RESEARCH ARTICLE A protein secreted by the Salmonella type III secretion system controls needle filament assembly Junya Kato1†, Supratim Dey2†, Jose E Soto1†, Carmen Butan1, Mason C Wilkinson2, Roberto N De Guzman2*, Jorge E Galan1* 1Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States; 2Department of Molecular Biosciences, University of Kansas, Lawrence, United States Abstract Type III protein secretion systems (T3SS) are encoded by several pathogenic or symbiotic bacteria. The central component of this nanomachine is the needle complex. Here we show in a Salmonella Typhimurium T3SS that assembly of the needle filament of this structure requires OrgC, a protein encoded within the T3SS gene cluster. Absence of OrgC results in significantly reduced number of needle substructures but does not affect needle length. We show that OrgC is secreted by the T3SS and that exogenous addition of OrgC can complement a DorgC mutation. We also show that OrgC interacts with the needle filament subunit PrgI and accelerates its polymerization into filaments in vitro. The structure of OrgC shows a novel fold with a shared topology with a domain from flagellar capping proteins. These findings identify a novel component of T3SS and provide new insight into the assembly of the type III secretion machine. DOI: https://doi.org/10.7554/eLife.35886.001 *For correspondence:
[email protected] (RNDG);
[email protected] (JEG) Introduction †These authors contributed Type III protein secretion systems (T3SSs) are highly conserved molecular machines encoded by equally to this work many gram-negative bacteria pathogenic or symbiotic to animals, plants, or insects (Gala´n et al., Competing interests: The 2014; Deng et al., 2017; Notti and Stebbins, 2016).