High-Energy Atmospheric Physics: Terrestrial Gamma-Ray Flashes and Related Phenomena

Total Page:16

File Type:pdf, Size:1020Kb

High-Energy Atmospheric Physics: Terrestrial Gamma-Ray Flashes and Related Phenomena Space Sci Rev DOI 10.1007/s11214-012-9894-0 High-Energy Atmospheric Physics: Terrestrial Gamma-Ray Flashes and Related Phenomena Joseph R. Dwyer · David M. Smith · Steven A. Cummer Received: 1 December 2011 / Accepted: 4 May 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract It is now well established that both thunderclouds and lightning routinely emit x-rays and gamma-rays. These emissions appear over wide timescales, ranging from sub- microsecond bursts of x-rays associated with lightning leaders, to sub-millisecond bursts of gamma-rays seen in space called terrestrial gamma-ray flashes, to minute long glows from thunderclouds seen on the ground and in or near the cloud by aircraft and balloons. In particular, terrestrial gamma-ray flashes (TGFs), which are thought to be emitted by thun- derclouds, are so bright that they sometimes saturate detectors on spacecraft hundreds of kilometers away. These TGFs also generate energetic secondary electrons and positrons that are detected by spacecraft in the inner magnetosphere. It is generally believed that these x-ray and gamma-ray emissions are generated, via bremsstrahlung, by energetic runaway electrons that are accelerated by electric fields in the atmosphere. In this paper, we review this newly emerging field of High-Energy Atmospheric Physics, including the production of runaway electrons, the production and propagation of energetic radiation, and the effects of both on atmospheric electrodynamics. Keywords Thunderstorms · Lightning · x-rays · Gamma-rays · Energetic radiation · Atmospheric electricity J.R. Dwyer () Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA e-mail: jdwyer@fit.edu D.M. Smith Physics Department and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064, USA e-mail: [email protected] S.A. Cummer Electrical and Computer Engineering Department, Duke University, Durham, NC 27708, USA e-mail: [email protected] J.R. Dwyer et al. 1 Introduction Despite the ubiquity of thunderstorms, lightning, and related electrical phenomena, many important electromagnetic processes in our atmosphere are poorly understood. For exam- ple, many questions remain about thundercloud electrification and discharge mechanisms, lightning initiation, propagation and attachment processes, compact intra-cloud discharges, the global electrical circuit, and transient luminous events (Rakov and Uman 2003). Tra- ditionally, these topics have been studied using classical electromagnetism. However, in the last few years, a growing body of literature has emerged that describes the production, transport and interactions of energetic particles in our atmosphere. Specifically, it is now well established that thunderclouds, lightning, and long laboratory sparks in air all produce energetic runaway electrons and accompanying x-ray and gamma-ray emissions. Terrestrial gamma-ray flashes (TGFs), bright bursts of multi-MeV gamma-rays that are seen hundreds of kilometers away by spacecraft, are particularly impressive examples of runaway electron production in our atmosphere. Moreover, such high-energy particles interact with air atoms, forming low-energy electron and ion populations that may greatly increase the conductivity of air, potentially affecting the physics of thunderclouds and lightning. We shall refer to the rapidly expanding field of energetic particle and radiation physics in terrestrial and plane- tary atmospheres, and their effects, as High-Energy Atmospheric Physics. Not only does this field impact traditional atmospheric electricity and lightning physics, it also has implications for the study of cosmic-ray extensive air showers, discharge physics, space physics, plasma physics, and aviation safety. In this paper, we shall review runaway electron production mechanisms, including rel- ativistic runaway electron avalanches, thermal runaway electron production and the rela- tivistic feedback mechanism, bremsstrahlung emissions, and x-ray and gamma-ray propa- gation. We shall also review energetic radiation observations, including terrestrial gamma- ray flashes (TGFs) and terrestrial electron beams (TEBs), gamma-ray glows from thunder- clouds, neutron observations, x-rays from lightning and laboratory sparks, and radio fre- quency emissions and observations. Finally, we shall discuss recent modeling work and implications for atmospheric phenomena such as sprites and other transient luminous events (TLEs), compact intra-cloud discharges (CIDs), thunderstorm electrification and lightning initiation, and radiation doses to individuals in aircraft. 2 High-Energy Atmospheric Physics Theory 2.1 Wilson Runaway Electrons In 1925, C.T.R. Wilson discovered the runaway electron mechanism in which fast elec- trons may obtain large energies from static electric fields in air (Wilson 1925). Specifically, when the rate of energy gain from an electric field exceeds the rate of energy loss from interactions with air then the energy of an electron will increase and it will “run away.” Run- away electrons are produced in electric fields greater than the so-called break-even field, 5 Eb = 2.18 × 10 V/m × n, corresponding to the rate that minimum ionizing electrons lose energy, where n is the density of air with respect to that at sea level. Simulations have shown that due to elastic scattering, the field required for runaway electrons to propagate large dis- tances is actually about 30 % higher than Eb (Dwyer 2003). This field is about a factor of ten below the conventional breakdown field and is comparable to maximum fields seen inside thunderclouds (Rakov and Uman 2003). Indeed, Marshall et al. (1995) found that High-Energy Atmospheric Physics: Terrestrial Gamma-Ray Flashes Fig. 1 The effective frictional force experienced by a free electron (or positron) moving through air at STP as a function of kinetic energy. The solid curve is due to inelastic scattering of the electron by air molecules, and the dashed curve indicates the effects of bremsstrahlung emission. The horizontal line shows the electric force from a 5.0 × 106 V/m electric field. Runaway electrons occur for kinetic energies greater than the threshold energy, ε>εth. In the figure, Ec is the critical electric field strength for which low-energy thermal electrons will run away, and Eb is the so-called break-even field balloon soundings inside thunderclouds often measured maximum electric fields near the break-even field, suggesting a possible connection between lightning initiation and runaway election production (also see Stolzenburg et al. 2007). Figure 1 shows the rate of energy loss of an energetic electron moving in air (effective frictional force). The plot also shows that rate of energy gain from a strong electric field (horizontal line). As can be seen, in order for an electron to run away, it must have an initial kinetic energy above the threshold, εth. Such energetic “seed” electron, with energies above εth, may be provided from an external source such as cosmic-rays or radioactive decays. Note that the kinetic energy, εth, required for the seed particles decreases rapidly with increasing electric field. When the electric field is increased above the critical field, Ec, above the energy loss curve for all kinetic energies, then all free electrons may run away, and, in particular, the thermal population created at low energies may run away. This mechanism is usually called “cold runaway” or “thermal runaway,” and does not require any external seed particles (Gurevich 1961). According to Wilson’s original work, the energetic seeds that result in runaway electrons are all provided by external sources such as cosmic-rays (or radioactive decays). Therefore, for each atmospheric cosmic-ray secondary electron that arrives, at most one runaway elec- tron may be generated. More concisely, each atmospheric cosmic-ray secondary electron may become a runaway electron in a sufficiently large electric field. Although a runaway electron may gain energy and travel farther than the seed particle without an electric field, this mechanism will not produce large fluxes of runaway electrons (McCarthy and Parks 1992), especially the large fluxes known to be associated with terrestrial gamma-ray flashes (TGFs). On the other hand, it is possible for thermal runaway to provide the energetic seeds, which subsequently experience additional energy gain and avalanche multiplication. This combination could potentially explain TGFs, as will be discussed below. J.R. Dwyer et al. 2.2 Relativistic Runaway Electron Avalanches (RREAs) 2.2.1 Introduction In 1992, Gurevich, Milikh and Roussel-Dupré showed that when Møller scattering (electron- electron elastic scattering) is included, the runaway electrons described by Wilson will un- dergo avalanche multiplication, resulting in a large number of relativistic runaway electrons for each energetic seed electron injected into the high-field region (Gurevich et al. 1992; Gurevich and Zybin 2001). This avalanche mechanism is commonly referred to as the Rel- ativistic Runaway Electron Avalanche (RREA) mechanism (Babich et al. 1998, 2001a). Al- though Wilson appears to have been aware of the runaway electron avalanche multiplication (Williams 2010), referring to it as a “snowball effect,” he did not provide quantitative calcu- lations of the avalanche properties. The runaway electron avalanche threshold electric field was estimated by Symbalisty et al. (1998) to be in the range 2.83–3.05 × 105 V/m × n, where n is the density of air
Recommended publications
  • Study of Memory Effect in an Atmospheric Pressure Townsend
    THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Université Toulouse 3 - Paul Sabatier Présentée et soutenue par Xi LIN Le 22 février 2019 Study of memory effect in an Atmospheric Pressure Townsend Discharge in the mixture N2/O2 using laser induced fluorescence Ecole doctorale : GEET - Génie Electrique Electronique et Télécommunications : du système au nanosystème Spécialité : Ingénierie des Plasmas Unité de recherche : LAPLACE - Laboratoire PLAsma et Conversion d'Énergie - CNRS-UPS-INPT Thèse dirigée par Simon DAP et Nicolas GHERARDI Jury Mme Svetlana Starikovskaia, Rapporteuse M. Ronny Brandenburg, Rapporteur Mme Françoise Massines, Examinateur M. Frédéric Marchal, Examinateur M. Philippe Teulet, Examinateur M. Simon DAP, Directeur de thèse Acknowledgement I would like to express my deepest thanks to my supervisor, Simon Dap. He has devoted so much time on teaching and leading me into the world of plasma physics. I am very appreciated for his patience and encouragement, also thanks to his support and rich discussion on physics, I finally achieve my thesis. I would also like to express my thanks to Nicolas Naudé for the fruitful discussions and suggestions on electrical characteristics of discharge, and for his knowledge on electrode fabrication and on OES spectroscopy. Thanks to Nicolas Gherardi for his confidence and support on me. Thanks to Prof. Svetlana M Starikovskaia and Prof. Ronny Brandenburg, for reviewing my thesis. I would also like to extend my gratitude to three other jury members, Prof. Françoise Massines, Prof. Feédéric Marchal and Prof. Philippe Teulet, for being the examiners of my work. I appreciate the assistance and advice from the technicians and engineers of Laplace, Benoît Schlegel, Fédéric Sidor, Vincent Bley, Céline Combettes, Cédric Trupin, and Stéphane Martin.
    [Show full text]
  • Experiments and Simulations of an Atmospheric Pressure Lossy Dielectric Barrier Townsend Discharge
    Journal of Physics D: Applied Physics PAPER Related content - Atmospheric pressure glow discharge Experiments and simulations of an atmospheric plasma A A Garamoon and D M El-zeer pressure lossy dielectric barrier Townsend - Diffuse barrier discharges discharge Z Navrátil, R Brandenburg, D Trunec et al. - Nonlinear phenomena in dielectric barrier discharges: pattern, striation and chaos To cite this article: S Im et al 2014 J. Phys. D: Appl. Phys. 47 085202 Jiting OUYANG, Ben LI, Feng HE et al. Recent citations View the article online for updates and enhancements. - Radial structures of atmospheric-pressure glow discharges with multiple current pulses in helium Zhanguo Bai et al This content was downloaded from IP address 128.12.245.233 on 22/09/2020 at 18:06 Journal of Physics D: Applied Physics J. Phys. D: Appl. Phys. 47 (2014) 085202 (10pp) doi:10.1088/0022-3727/47/8/085202 Experiments and simulations of an atmospheric pressure lossy dielectric barrier Townsend discharge S Im, M S Bak1, N Hwang2 and M A Cappelli Mechanical Engineering Department, Stanford University, Stanford, California 94305-3032, USA E-mail: [email protected] Received 25 September 2013, revised 7 January 2014 Accepted for publication 9 January 2014 Published 7 February 2014 Abstract A diffuse discharge is produced in atmospheric pressure air between porous alumina dielectric barriers using low-frequency (60 Hz) alternating current. To study its formation mechanism, both the discharge current and voltage are measured while varying the dielectric barrier porosity (0%, 48% or 85%) and composition (99% Al2O3 ,99% SiO2 or 75% Al2O3 + 16% SiO2 + 9% other oxides).
    [Show full text]
  • Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges Napoleon Leoni, Bhooshan Paradkar
    Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges Napoleon Leoni, Bhooshan Paradkar HP Laboratories HPL-2009-234 Keyword(s): Townsend Discharge, Paschen Breakdown, Dielectric Barrier Discharges, Corona. Numerical Simulation Abstract: Practical understanding of electrical discharges between conductors or between conductors and dielectrics is instrumental for the development of novel charging devices for Digital Printing Applications. The work presented on this paper focuses on fundamental aspects related to the inception of electrical discharges and breakdown in the initial stages (few 100's of ?s) to a detail hard to match with experimental techniques. Numerical simulations of 1-D Townsend and Dielectric Barrier Discharges (DBDs) are performed using a commercial Finite Element package (COMSOL). A combined fluid model for the electron and Ion fluxes is used together with a local field approximation on a 1-D domain comprised of Nitrogen gas. The renowned Paschen breakdown result is successfully predicted numerically. Results are shown for the transient Townsend discharge that leads to this breakdown offering insight into the positive feedback mechanism that enables it. These transient results show how impact ionization combined with cathode secondary emission generate increasing waves of positive ions that drift towards the cathode again self feeding the discharge process. The simulation is then extended to predict the nature of a DBD in the case of a single voltage pulse. External Posting Date: September 6, 2009 [Fulltext] Approved for External Publication Internal Posting Date: September 6, 2009 [Fulltext] To be published and presented at NIP 2009, Loiusville, KY, September, 20-24, 2009 © Copyright NIP 2009 Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges Napoleon Leoni; Hewlett Packard Laboratories, Palo Alto, CA.
    [Show full text]
  • Formation of Ionospheric Precursors of Earthquakes—Probable Mechanism and Its Substantiation
    Open Journal of Earthquake Research, 2020, 9, 142-169 https://www.scirp.org/journal/ojer ISSN Online: 2169-9631 ISSN Print: 2169-9623 Formation of Ionospheric Precursors of Earthquakes—Probable Mechanism and Its Substantiation Georgii Lizunov1, Tatiana Skorokhod1, Masashi Hayakawa2, Valery Korepanov3 1Space Research Institute, Kyiv, Ukraine 2Hayakawa Institute of Seismo Electromagnetics Co., Ltd., Tokyo, Japan 3Lviv Center of Institute for Space Research, Lviv, Ukraine How to cite this paper: Lizunov, G., Sko- Abstract rokhod, T., Hayakawa, M. and Korepanov, V. (2020) Formation of Ionospheric Pre- The purpose of this article is to attract the attention of the scientific commu- cursors of Earthquakes—Probable Me- nity to atmospheric gravity waves (GWs) as the most likely mechanism for chanism and Its Substantiation. Open the transfer of energy from the surface layers of the atmosphere to space Journal of Earthquake Research, 9, 142-169. https://doi.org/10.4236/ojer.2020.92009 heights and describe the channel of seismic-ionospheric relations formed in this way. The article begins with a description and critical comparison of sev- Received: October 20, 2019 eral basic mechanisms of action on the ionosphere from below: the propaga- Accepted: March 13, 2020 tion of electromagnetic radiation; the closure of the atmospheric currents Published: March 16, 2020 through the ionosphere; the penetration of waves throughout the neutral at- Copyright © 2020 by author(s) and mosphere. A further part of the article is devoted to the analysis of theoretical Scientific Research Publishing Inc. and experimental information relating to the actual GWs. Simple analytical This work is licensed under the Creative Commons Attribution International expressions are written that allow one to calculate the parameters of GWs in License (CC BY 4.0).
    [Show full text]
  • Electromagnetic Hypersensitivity
    Electromagnetic Hypersensitivity Proceedings International Workshop on EMF Hypersensitivity Prague, Czech Republic October 25-27, 2004 Editors Kjell Hansson Mild Mike Repacholi Emilie van Deventer Paolo Ravazzani WHO Library Cataloguing-in-Publication Data: International Workshop on Electromagnetic Field Hypersensitivity (2004 : Prague, Czech Republic) Electromagnetic Hypersensitivity : proceedings, International Workshop on Electromagnetic Field Hypersensitivity, Prague, Czech Republic, October 25-27, 2004 / editors, Kjell Hansson Mild, Mike Repacholi, Emilie van Deventer, and Paolo Ravazzani. 1.Electromagnetic fields - adverse effects. 2.Hypersensitivity. 3.Environmental exposure. 4.Psychophysiologic disorders. I.Mild, Kjell Hansson. II.Repacholi, Michael H. III.Deventer, Emilie van. IV.Ravazzani, Paolo. V.World Health Organization. VI.Title. VII.Title: Proceedings, International Workshop on Electromagnetic Field Hypersensitivity, Prague, Czech Republic, October 25-27, 2004. ISBN 92 4 159412 8 (NLM classification: QT 34) ISBN 978 92 4 159412 7 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Handbook of Induction Heating Theoretical Background
    This article was downloaded by: 10.3.98.104 On: 28 Sep 2021 Access details: subscription number Publisher: CRC Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London SW1P 1WG, UK Handbook of Induction Heating Valery Rudnev, Don Loveless, Raymond L. Cook Theoretical Background Publication details https://www.routledgehandbooks.com/doi/10.1201/9781315117485-3 Valery Rudnev, Don Loveless, Raymond L. Cook Published online on: 11 Jul 2017 How to cite :- Valery Rudnev, Don Loveless, Raymond L. Cook. 11 Jul 2017, Theoretical Background from: Handbook of Induction Heating CRC Press Accessed on: 28 Sep 2021 https://www.routledgehandbooks.com/doi/10.1201/9781315117485-3 PLEASE SCROLL DOWN FOR DOCUMENT Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. 3 Theoretical Background Induction heating (IH) is a multiphysical phenomenon comprising a complex interac- tion of electromagnetic, heat transfer, metallurgical phenomena, and circuit analysis that are tightly interrelated and highly nonlinear because the physical properties of materi- als depend on magnetic field intensity, temperature, and microstructure.
    [Show full text]
  • Articles, Photons and Heavy Establishing the Global Network of Cooperating Digital Mag- Nuclei in Cosmic Rays
    IUGG: from different spheres to a common globe Hist. Geo Space Sci., 10, 163–172, 2019 https://doi.org/10.5194/hgss-10-163-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. IAGA: a major role in understanding our magnetic planet Mioara Mandea1 and Eduard Petrovský2 1Centre National d’Etudes Spatiales, 2 Place Maurice Quentin, 75001 Paris, France 2Institute of Geophysics, The Czech Academy of Sciences, Bocníˇ II/1401, 14131 Prague 4, Czech Republic Correspondence: Mioara Mandea ([email protected]) Received: 17 October 2018 – Revised: 15 December 2018 – Accepted: 4 January 2019 – Published: 16 April 2019 Abstract. Throughout the International Union of Geodesy and Geophysics’s (IUGG’s) centennial anniversary, the International Association of Geomagnetism and Aeronomy is holding a series of activities to underline the ground-breaking facts in the area of geomagnetism and aeronomy. Over 100 years, the history of these research fields is rich, and here we present a short tour through some of the International Association of Geomagnetism and Aeronomy’s (IAGA’s) major achievements. Starting with the scientific landscape before IAGA, through its foundation until the present, we review the research and achievements considering its complexity and variability, from geodynamo up to the Sun and outer space. While a number of the achievements were accomplished with direct IAGA involvement, the others represent the most important benchmarks of geomagnetism and aeronomy studies. In summary, IAGA is an important and active association with a long and rich history and prospective future. 1 Introduction IUGG General Assembly (Stockholm in 1930), the sections became associations, one of them being the International As- The International Association of Geomagnetism and Aeron- sociation of Terrestrial Magnetism and Electricity (IATME).
    [Show full text]
  • Electrical Breakdown in Gases
    High-voltage Pulsed Power Engineering, Fall 2018 Electrical Breakdown in Gases Fall, 2018 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Gas breakdown: Paschen’s curves for breakdown voltages in various gases Friedrich Paschen discovered empirically in 1889. Left branch Right branch Paschen minimum F. Paschen, Wied. Ann. 37, 69 (1889)] 2/40 High-voltage Pulsed Power Engineering, Fall 2018 Generation of charged particles: electron impact ionization + Proton Electron + + Electric field Acceleration Electric field Slow electron Fast electron Acceleration Electric field Acceleration Ionization energy of hydrogen: 13.6 eV 3/40 High-voltage Pulsed Power Engineering, Fall 2018 Behavior of an electron before ionization collision Electrons moving in a gas under the action of an electric field are bound to make numerous collisions with the gas molecules. 4/40 High-voltage Pulsed Power Engineering, Fall 2018 Electron impact ionization Electron impact ionization + + Electrons with sufficient energy (> 10 eV) can remove an electron+ from an atom and produce one extra electron and an ion. → 2 5/40 High-voltage Pulsed Power Engineering, Fall 2018 Townsend mechanism: electron avalanche = Townsend ionization coefficient ( ) : electron multiplication : production of electrons per unit length along the electric field (ionization event per unit length) = = exp( ) = = 푒 푒 6/40 High-voltage Pulsed Power Engineering, Fall 2018 Townsend 1st ionization coefficient When an electron travels a distance equal to its free path in the direction of the field , it gains an energy of . For the electron to ionize, its gain in energy should be at least equal to the ionization potential of the gas: 1 1 = ≥ st ∝ The Townsend 1 ionization coefficient is equal to the number of free paths (= 1/ ) times the probability of a free path being more than the ionizing length , 1 1 exp exp ∝ − ∝ − = ⁄ − A and B must be experimentally⁄ determined for different gases.
    [Show full text]
  • Upward Electrical Discharges from Thunderstorm Tops
    UPWARD ELECTRICAL DISCHARGES FROM THUNDERSTORM TOPS BY WALTER A. LYONS, CCM, THOMAS E. NELSON, RUSSELL A. ARMSTRONG, VICTOR P. PASKO, AND MARK A. STANLEY Mesospheric lightning-related sprites and elves, not attached to their parent thunderstorm’s tops, are being joined by a family of upward electrical discharges, including blue jets, emerging directly from thunderstorm tops. or over 100 years, persistent eyewitness reports in (Wilson 1956). On the night of 6 July 1989, while the scientific literature have recounted a variety testing a low-light television camera (LLTV) for an Fof brief atmospheric electrical phenomena above upcoming rocket launch, the late Prof. John R. thunderstorms (Lyons et al. 2000). The startled ob- Winckler of the University of Minnesota made a most servers, not possessing a technical vocabulary with serendipitous observation. Replay of the video tape which to report their observations, used terms as var- revealed two frames showing brilliant columns of ied as “rocket lightning,” “cloud-to-stratosphere light extending far into the stratosphere above dis- lightning,” “upward lightning,” and even “cloud-to- tant thunderstorms (Franz et al. 1990). This single space lightning” (Fig. 1). Absent hard documenta- observation has energized specialists in scientific dis- tion, the atmospheric electricity community gave ciplines as diverse as space physics, radio science, at- little credence to such anecdotal reports, even one mospheric electricity, atmospheric acoustics, and originating with a Nobel Prize winner in physics
    [Show full text]
  • Measurements of X-Ray Emission from Laboratory Sparks and Upward Initiated Lightning
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1618 Measurements of X-Ray Emission from Laboratory Sparks and Upward Initiated Lightning PASAN HETTIARACHCHI ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0204-1 UPPSALA urn:nbn:se:uu:diva-338158 2018 Dissertation presented at Uppsala University to be publicly examined in 80127, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Tuesday, 27 February 2018 at 09:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Marcos Rubinstein (University of Applied Sciences of Western Switzerland, Institute for Information and Communication Technologies ). Abstract Hettiarachchi, P. 2018. Measurements of X-Ray Emission from Laboratory Sparks and Upward Initiated Lightning. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1618. 58 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0204-1. In 1925 Nobel laureate R. C. Wilson predicted that high electric fields of thunderstorms could accelerate electrons to relativistic energies which are capable of generating high energetic radiation. The first detection of X-rays from lightning was made in 2001 and from long sparks in 2005. Still there are gaps in our knowledge concerning the production of X-rays from lightning and long sparks, and the motivation of this thesis was to rectify this situation by performing new experiments to gather data in this subject. The first problem that we addressed in this thesis was to understand how the electrode geometry influences the generation of X-rays. The results showed that the electrode geometry affects the X-ray generation and this dependency could be explained using a model developed previously by scientists at Uppsala University.
    [Show full text]
  • Electrical Structure of the Stratosphere and Mesophere
    1969 (6th) Vol. 1 Space, Technology, and The Space Congress® Proceedings Society Apr 1st, 8:00 AM Electrical Structure of the Stratosphere and Mesophere Willis L. Webb U.S. Army Electronics Command Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Webb, Willis L., "Electrical Structure of the Stratosphere and Mesophere" (1969). The Space Congress® Proceedings. 1. https://commons.erau.edu/space-congress-proceedings/proceedings-1969-6th-v1/session-16/1 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. ELECTRICAL STRUCTURE OF THE STRATOSPHERE AND MESOSPHERE Will is L. V/ebb Atmospheric Sciences Laboratory U S Army Electronics Command White Sands Missile Range, New Mexico Synoptic rocket exploration of the strato­ exploration of the earth's upper atmosphere using spheric circulation has revealed the presence of small rocket vehicles was initiated to extend the hemispheric tidal circulations that are indicated region of meteorological study to higher alti­ to be in part characterized by systematic vertical tudes* . This meteorological rocket network (MRN) motions in low latitudes of the sunlit hemisphere. has expanded the atmospheric volume currently sub­ These vertical motions are powered by meridional ject to meteorological scrutiny from limitations oscillations in the stratospheric circulation pro­ of the order of 30-km peak altitude to a current duced by solar heating of the stratopause region synoptic data ceiling of the order of 80 km.
    [Show full text]
  • Gas Breakdown and Gas-Filled Detectors
    Gas Breakdown and Gas-filled Detectors Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Paschen’s curves for breakdown voltages in various gases Friedrich Paschen discovered empirically in 1889. Left branch Right branch Paschen minimum 2/28 Radiation Source Engineering, Fall 2017 Generation of charged particles: electron impact ionization + Proton Electron + + Electric field Acceleration Electric field Slow electron Fast electron Acceleration Electric field Acceleration 3/28 Radiation Source Engineering, Fall 2017 Townsend mechanism: electron avalanche Cathode Electric Field Anode e- ……. e- e- N e- N e- ……. = + + Townsend ionization coefficient ( ) : electron multiplication : production of electrons per unit length along the electric field (ionization event per unit length) = = exp( ) = = 푒 푒 4/28 Radiation Source Engineering, Fall 2017 Townsend 1st ionization coefficient Townsend related the ionization mean free path (λi = 1/ ) to the total scattering mean free path (λ) by treating it as being a process activated by drift energy gained from the field (Eλ), with an activation energy eVi. 1 1 = exp ∝ − Semi-empirical expression for Townsend first ionization coefficient = ⁄ − A and C must be experimentally⁄ determined for different gases Gas A(ion pairs/mTorr) C(V/mTorr) He 182 5000 Ne 400 10000 H2 1060 35000 N2 1060 34200 Air 1220 36500 5/28 Radiation Source Engineering, Fall 2017 Townsend’s avalanche process is not self-sustaining A - - - - - - - - N N N N p Voltage + - + - + - + - N N d = = + - + - 푒 N UV + - x K Townsend’s avalanche process cannot be sustained without external sources for generating seed electrons. 6/28 Radiation Source Engineering, Fall 2017 Breakdown: Paschen’s law Secondary electron emission by ion impact: When heavy positive ions strike the cathode wall, secondary electrons are released from the cathode material.
    [Show full text]