (or remotely using the institution’s VPN) where the institution (company) subscribes to those digital libraries. For De Gruyter and the associated university presses (Chicago, Columbia, Harvard, Princeton, Yale, etc.) you may have to go through your institution’s library portal first. A red title indicates an excellent item, and a blue title indicates a very good (often introductory) item. A purple year of publication is a warning sign. Titles of Open Access (free access) items are colored green. The library is being converted to conform to the university virtual library model that I developed. This section of the library was updated on 06 September 2021. Professor Joseph Vaisman Computer Science and Engineering Department NYU Tandon School of Engineering This section (and the library as a whole) is a free resource published under Attribution-NonCommercial-NoDerivatives 4.0 International license: You can share – copy and redistribute the material in any medium or format under the following terms: Attribution, NonCommercial, and NoDerivatives. https://creativecommons.org/licenses/by-nc-nd/4.0/ Copyright 2021 Joseph Vaisman Table of Contents Food for Thought Biographies Biology Books Articles Web John Tyler Bonner Morphogenesis Evolution -
The Engineering Council 2002 to 2010
The Engineering Council 2002 to 2010 A Review by Andrew Ramsay MA CEng FCIS Contents Foreword 3 Prologue 5 The Early Days of ECUK 7 Year by Year 15 International Recognition 30 Annex A: Timeline 41 Annex B: SARTOR 3 42 Annex C: Incorporated Engineer Title – a Summary 44 Engineering Council Board 2002 to 2010 46 PEIs 2002 and 2010 48 List of Acronyms 49 Index 51 Acknowledgements 55 Page | 2 Foreword This review of the progress of the Engineering Council offers an inevitably personal view of issues, events and people who contributed to what must be judged as a successful period. However, while the Engineering Council is never itself going to be the UK engineering profession, it certainly moved towards a more central and less controversial position in its work and profile during this time. I am indebted to the detailed and lucid account of the earlier years of the Engineering Council written by Colin Chapman and Professor Jack Levy. Entitled Chronicle: An Engine for Change, this was published by the Engineering Council in 2004 and at the time of writing is still available on their website (shortcut link http://bit.ly/IY4ZLf ). However, for the shorter timeframe of this review I have adopted a less episodic structure than that of the Chronicle. It seemed to me that the extraordinary events that led up to creation of a “new regulatory body” in 2002, and in the 21 months that followed, deserved particular examination. Similarly, the way in which the Council was able to influence important developments in international recognition of UK-registered engineers can only really be understood in a continuous narrative – hence a separate section for this. -
Submission Data for 2020-2021 CORE Conference Ranking Process International Conference on Mathematical Foundations of Programming Semantics
Submission Data for 2020-2021 CORE conference Ranking process International Conference on Mathematical Foundations of Programming Semantics Bartek Klin Conference Details Conference Title: International Conference on Mathematical Foundations of Programming Semantics Acronym : MFPS Requested Rank Rank: B Primarily CS Is this conference primarily a CS venue: True Location Not commonly held within a single country, set of countries, or region. DBLP Link DBLP url: https://dblp.org/db/conf/mfps/index.html FoR Codes For1: 4613 For2: SELECT For3: SELECT Recent Years Proceedings Publishing Style Proceedings Publishing: journal Link to most recent proceedings: https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/347/suppl/C Further details: Proceedings published as volumes of Electronic Notes in Theoretical Computer Science, published by Elsevier. Most Recent Years Most Recent Year Year: 2019 URL: https://www.coalg.org/calco-mfps-2019/mfps/ Location: London, UK Papers submitted: 20 Papers published: 15 Acceptance rate: 75 Source for numbers: https://www.coalg.org/calco-mfps-2019/mfps/mfps-xxxv-list-of-accepted-papers/ General Chairs 1 No General Chairs Program Chairs Name: Barbara KÃűnig Affiliation: University of Duisburg-Essen, Germany Gender: F H Index: 27 GScholar url: https://scholar.google.com/citations?user=bcM7IuEAAAAJ DBLP url: Second Most Recent Year Year: 2018 URL: https://www.mathstat.dal.ca/mfps2018/ Location: Halifax, Canada Papers submitted: 24 Papers published: 16 Acceptance rate: 67 Source for -
Part I Background
Cambridge University Press 978-0-521-19746-5 - Transitions and Trees: An Introduction to Structural Operational Semantics Hans Huttel Excerpt More information PART I BACKGROUND © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19746-5 - Transitions and Trees: An Introduction to Structural Operational Semantics Hans Huttel Excerpt More information 1 A question of semantics The goal of this chapter is to give the reader a glimpse of the applications and problem areas that have motivated and to this day continue to inspire research in the important area of computer science known as programming language semantics. 1.1 Semantics is the study of meaning Programming language semantics is the study of mathematical models of and methods for describing and reasoning about the behaviour of programs. The word semantics has Greek roots1 and was first used in linguistics. Here, one distinguishes among syntax, the study of the structure of lan- guages, semantics, the study of meaning, and pragmatics, the study of the use of language. In computer science we make a similar distinction between syntax and se- mantics. The languages that we are interested in are programming languages in a very general sense. The ‘meaning’ of a program is its behaviour, and for this reason programming language semantics is the part of programming language theory devoted to the study of program behaviour. Programming language semantics is concerned only with purely internal aspects of program behaviour, namely what happens within a running pro- gram. Program semantics does not claim to be able to address other aspects of program behaviour – e.g. -
Towards a Time Model for Circus
Towards a Time Model for Circus Adnan Sherif and He Jifeng ∗ The United Nations University, International Institute for Software Technology, Casa Silva Mendes, Est. do Engenheiro Trigo No. 4, P.O Box 3058, Macau Tel.:+853 - 712.930, Fax: +853 - 712.940 [email protected], [email protected] Abstract. In this work we propose a time model for Circus. The model is an extension to the model proposed by the unifying theories of pro- gramming and used by Circus. We take a subset of Circus and study its semantics in the new model. We create an abstraction function that maps the timed model to the original model. The main objective of this mapping is to create a relation between the two models. This allows the exploration of some properties of the timed semantics in the untimed model. We study a toy example to illustrate the use of this mapping. 1 Introduction Real time systems have always been a strong candidate for formal develop- ment methods. This fact rises due to the complexity and, usually, critical nature of these systems. The development of formal specification languages, and the adaptation of existing languages with time expressing capacity, was and still is a challenging task. Many languages such as DC [1], and RTL [4] are based on temporal logic and are powerful for expressing timed functionalities. Timed CSP [8] is an extension to the well known CSP [9]. Reed and Roscoe have developed several semantic models for the language [8]. Lately the combination of different languages and techniques have been adapted to obtain formalisms that can be used in a wider range of applications. -
“Scrap Your Boilerplate” Reloaded
“Scrap Your Boilerplate” Reloaded Ralf Hinze1, Andres L¨oh1, and Bruno C. d. S. Oliveira2 1 Institut f¨urInformatik III, Universit¨atBonn R¨omerstraße164, 53117 Bonn, Germany {ralf,loeh}@informatik.uni-bonn.de 2 Oxford University Computing Laboratory Wolfson Building, Parks Road, Oxford OX1 3QD, UK [email protected] Abstract. The paper “Scrap your boilerplate” (SYB) introduces a com- binator library for generic programming that offers generic traversals and queries. Classically, support for generic programming consists of two es- sential ingredients: a way to write (type-)overloaded functions, and in- dependently, a way to access the structure of data types. SYB seems to lack the second. As a consequence, it is difficult to compare with other approaches such as PolyP or Generic Haskell. In this paper we reveal the structural view that SYB builds upon. This allows us to define the combinators as generic functions in the classical sense. We explain the SYB approach in this changed setting from ground up, and use the un- derstanding gained to relate it to other generic programming approaches. Furthermore, we show that the SYB view is applicable to a very large class of data types, including generalized algebraic data types. 1 Introduction The paper “Scrap your boilerplate” (SYB) [1] introduces a combinator library for generic programming that offers generic traversals and queries. Classically, support for generic programming consists of two essential ingredients: a way to write (type-)overloaded functions, and independently, a way to access the structure of data types. SYB seems to lacks the second, because it is entirely based on combinators. -
Manydsl One Host for All Language Needs
ManyDSL One Host for All Language Needs Piotr Danilewski March 2017 A dissertation submitted towards the degree (Dr.-Ing.) of the Faculty of Mathematics and Computer Science of Saarland University. Saarbrücken Dean Prof. Dr. Frank-Olaf Schreyer Date of Colloquium June 6, 2017 Examination Board: Chairman Prof. Dr. Sebastian Hack Reviewers Prof. Dr.-Ing. Philipp Slusallek Prof. Dr. Wilhelm Reinhard Scientific Asistant Dr. Tim Dahmen Piotr Danilewski, [email protected] Saarbrücken, June 6, 2017 Statement I hereby declare that this dissertation is my own original work except where otherwise indicated. All data or concepts drawn directly or indirectly from other sources have been correctly acknowledged. This dissertation has not been submitted in its present or similar form to any other academic institution either in Germany or abroad for the award of any degree. Saarbrücken, June 6, 2017 (Piotr Danilewski) Declaration of Consent Herewith I agree that my thesis will be made available through the library of the Computer Science Department. Saarbrücken, June 6, 2017 (Piotr Danilewski) Zusammenfassung Die Sprachen prägen die Denkweise. Das ist die Tatsache für die gesprochenen Sprachen aber auch für die Programmiersprachen. Da die Computer immer wichtiger in jedem Aspekt des menschlichen Lebens sind, steigt der Bedarf um entsprechend neue Konzepte in den Programmiersprachen auszudrücken. Jedoch, damit unsere Denkweise sich weiterentwicklen könnte, müssen sich auch die Programmiersprachen weiterentwickeln. Aber welche Hilfsmittel gibt es um die Programmiersprachen zu schaffen und aufzurüsten? Wie kann man Entwickler ermutigen damit sie eigene Sprachen definieren, die dem Bereich in dem sie arbeiten am besten passen? Heutzutage gibt es zwei Methoden. -
IST Annual Report 2019
Annual Report 2019 IST Austria administrative and The people of IST Austria technical support staff by nationality Austria 59.4% Nationalities on campus Germany 5.6% Hungary 3.1% Poland 2.5% Romania 2.5% Scientists as well as administrative and technical support staff come Italy 2.1% Russia 1.7% from all over the world to conduct and back research at IST Austria. Czech Republic 1.4% As of December 31, 2019, a total of 72 nationalities were represented India 1.4% Slovakia 1.4% on campus. Spain 1.4% UK 1.4% Other 16.1% North America Europe Asia Canada Albania Italy Afghanistan Cuba Andorra Latvia Bangladesh El Salvador Armenia Lithuania China Mexico Austria Luxembourg South Korea USA Belarus Macedonia India Belgium Malta Iran Bosnia and Netherlands Israel Herzegovina Norway Japan Bulgaria Poland Jordan Croatia Portugal Kazakhstan Cyprus Romania Lebanon Czech Republic Serbia Mongolia Denmark Slovakia Philippines Finland Slovenia Russia France Spain Singapore Georgia Sweden Syria Germany Switzerland Vietnam Greece Turkey Hungary UK Ireland Ukraine Africa Egypt Kenya IST Austria scientists by nationality Libya Austria 14.7% Nigeria Germany 10.9% South America Italy 7.4% Argentina India 5.9% Russia 4.7% Brazil Slovakia 4.1% Chile China 4.1% Colombia Hungary 3.7% Peru Spain 3.3% Uruguay USA 3.1% Czech Republic 2.9% UK 2.4% Oceania Other 32.8% Australia Content 2 HAPPY BIRTHDAY! 40 RESEARCH 4 Foreword by the president 42 Biology 5 Board member voices 44 Computer science 6 “An Austrian miracle” 46 Mathematics A year of celebration 48 Neuroscience -
Fiendish Designs
Fiendish Designs A Software Engineering Odyssey © Tim Denvir 2011 1 Preface These are notes, incomplete but extensive, for a book which I hope will give a personal view of the first forty years or so of Software Engineering. Whether the book will ever see the light of day, I am not sure. These notes have come, I realise, to be a memoir of my working life in SE. I want to capture not only the evolution of the technical discipline which is software engineering, but also the climate of social practice in the industry, which has changed hugely over time. To what extent, if at all, others will find this interesting, I have very little idea. I mention other, real people by name here and there. If anyone prefers me not to refer to them, or wishes to offer corrections on any item, they can email me (see Contact on Home Page). Introduction Everybody today encounters computers. There are computers inside petrol pumps, in cash tills, behind the dashboard instruments in modern cars, and in libraries, doctors’ surgeries and beside the dentist’s chair. A large proportion of people have personal computers in their homes and may use them at work, without having to be specialists in computing. Most people have at least some idea that computers contain software, lists of instructions which drive the computer and enable it to perform different tasks. The term “software engineering” wasn’t coined until 1968, at a NATO-funded conference, but the activity that it stands for had been carried out for at least ten years before that.