China National Report on Seismology and Physics of the Earth's Interior

Total Page:16

File Type:pdf, Size:1020Kb

China National Report on Seismology and Physics of the Earth's Interior 2003-2006 China National Report on Seismology and Physics of the Earth's Interior For The 24rd General Assembly of IUGG Perugia, Italy, 2-13 July, 2007 By Chinese National Committee for The International Union of Geodesy and Geophysics Beijing, China June, 2007 Preface During the last four years there have been significant advances in China, a country with intense seismic activity and earthquake disasters, in the study of seismology and physics of the Earth’s interior. These results are of significant help to the social endeavor for the reduction of earthquake hazard and risk, and potentially have an important impact on the development of seismology and solid-Earth geophysics even in a global perspective. Besides the continuous advancements in the on-going researches on seismic source, seismic waves, earthquake prediction, seismo-tectonics, Earth structure and geodynamics, and interdisciplinary studies related to the phenomenology and physics of earthquakes, among others, in the turn of the centuries, the development of seismology in China is specially highlighted by its comprehensive upgrading of observation/research facilities as marked by the digital broadband seismograph networks and data centers at national, regional and local levels, and the geodynamical modeling using high-performance computation. The present National Report, organized by the Chinese National Committee for the International Association of Seismology and Physics of the Earth’s Interior (IASPEI), reviews the developments in seismology in the Chinese mainland from 2003 to 2007. In China, at present, most of the publications are in Chinese (with English or Russian abstract), although quite a few Chinese seismologists also publish their researches in international journals. Accordingly, the National Report is of special importance for letting international colleagues understand what is going on in the seismological studies in China. It is worth acknowledging that contributions to seismological researches from the Chinese seismologists in Taiwan and Hong Kong, as well as from the overseas Chinese seismologists all over the world, are also significant, which are not reflected in the present national reports due to limitation of space and time. Cooperation between seismologists in the Chinese mainland and other places got fruitful results in many aspects. Seismology as a tool of prospecting the lithosphere and crust structure also contributed much to the study of fundamental geology and the development of oil industry. What is reflected in the present report is only the study of seismo-tectonics in the perspective of the geology and geodynamics of earthquakes. During the last four years, seismological researches in China got significant supports from the National Natural Science Foundation of China (NSFC), the Ministry of Science and Technology (MOST), the China Earthquake Administration (CEA), and the Chinese Academy of Sciences (CAS), as well as other governmental and non-governmental organizations, especially from the central government. The cooperation with IUGG, IASPEI, Asian Seismological Commission (ASC), and other international organizations, plays an active role in promoting the international exchange and collaboration between seismologists in China and other countries. DING Zhifeng, Chairman CHEN Xiaofei, Vice-Chairman Chinese National Committee for IASPEI Beijing, China IASPEI National Report (2003~2006) Studies of the Physics of Seismic Source in China XU Li-sheng, FENG Wan-peng, CHEN Yun-tai (Institute of Geophysics, China Earthquake Administration, Beijing 100081, China ) Abstract : On a basis of the papers published in the Chinese geoscience journals,this paper summarizes the research activities in the physics of seismic source that happened in the years 2003 to 2006 in China. The research works are presented in 6 fields, which are source complexity of the strong earthquakes, source parameters of moderate-to-small earthquakes, application of source parameters, earthquake location, theory and experiment on seismic source, as well as nuclear explosion seismology. Introduction Physics of seismic source is one of the important components of seismology, also it is one of the most active frontier fields of geophysical research. In the period of 2003 to 2006 years, more than 40 papers regarding the physics of seismic source were published on Chinese geoscience journals. In this article, we make a summary as the followings, which are divided into 6 parts: source complexity of the strong earthquakes, source parameters of the moderate-to-small earthquakes, application of the source parameters, earthquake location, theory and experiment on seismic source, as well as nuclear explosion seismology. 1. Source complexity of the strong earthquakes Rupture process or source complexity of stronger earthquakes have been paid much attention to by the world-wide seismologists due to its importance to understanding physics of seismic source. Chinese seismologists have been become active in this direction. Although several years have passed since the 1999 Chi-Chi earthquake, and some studies had been done, some studies have still been done, for example, Zhou and Chen (2006) inverted the near-field seismic recordings for the dynamic rupture process of this earthquake. On the 14th of November, 2001, there occurred a strong earthquake in the western pass of Kunlun Mountain in China. In order to understand the source physics of this earthquake, varieties of research works have been done by Chinese researchers. Xu and Chen (2004) inverted the long-period waveform data recorded by global seismic stations and obtained the rupture process. Also, Ma and Shan (2006) analyzed the InSAR data, and Wang et al . (2005) inverted both the GPS and far-field P waveform data. On the 27th of September, 2003, there occurred another strong earthquake of MS7.9 on the border area of China, Russia and Mongolia, and on the 1st of October in the same year, one stronger earthquake with magnitude MS7.3 occurred almost at the same location. Zhao et al. (2005) inverted the broadband recordings from global seismic stations for their dynamic rupture process. On the 11th of July, 2004, an MW 6.2 earthquake occurred in Tibet. Li et al . (2005) obtained its rupture process by the inversion technique similar to the above. 1 2. Source parameters of the moderate-to-small earthquakes Determination of parameters for moderate-to-small earthquakes is a difficult but important work. In China, there are a quite number of researchers working on this. Yu et al . (2003) introduced the amplitude ratios of SV/P, SH/P and SV/SH into the method for determination of focal mechanism in order to obtain the results of higher precision. Cheng et al . (2003) studied the MS5.0 foreshock, MS6.0 mainshock and the whole earthquake sequence which occurred in Yajiang county of Sichuan province in February of 2001 for their focal mechanisms, parameters of source spectrum, variation of stress drop and seismicity of the epicentral area. Qin et al . (2003) analyzed th the MS6.4 earthquake sequence for its physical process which occurred on the 15 of January, 2000, in Yaoan of Yunnan province using seismic recordings from a near-field small-apature network. Long (2004) choose the recordings of 88 events of the Yajian earthquake sequence clearly recorded by at least 5 stations, which occurred during the period of the 1 st of January to the 30 th of June, 2001, relocated these events and determined the focal mechanisms of the 13 bigger events. Wu et al . (2004) inverted the waveform data of 33 moderate-to-small local earthquakes from the Yunnan Digital Seismograph Network for their focal mechanisms. Kang et al . (2005) applied the first-motion-and-amplitude-ratio technique to the recordings of 32 local earthquakes greater than ML3 recorded by Guangdong Digital Seismograph Network for their focal mechanisms, and analysized the spatial characteristics of the focal mechanisms in Guangdong and its neighboring areas combining the focal mechanisms of 83 events obtained by others. Mao et al . (2006) inverted the direct P waveforms of the vertical components generated by the 2000 Yaoan MS6.5 mainshock and its aftershocks with magnitudes of ML3.0~5.0 for their moment tensor solutions. Gao et al . (2005) presented the spatial distribution of hazard caused by the Inner th Mongolia MS5.9 earthquake which occurred on the 16 of August, 2003, inverted the long period waveform data recorded by China Digital Seismograph Network for its moment tensor solution and focal mechanism, and analysized for the characteristics of the focal mechanism, aftershock distribution and hazard distribution and the relationship between the focal mechanism and the hazard distribution. Gao and Zheng (2004) obtained the quality factor (Q value) and the anelastic attenuation coefficients for the central and western Inner Mongolia from the seismic recordings generated by 9 earthquakes and recorded by the Hohhot Digital Seismograph Network. Wang et al . (2004) obtained the source spectrum at the lower frequencies for 27 earthquakes and the site effects in the central area of the Central China by means of genetic algorithm. There occurred an MS6.8 earthquake on the 24th of February, 2003, at the southeastern end of the Jiashi region, Xinjiang, where 9 earthquakes of about MS6.0 occurred in the period of 1997 to 1998. Gao et al .(2004) analyzed the characteristics and stress drop using the focal mechanisms of this sequence. Chuo et al . (2004) studied the anelastic attenuation
Recommended publications
  • Estimations of Undisturbed Ground Temperatures Using Numerical and Analytical Modeling
    ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING By LU XING Bachelor of Arts/Science in Mechanical Engineering Huazhong University of Science & Technology Wuhan, China 2008 Master of Arts/Science in Mechanical Engineering Oklahoma State University Stillwater, OK, US 2010 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2014 ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING Dissertation Approved: Dr. Jeffrey D. Spitler Dissertation Adviser Dr. Daniel E. Fisher Dr. Afshin J. Ghajar Dr. Richard A. Beier ii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Jeffrey D. Spitler, who patiently guided me through the hard times and encouraged me to continue in every stage of this study until it was completed. I greatly appreciate all his efforts in making me a more qualified PhD, an independent researcher, a stronger and better person. Also, I would like to devote my sincere thanks to my parents, Hongda Xing and Chune Mei, who have been with me all the time. Their endless support, unconditional love and patience are the biggest reason for all the successes in my life. To all my good friends, colleagues in the US and in China, who talked to me and were with me during the difficult times. I would like to give many thanks to my committee members, Dr. Daniel E. Fisher, Dr. Afshin J. Ghajar and Dr. Richard A. Beier for their suggestions which helped me to improve my research and dissertation.
    [Show full text]
  • Regionalization of Cryosphere Water Resource Service
    Desalination and Water Treatment 168 (2019) 394–404 www.deswater.com November doi: 10.5004/dwt.2019.24214 Regionalization of cryosphere water resource service Haoxi Lina,b,c, Jinchuan Huangb,c,*, Chuanglin Fangb,c, Jie Liub,c, Xiaoxiao Qib, Yunqian Chend aGuangzhou Institute of Geography, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou 510070, China bInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China, email: [email protected] (J.C. Huang) cCollege of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China dBeijing National Day School, Beijing 100039, China Received 22 October 2018; Accepted 21 January 2019 abstract The cryosphere water resource service (CWRS) is the most significant cryosphere service (CS) to directly affect human societies. Regionalization of CWRS is an important prototype for the comprehensive regionalization of CSs. It is also a crucial cutting-edge exploration of interdisciplinary work across cryospheric science, physical geography and human geography. We constructed a quan- titative indexing system for the regionalization of CWRS along the dimensions of base–supply– demand informed by the characteristics of cryosphere resources and human use of CSs. Different levels of regionalization are subdivided using cluster analysis, the importance index of CWRS, and a location entropy model. A region in Northwest China with significant CWRS use was the study area. From the joint effects of nature and human activity, there emerge principles of regional differentia- tion that govern the regionalization of CWRS. The study area was first divided into three high level service regions according to the availability of stored cryosphere water in snow cover, frozen ground and glaciers, indicating the regulatory function of cryosphere components.
    [Show full text]
  • Some Experiences from Damages of Embankments During Strong Earthquakes China
    Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in (1988) - Second International Conference on Geotechnical Engineering Case Histories in Geotechnical Engineering 01 Jun 1988, 1:00 pm - 5:30 pm Some Experiences from Damages of Embankments During Strong Earthquakes China Shen Choggang Institute of Water Conservancy and Hydroelectric Research (IWHR), Beijing, China Follow this and additional works at: https://scholarsmine.mst.edu/icchge Part of the Geotechnical Engineering Commons Recommended Citation Choggang, Shen, "Some Experiences from Damages of Embankments During Strong Earthquakes China" (1988). International Conference on Case Histories in Geotechnical Engineering. 21. https://scholarsmine.mst.edu/icchge/2icchge/2icchge-session4/21 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. Proceedings: Second International Conference on Case Histories In Geotechnical Engineering, June 1-5, 1988, StLouis, Mo., Paper No. 4.03 Some Experiences from Damages of Embankments During Strong Earthquakes in China Shen Choggang Adviser, Senior Engineer, Institute of Water Conservancy and Hydroelectric Research (IWHR), Beijing, China SYNOPSIS: This paper gives a series of case histories of earth dams which have been damaged by strong earthquakes in the past 25 years in China.
    [Show full text]
  • DEPARTMENT of the INTERIOR U.S. GEOLOGICAL SURVEY Notes
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Notes on Sedimentary Basins in China Report of the American Sedimentary Basins Delegation to the People's Republic of China A. W. Bally 1 , I-Ming Chou2, R. Clayton3, H. P. Eugster4, S. Kidwell5, L. D. Meckel6, R. T. Ryder7, A. B. Watts8, A. A. Wilson9 1. Rice University, Houston 2. U. S. Geological Survey, Reston 3. California Institute of Technology, Pasadena 4. Johns Hopkins University, Baltimore 5. University of Chicago 6. L. D. Meckel Company, Houston 7. U. S. Geological Survey, Reston 8. Lament Doherty Geological Observatory, Columbia University, New York 9. National Academy of Sciences, Washington Open-File Report 86-327 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editiorial standards. 1986 NOTICE The views expressed in this report are those of the members of the Sedimentary Basins Delegation and are in no way the official views of the Committee on Scholarly Communication with the People's Republic of China or its sponsoring organizations the American Council of Learned Societies, the National Academy of Sciences, and the Social Science Research Council. The visit consisting of a bilateral workshop and field trip was part of the exchange program between the two countries and was supported by the National Academy of Sciences in the United States and the China Association for Science and Technology in China, with the Chinese Petroleum Society bearing special responsibilities as host. U.S. funding was provided by the National Science Foundation. The Committee on Scholarly Communication with the People's Republic of China was founded in 1966 by the American Council of Learned Societies, the National Academy of Sciences, and the Social Science Research Council.
    [Show full text]
  • China Shaping Tibet for Strategic Leverage
    MANEKSHAW PAPER No. 70, 2018 China Shaping Tibet for Strategic Leverage Praggya Surana D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V KNOWLEDGE WORLD Centre for Land Warfare Studies KW Publishers Pvt Ltd New Delhi New Delhi Editorial Team Editor-in-Chief : Lt Gen Balraj Nagal ISSN 23939729 D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V Centre for Land Warfare Studies RPSO Complex, Parade Road, Delhi Cantt, New Delhi 110010 Phone: +91.11.25691308 Fax: +91.11.25692347 email: [email protected] website: www.claws.in CLAWS Army No. 33098 The Centre for Land Warfare Studies (CLAWS), New Delhi, is an autonomous think-tank dealing with national security and conceptual aspects of land warfare, including conventional and sub-conventional conflicts and terrorism. CLAWS conducts research that is futuristic in outlook and policy-oriented in approach. © 2018, Centre for Land Warfare Studies (CLAWS), New Delhi Disclaimer: The contents of this paper are based on the analysis of materials accessed from open sources and are the personal views of the author. The contents, therefore, may not be quoted or cited as representing the views or policy of the Government of India, or Integrated Headquarters of the Ministry of Defence (MoD) (Army), or the Centre for Land Warfare Studies. KNOWLEDGE WORLD www.kwpub.com Published in India by Kalpana Shukla KW Publishers Pvt Ltd 4676/21, First Floor, Ansari Road, Daryaganj, New Delhi 110002 Phone: +91 11 23263498 / 43528107 email: [email protected] l www.kwpub.com Contents Introduction 1 1.
    [Show full text]
  • Progress and Controversy in the Study of HP-UHP Metamorphic Terranes in the West and Middle Central China Orogen
    Journal of Earth Science, Vol. 21, No. 5, p. 581–597, October 2010 ISSN 1674-487X Printed in China DOI: 10.1007/s12583-010-0128-7 Progress and Controversy in the Study of HP-UHP Metamorphic Terranes in the West and Middle Central China Orogen Liu Liang* (刘良) State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China Yang Jiaxi (杨家喜) College of Earth Sciences and Land Resources, Chang’an University, Xi’an 710054, China Chen Danling (陈丹玲) State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China Wang Chao (王超) State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China; Xi’an Institute of Geology and Mineral Resource, Xi’an 710054, China Zhang Chengli (张成立), Yang Wenqiang (杨文强), Cao Yuting (曹玉亭) State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China ABSTRACT: During the past ten years, various types of HP-UHP metamorphic rocks have been dis- covered in the South Altyn Tagh, the North Qaidam and the North Qinling (秦岭) in the West and Middle Central China orogen. The UHP rocks, as lentoid bodies in regional gneisses, include eclogite (garnet-bearing pyroxenite), garnet peridotite and various pelitic or felsic gneisses. There are many re- cords of minerals and microstructures of exsolution indicate the UHP metamorphism, such as coesite (or its pseudomorph), diamond, exsolution of clinopyroxene/amphibole/+rutile or rutile+quartz+apatite in garnet, exsolution of quartz in omphacite and exsolution of kyanite+spinel in precursor stishovite. The discovery of microstructure evidence for the This study was supported by the National Basic Research Pro- presence of precursor stishovite in typical Al- gram of China (No.
    [Show full text]
  • Lake Status Records from China: Data Base Documentation
    Lake status records from China: Data Base Documentation G. Yu 1,2, S.P. Harrison 1, and B. Xue 2 1 Max Planck Institute for Biogeochemistry, Postfach 10 01 64, D-07701 Jena, Germany 2 Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences. Nanjing 210008, China MPI-BGC Tech Rep 4: Yu, Harrison and Xue, 2001 ii MPI-BGC Tech Rep 4: Yu, Harrison and Xue, 2001 Table of Contents Table of Contents ............................................................................................................ iii 1. Introduction ...............................................................................................................1 1.1. Lakes as Indicators of Past Climate Changes........................................................1 1.2. Chinese Lakes as Indicators of Asian Monsoonal Climate Changes ....................1 1.3. Previous Work on Palaeohydrological Changes in China.....................................3 1.4. Data and Methods .................................................................................................6 1.4.1. The Data Set..................................................................................................6 1.4.2. Sources of Evidence for Changes in Lake Status..........................................7 1.4.3. Standardisation: Lake Status Coding ..........................................................11 1.4.4. Chronology and Dating Control..................................................................11 1.5. Structure of this Report .......................................................................................13
    [Show full text]
  • The Thickness and Structural Characteristics of the Crust Across Tibetan Plateau from Active-Sources Seismic Profiles∗
    Earthq Sci (2009)22: 21−31 21 Doi: 10.1007/s11589-009-0021-6 The thickness and structural characteristics of the crust across Tibetan plateau from ∗ active-sources seismic profiles Qiusheng Li 1,2, Rui Gao 1,2 Zhanwu Lu 1,2 Ye Guan 1,2 Jisheng Zhang 1,2 Pengwu Li 1,2 Haiyan Wang 1,2 Rizheng He 1,2 and Marianne Karplus3 1 Lithosphere Research Center, Institute of Geology, Chinese Academy of Geology Science,Beijing 100037, China 2 Earthprobe and Geodynamics Open Laboratory of Chinese Academy of Geology Science, Beijing 100037, China 3 Crustal Geophysics Group, Stanford University, Stanford CA 94305, USA Abstract The Tibetan plateau as one of the youngest orogen on the Earth was considered as the result of conti- nent-continent collision between the Eurasian and Indian plates. The thickness and structure of the crust beneath Tibetan pla- teau is essential to understand deformation behavior of the plateau. Active-source seismic profiling is most available geo- physical method for imaging the structure of the continental crust. The results from more than 25 active-sources seismic pro- files carried out in the past twenty years were reviewed in this article. A preliminary cross crustal pattern of the Tibetan Pla- teau was presented and discussed. The Moho discontinuity buries at the range of 60−80 km on average and have steep ramps located roughly beneath the sutures that are compatible with the successive stacking/accretion of the former Cenozoic blocks northeastward. The deepest Moho (near 80 km) appears closely near IYS and the crustal scale thrust system beneath southern margin of Tibetan plateau suggests strong dependence on collision and non-distributed deformation there.
    [Show full text]
  • Shahid Yusuf and Kaoru Nabeshima Contrasting Development Paths For
    Public Disclosure Authorized Shahid Yusuf and Kaoru Nabeshima TWO Public Disclosure Authorized DRAGON HEADS Contrasting Development Public Disclosure Authorized Paths for Beijing and Shanghai Public Disclosure Authorized Two Dragon Heads Two Dragon Heads Contrasting Development Paths for Beijing and Shanghai Shahid Yusuf Kaoru Nabeshima Washington, D.C. © 2010 The International Bank for Reconstruction and Development / The World Bank 1818 H Street NW Washington DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org E-mail: [email protected] All rights reserved 1 2 3 4 12 11 10 09 This volume is a product of the staff of the International Bank for Reconstruction and Development / The World Bank. The findings, interpretations, and conclusions expressed in this volume do not necessarily reflect the views of the Executive Directors of The World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgement on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. The International Bank for Reconstruction and Development / The World Bank encourages dissemination of its work and will normally grant permission to reproduce portions of the work promptly. For permission to photocopy or reprint any part of this work, please send a request with complete information to the Copyright Clearance Center Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; telephone: 978-750-8400; fax: 978-750-4470; Internet: www.copyright.com.
    [Show full text]
  • 2014 Annual Report
    Stock Code: 1398 USD Preference Shares Stock Code: 4603 EUR Preference Shares Stock Code: 4604 RMB Preference Shares Stock Code: 84602 Annual Report 2014 2014 Annual ReportAnnual 中國北京市西城區復興門內大街55號 郵編:100140 No.55 Fuxingmennei Avenue, Xicheng District, Beijing, PRC Post Code: 100140 www.icbc.com.cn, www.icbc-ltd.com Company Profile Industrial and Commercial Bank of China Limited, and services to 5,090 thousand corporate customers formerly known as Industrial and Commercial Bank and 465 million personal customers by virtue of the of China, was established on 1 January 1984. On 28 distribution channels consisting of 17,122 domestic October 2005, the Bank was wholly restructured to a institutions, 338 overseas institutions and 2,007 joint-stock limited company. On 27 October 2006, the correspondent banks worldwide, as well as through its Bank was successfully listed on both SSE and SEHK. E-banking network comprising a range of Internet and telephone banking services and self-service banking Through its continuous endeavor and stable centers, forming a diversified and internationalized development, the Bank has developed into the top operating structure focusing on commercial banking large listed bank in the world, possessing an excellent business and maintaining a leading position in the customer base, a diversified business structure, strong domestic market in the commercial banking sector. innovation capabilities and market competitiveness. The By virtue of its outstanding performance, the Bank’s Bank has its presence in six continents, and its overseas brand image and international influence have been network has expanded to 41 countries and regions. consolidated. The Bank has become one of most The Bank provides comprehensive financial products valuable financial brands in the world.
    [Show full text]
  • The Effect of Climate Change on Human Bio-Meteorological Conditions in Different Climate Regions of China
    The effect of climate change on human bio-meteorological conditions in different climate regions of China A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor rerum naturalium (Dr. rer. nat.) to the Department of Earth Sciences of the Freie Universität Berlin by Xiaoli Chi Berlin, November 2017 Supervisor: Prof. Dr. Ulrich Cubasch Freie Universität Berlin Second examiner: Prof. Dr. Sahar Sodoudi Freie Universität Berlin Date of the viva voce/defense: 11. January 2018 Declaration I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements. This dissertation contains fewer than 50,000 words including appendices, bibliography, footnotes, tables and equations and has fewer than 50 figures. Xiaoli Chi November 2017 List of Publications Chi XL, Li R, Cubasch U, Cao WT. The thermal comfort and its changes in the 31 provincial capital cities of mainland China in the past 30 years. Theoretical and Applied Climatology, 2017, 1-21. Li R, Chi XL*. Thermal comfort and tourism climate changes in the Qinghai–Tibet Plateau in the last 50 years. Theorotical and Applied Climatology, 2014, 117(3-4), 621-624. Cao WT, Li R, Chi XL, Chen NH et al. Island urbanization and its ecological consequences: A case study in the Zhoushan Island, East China.
    [Show full text]
  • Pathways to Earthquake Resilience in China
    Report Pathways to earthquake resilience in China October 2015 Overseas Development Institute 203 Blackfriars Road London SE1 8NJ Tel. +44 (0) 20 7922 0300 Fax. +44 (0) 20 7922 0399 E-mail: [email protected] www.odi.org www.odi.org/facebook www.odi.org/twitter Readers are encouraged to reproduce material from ODI Reports for their own publications, as long as they are not being sold commercially. As copyright holder, ODI requests due acknowledgement and a copy of the publication. For online use, we ask readers to link to the original resource on the ODI website. The views presented in this paper are those of the author(s) and do not necessarily represent the views of ODI. © Overseas Development Institute 2015. This work is licensed under a Creative Commons Attribution-NonCommercial Licence (CC BY-NC 3.0). ISSN: 2052-7209 Cover photo: Photo by GDS, Children receiving the GDS disaster risk reduction kit, Shaanxi Province, China Contents Acknowledgements 9 About the authors 9 Glossary of terms 11 Acronyms 11 1. Introduction 13 John Young 2. Earthquake disaster risk reduction policies and programmes in China 16 Cui Ke, Timothy Sim and Lena Dominelli 3. Current knowledge on seismic hazards in Shaanxi Province 23 By Feng Xijie, Richard Walker and Philip England 4. Community-based approaches to disaster risk reduction in China 30 Lena Dominelli, Timothy Sim and Cui Ke 5. Case study: World Vision’s community disaster response plan in Ranjia village 42 William Weizhong Chen, Ning Li and Ling Zhang 6. Case study: Gender Development Solution’s disaster risk reduction in primary education 46 Zhao Bin 7.
    [Show full text]