Mathematical Knowledge: Motley and Complexity of Proof
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Some Descriptions and Textual-Dramatic Criticism of Shakespearian Plays in the British Dramatic Periodicals, the Period - 1850-1875: an Objective Report
Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1969 Some Descriptions and Textual-Dramatic Criticism of Shakespearian Plays in the British Dramatic Periodicals, the Period - 1850-1875: An Objective Report John J. Ahern Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the English Language and Literature Commons Recommended Citation Ahern, John J., "Some Descriptions and Textual-Dramatic Criticism of Shakespearian Plays in the British Dramatic Periodicals, the Period - 1850-1875: An Objective Report" (1969). Master's Theses. 2378. https://ecommons.luc.edu/luc_theses/2378 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1969 John J. Ahern SOME DESCRIPTION AND TEXTUAL-DRAMATIC CRITICISM OF SHAKESPEARIAN PLAYS IN THE BRITISH DRAMATIC PERIODICALS, THE PERIOD- 1850-1875. (AN OBJECTIVE REPORT) BY REVEREND JOHN J. AHERN A Thesis Submitted to the Faculty of the Graduate School of Loyola University in Partial Fulfillment of the Requirements for the Degree of Master of Arts in English. FEBRUARY 1969 TABLE OF CONTENTS Introduction.......................................................... i Special Notice ........................................................ ii Terminology ...... • .................................................... iii Chronological List of British Dramatic Periodicals, 1850 - 1875, Located on Microfilm Copy at Cudahy Memorial Library, Loyola Univer- sity, Chicago, I 11 i noi s. 1 Description and Report on British Dramatic Periodicals, 1850 - 1875, Located on Microfilm Copy at Cudahy Memorial Library, Loyola Univer- sity, Chicago, Illinois.............................................. -
Boletín De La RSME
Boletín de la RSME Número 297, 16 de enero de 2012 Sumario Noticias de la RSME Noticias de la RSME Encuentro Conjunto RSME-SMM. Antonio Campillo. Torremolinos, Málaga, 17-20 de enero El programa científico consta de veinticuatro • Encuentro Conjunto RSME- La Real Sociedad Matemática Española y la sesiones especiales, ocho conferencias ple- SMM. Torremolinos, Málaga, Sociedad Matemática Mexicana celebran el narias y la conferencia de clausura del profe- 17-20 de enero Segundo Encuentro Conjunto RSME-SMM en sor Federico Mayor Zaragoza con el título preciso “La comunidad científica ante los de- • Noticias del CIMPA el Hotel Meliá Costa del Sol de Torremolinos (Málaga) los próximos días 17, 18, 19 y 20 de safíos presentes”. Como en la primera edi- • Acuerdo entre cuatro insti- enero. El Primer Encuentro Conjunto se ce- ción, el congreso ha programado alrededor tuciones para la creación del lebró en Oaxaca en julio de 2009 y la serie de doscientas conferencias invitadas, la mitad IEMath. Documento de In- continuará cada tres años a partir de 2014, de las cuales corresponden a la parte mexi- cana y la otra mitad a la española. vestigación de la RSME año en el que está prevista la tercera edición en México. El comité organizador está presi- Las conferencias plenarias están a cargo de • Ampliación del orden del dido por Daniel Girela, e integrado por José Samuel Gitler, José Luis Alías, José María día de la Junta General Ordi- Luis Flores, Cristóbal González, Francisco Pérez Izquierdo, Jorge Velasco, María Emilia naria de la RSME Javier Martín Reyes, María Lina Martínez, Caballero, Javier Fernández de Bobadilla, Francisco José Palma, José Ángel Peláez y • Noticia de la COSCE: Nue- Xavier Gómez-Mont y Eulalia Nulart. -
Roth's Theorem in the Primes
Annals of Mathematics, 161 (2005), 1609–1636 Roth’s theorem in the primes By Ben Green* Abstract We show that any set containing a positive proportion of the primes con- tains a 3-term arithmetic progression. An important ingredient is a proof that the primes enjoy the so-called Hardy-Littlewood majorant property. We de- rive this by giving a new proof of a rather more general result of Bourgain which, because of a close analogy with a classical argument of Tomas and Stein from Euclidean harmonic analysis, might be called a restriction theorem for the primes. 1. Introduction Arguably the second most famous result of Klaus Roth is his 1953 upper bound [21] on r3(N), defined 17 years previously by Erd˝os and Tur´an to be the cardinality of the largest set A [N] containing no nontrivial 3-term arithmetic ⊆ progression (3AP). Roth was the first person to show that r3(N) = o(N). In fact, he proved the following quantitative version of this statement. Proposition 1.1 (Roth). r (N) N/ log log N. 3 " There was no improvement on this bound for nearly 40 years, until Heath- Brown [15] and Szemer´edi [22] proved that r N(log N) c for some small 3 " − positive constant c. Recently Bourgain [6] provided the best bound currently known. Proposition 1.2 (Bourgain). r (N) N (log log N/ log N)1/2. 3 " *The author is supported by a Fellowship of Trinity College, and for some of the pe- riod during which this work was carried out enjoyed the hospitality of Microsoft Research, Redmond WA and the Alfr´ed R´enyi Institute of the Hungarian Academy of Sciences, Bu- dapest. -
Lecture Notes in Mathematics
Lecture Notes in Mathematics Edited by A. Oold and B. Eckmann 1185 Group Theory, Beijing 1984 Proceedings of an International Symposium held in Beijing, Aug. 27-Sep. 8, 1984 Edited by Tuan Hsio-Fu Springer-Verlag Berlin Heidelberg New York Tokyo Editor TUAN Hsio-Fu Department of Mathematics, Peking University Beijing, The People's Republic of China Mathematics Subject Classification (1980): 05-xx, 12F-xx, 14Kxx, 17Bxx, 20-xx ISBN 3-540-16456-1 Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-16456-1 Springer-Verlag New York Heidelberg Berlin Tokyo This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich. © by Springer-Verlag Berlin Heidelberg 1986 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2146/3140-543210 PREFACE From August 27 to September 8, 1984 there was held in Peking Uni• versity, Beijing an International Symposium on Group Theory. As well said by Hermann Wey1: "Symmetry is a vast subject signi• ficant in art and nature. Whenever you have to do with a structure endowed entity, try to determine the group of those transformations which leave all structural relations undisturbed." This passage underlies that the group concept is one of the most fundamental and most important in modern mathematics and its applications. -
All That Math Portraits of Mathematicians As Young Researchers
Downloaded from orbit.dtu.dk on: Oct 06, 2021 All that Math Portraits of mathematicians as young researchers Hansen, Vagn Lundsgaard Published in: EMS Newsletter Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hansen, V. L. (2012). All that Math: Portraits of mathematicians as young researchers. EMS Newsletter, (85), 61-62. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep. -
Klaus Friedrich Roth, 1925–2015 the Godfrey Argent Studio C
e Bull. London Math. Soc. 50 (2018) 529–560 C 2017 Authors doi:10.1112/blms.12143 OBITUARY Klaus Friedrich Roth, 1925–2015 The Godfrey Argent Studio C Klaus Friedrich Roth, who died in Inverness on 10 November 2015 aged 90, made fundamental contributions to different areas of number theory, including diophantine approximation, the large sieve, irregularities of distribution and what is nowadays known as arithmetic combinatorics. He was the first British winner of the Fields Medal, awarded in 1958 for his solution in 1955 of the famous Siegel conjecture concerning approximation of algebraic numbers by rationals. He was elected a member of the London Mathematical Society on 17 May 1951, and received its De Morgan Medal in 1983. 1. Life and career Klaus Roth, son of Franz and Matilde (n´ee Liebrecht), was born on 29 October 1925, in the German city of Breslau, in Lower Silesia, Prussia, now Wroclaw in Poland. To escape from Nazism, he and his parents moved to England in 1933 and settled in London. He would recall that the flight from Berlin to London took eight hours and landed in Croydon. Franz, a solicitor by training, had suffered from gas poisoning during the First World War, and died a few years after their arrival in England. Roth studied at St Paul’s School between 1937 and 1943, during which time the school was relocated to Easthampstead Park, near Crowthorne in Berkshire, as part of the wartime evac- uation of London. There he excelled in mathematics and chess, and one master, Mr Dowswell, observed interestingly that he possessed complete intellectual honesty. -
Ground and Explanation in Mathematics
volume 19, no. 33 ncreased attention has recently been paid to the fact that in math- august 2019 ematical practice, certain mathematical proofs but not others are I recognized as explaining why the theorems they prove obtain (Mancosu 2008; Lange 2010, 2015a, 2016; Pincock 2015). Such “math- ematical explanation” is presumably not a variety of causal explana- tion. In addition, the role of metaphysical grounding as underwriting a variety of explanations has also recently received increased attention Ground and Explanation (Correia and Schnieder 2012; Fine 2001, 2012; Rosen 2010; Schaffer 2016). Accordingly, it is natural to wonder whether mathematical ex- planation is a variety of grounding explanation. This paper will offer several arguments that it is not. in Mathematics One obstacle facing these arguments is that there is currently no widely accepted account of either mathematical explanation or grounding. In the case of mathematical explanation, I will try to avoid this obstacle by appealing to examples of proofs that mathematicians themselves have characterized as explanatory (or as non-explanatory). I will offer many examples to avoid making my argument too dependent on any single one of them. I will also try to motivate these characterizations of various proofs as (non-) explanatory by proposing an account of what makes a proof explanatory. In the case of grounding, I will try to stick with features of grounding that are relatively uncontroversial among grounding theorists. But I will also Marc Lange look briefly at how some of my arguments would fare under alternative views of grounding. I hope at least to reveal something about what University of North Carolina at Chapel Hill grounding would have to look like in order for a theorem’s grounds to mathematically explain why that theorem obtains. -
Measure Theory and Probability
Measure theory and probability Alexander Grigoryan University of Bielefeld Lecture Notes, October 2007 - February 2008 Contents 1 Construction of measures 3 1.1Introductionandexamples........................... 3 1.2 σ-additive measures ............................... 5 1.3 An example of using probability theory . .................. 7 1.4Extensionofmeasurefromsemi-ringtoaring................ 8 1.5 Extension of measure to a σ-algebra...................... 11 1.5.1 σ-rings and σ-algebras......................... 11 1.5.2 Outermeasure............................. 13 1.5.3 Symmetric difference.......................... 14 1.5.4 Measurable sets . ............................ 16 1.6 σ-finitemeasures................................ 20 1.7Nullsets..................................... 23 1.8 Lebesgue measure in Rn ............................ 25 1.8.1 Productmeasure............................ 25 1.8.2 Construction of measure in Rn. .................... 26 1.9 Probability spaces ................................ 28 1.10 Independence . ................................. 29 2 Integration 38 2.1 Measurable functions.............................. 38 2.2Sequencesofmeasurablefunctions....................... 42 2.3 The Lebesgue integral for finitemeasures................... 47 2.3.1 Simplefunctions............................ 47 2.3.2 Positivemeasurablefunctions..................... 49 2.3.3 Integrablefunctions........................... 52 2.4Integrationoversubsets............................ 56 2.5 The Lebesgue integral for σ-finitemeasure................. -
The Materiality & Ontology of Digital Subjectivity
THE MATERIALITY & ONTOLOGY OF DIGITAL SUBJECTIVITY: GRIGORI “GRISHA” PERELMAN AS A CASE STUDY IN DIGITAL SUBJECTIVITY A Thesis Submitted to the Committee on Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Master of Arts in the Faculty of Arts and Science TRENT UNIVERSITY Peterborough, Ontario, Canada Copyright Gary Larsen 2015 Theory, Culture, and Politics M.A. Graduate Program September 2015 Abstract THE MATERIALITY & ONTOLOGY OF DIGITAL SUBJECTIVITY: GRIGORI “GRISHA” PERELMAN AS A CASE STUDY IN DIGITAL SUBJECTIVITY Gary Larsen New conditions of materiality are emerging from fundamental changes in our ontological order. Digital subjectivity represents an emergent mode of subjectivity that is the effect of a more profound ontological drift that has taken place, and this bears significant repercussions for the practice and understanding of the political. This thesis pivots around mathematician Grigori ‘Grisha’ Perelman, most famous for his refusal to accept numerous prestigious prizes resulting from his proof of the Poincaré conjecture. The thesis shows the Perelman affair to be a fascinating instance of the rise of digital subjectivity as it strives to actualize a new hegemonic order. By tracing first the production of aesthetic works that represent Grigori Perelman in legacy media, the thesis demonstrates that there is a cultural imperative to represent Perelman as an abject figure. Additionally, his peculiar abjection is seen to arise from a challenge to the order of materiality defended by those with a vested interest in maintaining the stability of a hegemony identified with the normative regulatory power of the heteronormative matrix sustaining social relations in late capitalism. -
Group Knowledge and Mathematical Collaboration: a Philosophical Examination of the Classification of Finite Simple Groups
Group Knowledge and Mathematical Collaboration: A Philosophical Examination of the Classification of Finite Simple Groups Joshua Habgood-Coote and Fenner Stanley Tanswell Forthcoming in Episteme, please refer to final version. Abstract In this paper we apply social epistemology to mathematical proofs and their role in mathematical knowledge. The most famous modern collaborative mathematical proof effort is the Classification of Finite Simple Groups. The history and sociology of this proof have been well-documented by Alma Steingart (2012), who highlights a number of surprising and unusual features of this collaborative endeavour that set it apart from smaller-scale pieces of mathematics. These features raise a number of interesting philosophical issues, but have received very little attention. In this paper, we will consider the philosophical tensions that Steingart uncovers, and use them to argue that the best account of the epistemic status of the Classification Theorem will be essentially and ineliminably social. This forms part of the broader argument that in order to understand mathematical proofs, we must appreciate their social aspects. 1 Introduction Popular conceptions of mathematics are gripped by the myth of the ‘lone genius’. This myth is inspired by famous figures like Andrew Wiles, Grigori Perelman, and Srinivasa Ramanujan whose individual efforts are taken to be both representative and exemplary. In this paper, we push back against this individualistic view of how mathematics is and should be practiced, examining the significance of social and group level features of mathematical practices. In particular, we will discuss the epistemology of mathematics, and argue that in order to understand mathematics and its epistemology, we need to pay attention to collaboration, group knowledge, and other social factors. -
The Development of Mathematical Logic from Russell to Tarski: 1900–1935
The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives . -
TWAS Newsletter Vol. 16 No. 1
1 YEAR 2004 VOL.16 NO.1 TWAS ewslette nTHE NEWSLETTER OF THE THIRD WORLD ACADEMY OF SCIENCESr TWAS 20th Anniversary Conference Beijing, China Published with the support of the Kuwait Foundation for the Advancement of Sciences TWAS AT TWENTY TWAS NEWSLETTER Published quarterly with the support of the Kuwait Foundation AT THE OPENING CEREMONY OF TWAS’S 9TH GENERAL CONFERENCE AND 14TH GENERAL for the Advancement of Sciences (KFAS) by The Third World MEETING IN BEIJING, CHINA, C.N.R. RAO, TWAS PRESIDENT, AND LU YONGXIANG, PRES- Academy of Sciences (TWAS) IDENT OF THE CHINESE ACADEMY OF SCIENCES AND VICE PRESIDENT OF TWAS, SHARED c/o ICTP, Strada Costiera 11 34014 Trieste, Italy THE PODIUM. RAO PRESENTED A ROUND-UP OF THE PAST AND PRESENT OF THE ACADEMY, tel: +39 040 2240327 fax: +39 040 224559 WHILE LU OUTLINED HIS VISION OF THE FUTURE OF TWAS, PROVIDING BACK-TO-BACK email: [email protected] ‘KICKOFF’ VIEWPOINTS TO THE ACADEMY’S 20TH ANNIVERSARY CELEBRATION. website: www.twas.org TWAS COUNCIL C.N.R. RAO President C.N.R. Rao (India) Immediate Past President n 15 October 2004, just one day before the opening of the TWAS 9th General Con- José I. Vargas (Brazil) ference and 14th General Meeting held in Beijing, China successfully launched the Vice-Presidents Jorge E. Allende (Chile) manned spacecraft, Shenzhou-V. Lu Yongxiang (China) O Lydia P. Makhubu (Swaziland) This event – and the launch several days later of a second Earth resources satellite as Ismail Serageldin (Egypt) part of a collaborative initiative between China and Brazil – is evidence of the great strides Abdul Hamid Zakri (Malaysia) that the Chinese scientific community has made in recent years.