Starry, Starry Night Galaxies and the Observable Universe

Total Page:16

File Type:pdf, Size:1020Kb

Starry, Starry Night Galaxies and the Observable Universe Galaxies and the Observable Universe The universe that we are a part of began as a singular event -- one we call the Big Bang -- that has been measured to have happened 13.8 billion years ago. From the energy and matter created in this event, first stars were formed, and then galaxies of stars. A galaxy is a system of millions or billions of stars, gas and dust held together by gravity in space. There are three main types of galaxies in the universe: 1) Spiral Galaxy -- A galaxy with a flat, spiral shape: Our galaxy, the Milky Way, has a bar shape in the middle of it, and is thus called a barred spiral galaxy: 2) Elliptical Galaxy -- A galaxy with a ellipsoidal or spherical shape: 3) Irregular Galaxy -- A galaxy with no defined shape: Small and Large Magellanic Clouds -- Two irregular galaxies close to the Milky Way: There are hundreds of billions of galaxies in the observable universe. They are spread out in a structure resembling the web of a black widow spider: Credit: Sloan Digital Sky Survey Since its beginning, the universe has been expanding. Today, the observable universe is estimated to be about 93 billion light years in diameter. That is, about 46 and half billion light years in any direction from Earth. This limit is not determined by the limits of what our telescopes can see. But rather, because at the outer edges of what we can measure, the universe is expanding away from us faster than light can reach us! Thus, we really don't know how big the universe is. Credit: Andrew Z. Colvin on Wikipedia .
Recommended publications
  • Dark Energy and Dark Matter As Inertial Effects Introduction
    Dark Energy and Dark Matter as Inertial Effects Serkan Zorba Department of Physics and Astronomy, Whittier College 13406 Philadelphia Street, Whittier, CA 90608 [email protected] ABSTRACT A disk-shaped universe (encompassing the observable universe) rotating globally with an angular speed equal to the Hubble constant is postulated. It is shown that dark energy and dark matter are cosmic inertial effects resulting from such a cosmic rotation, corresponding to centrifugal (dark energy), and a combination of centrifugal and the Coriolis forces (dark matter), respectively. The physics and the cosmological and galactic parameters obtained from the model closely match those attributed to dark energy and dark matter in the standard Λ-CDM model. 20 Oct 2012 Oct 20 ph] - PACS: 95.36.+x, 95.35.+d, 98.80.-k, 04.20.Cv [physics.gen Introduction The two most outstanding unsolved problems of modern cosmology today are the problems of dark energy and dark matter. Together these two problems imply that about a whopping 96% of the energy content of the universe is simply unaccounted for within the reigning paradigm of modern cosmology. arXiv:1210.3021 The dark energy problem has been around only for about two decades, while the dark matter problem has gone unsolved for about 90 years. Various ideas have been put forward, including some fantastic ones such as the presence of ghostly fields and particles. Some ideas even suggest the breakdown of the standard Newton-Einstein gravity for the relevant scales. Although some progress has been made, particularly in the area of dark matter with the nonstandard gravity theories, the problems still stand unresolved.
    [Show full text]
  • Fine-Tuning, Complexity, and Life in the Multiverse*
    Fine-Tuning, Complexity, and Life in the Multiverse* Mario Livio Dept. of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA E-mail: [email protected] and Martin J. Rees Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK E-mail: [email protected] Abstract The physical processes that determine the properties of our everyday world, and of the wider cosmos, are determined by some key numbers: the ‘constants’ of micro-physics and the parameters that describe the expanding universe in which we have emerged. We identify various steps in the emergence of stars, planets and life that are dependent on these fundamental numbers, and explore how these steps might have been changed — or completely prevented — if the numbers were different. We then outline some cosmological models where physical reality is vastly more extensive than the ‘universe’ that astronomers observe (perhaps even involving many ‘big bangs’) — which could perhaps encompass domains governed by different physics. Although the concept of a multiverse is still speculative, we argue that attempts to determine whether it exists constitute a genuinely scientific endeavor. If we indeed inhabit a multiverse, then we may have to accept that there can be no explanation other than anthropic reasoning for some features our world. _______________________ *Chapter for the book Consolidation of Fine Tuning 1 Introduction At their fundamental level, phenomena in our universe can be described by certain laws—the so-called “laws of nature” — and by the values of some three dozen parameters (e.g., [1]). Those parameters specify such physical quantities as the coupling constants of the weak and strong interactions in the Standard Model of particle physics, and the dark energy density, the baryon mass per photon, and the spatial curvature in cosmology.
    [Show full text]
  • Galaxy Redshifts: from Dozens to Millions
    GALAXY REDSHIFTS: FROM DOZENS TO MILLIONS Chris Impey University of Arizona The Expanding Universe • Evolution of the scale factor from GR; metric assumes homogeneity and isotropy (~FLRW). • Cosmological redshift fundamentally differs from a Doppler shift. • Galaxies (and other objects) are used as space-time markers. Expansion History and Contents Science is Seeing The expansion history since the big bang and the formation of large scale structure are driven by dark matter and dark energy. Observing Galaxies Galaxy Observables: • Redshift (z) • Magnitude (color, SED) • Angular size (morphology) All other quantities (size, luminosity, mass) derive from knowing a distance, which relates to redshift via a cosmological model. The observables are poor distance indicators. Other astrophysical luminosity predictors are required. (Cowie) ~90% of the volume or look-back time is probed by deep field • Number of galaxies in observable universe: ~90% of the about 100 billion galaxies in the volume • Number of stars in the are counted observable universe: about 1022 Heading for 100 Million (Baldry/Eisenstein) Multiplex Advantage Cannon (1910) Gemini/GMOS (2010) Sluggish, Spacious, Reliable. Photography CCD Imaging Speedy, Cramped, Finicky. 100 Years of Measuring Galaxy Redshifts Who When # Galaxies Size Time Mag Scheiner 1899 1 (M31) 0.3m 7.5h V = 3.4 Slipher 1914 15 0.6m ~5h V ~ 8 Slipher 1917 25 0.6m ~5h V ~ 8 Hubble/Slipher 1929 46 1.5m ~6h V ~ 10 Hum/May/San 1956 800 5m ~2h V = 11.6 Photographic 1960s 1 ~4m ~2.5h V ~ 15 Image Intensifier 1970s
    [Show full text]
  • New Constraints on Cosmic Reionization
    New Constraints on Cosmic Reionization Brant Robertson UCSC Exploring the Universe with JWST ESA / ESTEC, The Netherlands October 12, 2015 1 Exploring the Universe with JWST, 10/12/2015 B. Robertson, UCSC Brief History of the Observable Universe 1100 Redshift 12 8 6 1 13.8 13.5 Billions of years ago 13.4 12.9 8 Adapted from Robertson et al. Nature, 468, 49 (2010). 2 Exploring the Universe with JWST, 10/12/2015 B. Robertson, UCSC Observational Facilities Over the Next Decade 1100 Redshift 12 8 6 1 Planck Future 21cm Current 21cm LSST Thirty Meter Telescope WFIRST ALMA Hubble Chandra Fermi James Webb Space Telescope 13.8 13.5 Billions of years ago 13.4 12.9 8 Observations with JWST, WFIRST, TMT/E-ELT, LSST, ALMA, and 21- cm will drive astronomical discoveries over the next decade. Adapted from Robertson et al. Nature, 468, 49 (2010). 3 Exploring the Universe with JWST, 10/12/2015 B. Robertson, UCSC 1100 Redshift 12 8 6 1 Planck Future 21cm Current 21cm LSST Thirty Meter Telescope WFIRST ALMA Hubble Chandra Fermi James Webb Space Telescope 13.8 13.5 Billions of years ago 13.4 12.9 8 1. What can we learn about Cosmic Dawn? Was it a dramatic event in a narrow period of time or did the birth of galaxies happen gradually? 2. Can we be sure light from early galaxies caused cosmic reionization? We have some guide on when reionization occurred from studying the thermal glow of the Big Bang (microwave background), but what were the sources of ionizing photons? 3.
    [Show full text]
  • Estimations of Total Mass and Energy of the Observable Universe
    Physics International 5 (1): 15-20, 2014 ISSN: 1948-9803 ©2014 Science Publication doi:10.3844/pisp.2014.15.20 Published Online 5 (1) 2014 (http://www.thescipub.com/pi.toc) ESTIMATIONS OF TOTAL MASS AND ENERGY OF THE OBSERVABLE UNIVERSE Dimitar Valev Department of Stara Zagora, Space Research and Technology Institute, Bulgarian Academy of Sciences, 6000 Stara Zagora, Bulgaria Received 2014-02-05; Revised 2014-03-18; Accepted 2014-03-21 ABSTRACT The recent astronomical observations indicate that the expanding universe is homogeneous, isotropic and asymptotically flat. The Euclidean geometry of the universe enables to determine the total gravitational and kinetic energy of the universe by Newtonian gravity in a flat space. By means of dimensional analysis, we have found the mass of the observable universe close to the Hoyle-Carvalho formula M∼c3/(GH ). This value is independent from the cosmological model and infers a size (radius) of the observable universe close to Hubble distance. It has been shown that almost the entire kinetic energy of the observable universe ensues from the cosmological expansion. Both, the total gravitational and kinetic energies of the observable universe have been determined in relation to an observer at an arbitrary location. The relativistic calculations for total kinetic energy have been made and the dark energy has been excluded from calculations. The total mechanical energy of the observable universe has been found close to zero, which is a remarkable result. This result supports the conjecture that the gravitational energy of the observable universe is approximately balanced with its kinetic energy of the expansion and favours a density of dark energy ΩΛ≈ 0.78.
    [Show full text]
  • Dark Energy and CMB
    Dark Energy and CMB Conveners: S. Dodelson and K. Honscheid Topical Conveners: K. Abazajian, J. Carlstrom, D. Huterer, B. Jain, A. Kim, D. Kirkby, A. Lee, N. Padmanabhan, J. Rhodes, D. Weinberg Abstract The American Physical Society's Division of Particles and Fields initiated a long-term planning exercise over 2012-13, with the goal of developing the community's long term aspirations. The sub-group \Dark Energy and CMB" prepared a series of papers explaining and highlighting the physics that will be studied with large galaxy surveys and cosmic microwave background experiments. This paper summarizes the findings of the other papers, all of which have been submitted jointly to the arXiv. arXiv:1309.5386v2 [astro-ph.CO] 24 Sep 2013 2 1 Cosmology and New Physics Maps of the Universe when it was 400,000 years old from observations of the cosmic microwave background and over the last ten billion years from galaxy surveys point to a compelling cosmological model. This model requires a very early epoch of accelerated expansion, inflation, during which the seeds of structure were planted via quantum mechanical fluctuations. These seeds began to grow via gravitational instability during the epoch in which dark matter dominated the energy density of the universe, transforming small perturbations laid down during inflation into nonlinear structures such as million light-year sized clusters, galaxies, stars, planets, and people. Over the past few billion years, we have entered a new phase, during which the expansion of the Universe is accelerating presumably driven by yet another substance, dark energy. Cosmologists have historically turned to fundamental physics to understand the early Universe, successfully explaining phenomena as diverse as the formation of the light elements, the process of electron-positron annihilation, and the production of cosmic neutrinos.
    [Show full text]
  • Cosmic Microwave Background
    1 29. Cosmic Microwave Background 29. Cosmic Microwave Background Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL). 29.1 Introduction The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T = 2.7255 K. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a 7 blackbody spectrum constrains physical processes over cosmic history at redshifts z ∼< 10 (see earlier versions of this review). Currently the key CMB observable is the angular variation in temperature (or intensity) corre- lations, and to a growing extent polarization [2–4]. Since the first detection of these anisotropies by the Cosmic Background Explorer (COBE) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA’s Planck mission [9,10], which were enhanced by results from the 2015 Planck data release [11, 12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB an- isotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16].
    [Show full text]
  • The First Galaxies
    The First Galaxies Abraham Loeb and Steven R. Furlanetto PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD To our families Contents Preface vii Chapter 1. Introduction 1 1.1 Preliminary Remarks 1 1.2 Standard Cosmological Model 3 1.3 Milestones in Cosmic Evolution 12 1.4 Most Matter is Dark 16 Chapter 2. From Recombination to the First Galaxies 21 2.1 Growth of Linear Perturbations 21 2.2 Thermal History During the Dark Ages: Compton Cooling on the CMB 24 Chapter 3. Nonlinear Structure 27 3.1 Cosmological Jeans Mass 27 3.2 Halo Properties 33 3.3 Abundance of Dark Matter Halos 36 3.4 Nonlinear Clustering: the Halo Model 41 3.5 Numerical Simulations of Structure Formation 41 Chapter 4. The Intergalactic Medium 43 4.1 The Lyman-α Forest 43 4.2 Metal-Line Systems 43 4.3 Theoretical Models 43 Chapter 5. The First Stars 45 5.1 Chemistry and Cooling of Primordial Gas 45 5.2 Formation of the First Metal-Free Stars 49 5.3 Later Generations of Stars 59 5.4 Global Parameters of High-Redshift Galaxies 59 5.5 Gamma-Ray Bursts: The Brightest Explosions 62 Chapter 6. Supermassive Black holes 65 6.1 Basic Principles of Astrophysical Black Holes 65 6.2 Accretion of Gas onto Black Holes 68 6.3 The First Black Holes and Quasars 75 6.4 Black Hole Binaries 81 Chapter 7. The Reionization of Cosmic Hydrogen by the First Galaxies 85 iv CONTENTS 7.1 Ionization Scars by the First Stars 85 7.2 Propagation of Ionization Fronts 86 7.3 Swiss Cheese Topology 92 7.4 Reionization History 95 7.5 Global Ionization History 95 7.6 Statistical Description of Size Distribution and Topology of Ionized Regions 95 7.7 Radiative Transfer 95 7.8 Recombination of Ionized Regions 95 7.9 The Sources of Reionization 95 7.10 Helium Reionization 95 Chapter 8.
    [Show full text]
  • Arxiv:0910.5224V1 [Astro-Ph.CO] 27 Oct 2009
    Baryon Acoustic Oscillations Bruce A. Bassett 1,2,a & Ren´ee Hlozek1,2,3,b 1 South African Astronomical Observatory, Observatory, Cape Town, South Africa 7700 2 Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, South Africa 7700 3 Department of Astrophysics, University of Oxford Keble Road, Oxford, OX1 3RH, UK a [email protected] b [email protected] Abstract Baryon Acoustic Oscillations (BAO) are frozen relics left over from the pre-decoupling universe. They are the standard rulers of choice for 21st century cosmology, provid- ing distance estimates that are, for the first time, firmly rooted in well-understood, linear physics. This review synthesises current understanding regarding all aspects of BAO cosmology, from the theoretical and statistical to the observational, and includes a map of the future landscape of BAO surveys, both spectroscopic and photometric . † 1.1 Introduction Whilst often phrased in terms of the quest to uncover the nature of dark energy, a more general rubric for cosmology in the early part of the 21st century might also be the “the distance revolution”. With new knowledge of the extra-galactic distance arXiv:0910.5224v1 [astro-ph.CO] 27 Oct 2009 ladder we are, for the first time, beginning to accurately probe the cosmic expansion history beyond the local universe. While standard candles – most notably Type Ia supernovae (SNIa) – kicked off the revolution, it is clear that Statistical Standard Rulers, and the Baryon Acoustic Oscillations (BAO) in particular, will play an increasingly important role. In this review we cover the theoretical, observational and statistical aspects of the BAO as standard rulers and examine the impact BAO will have on our understand- † This review is an extended version of a chapter in the book Dark Energy Ed.
    [Show full text]
  • The Recent Star Formation in Sextans a Schuyler D
    THE ASTRONOMICAL JOURNAL, 116:2341È2362, 1998 November ( 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE RECENT STAR FORMATION IN SEXTANS A SCHUYLER D. VAN DYK1 Infrared Processing and Analysis Center, California Institute of Technology, Mail Code 100-22, Pasadena, CA 91125; vandyk=ipac.caltech.edu DANIEL PUCHE1 Tellabs Transport Group, Inc., 3403 Griffith Street, Ville St. Laurent, Montreal, Quebec H4T 1W5, Canada; Daniel.Puche=tellabs.com AND TONY WONG1 Department of Astronomy, University of California at Berkeley, 601 Cambell Hall, Berkeley, CA 94720-3411; twong=astro.berkeley.edu Received 5 February 1998; revised 1998 July 8 ABSTRACT We investigate the relationship between the spatial distributions of stellar populations and of neutral and ionized gas in the Local Group dwarf irregular galaxy Sextans A. This galaxy is currently experi- encing a burst of localized star formation, the trigger of which is unknown. We have resolved various populations of stars via deepUBV (RI) imaging over an area with [email protected]. We have compared our photometry with theoretical isochronesC appropriate for Sextans A, in order to determine the ages of these populations. We have mapped out the history of star formation, most accurately for times [100 Myr. We Ðnd that star formation in Sextans A is correlated both in time and space, especially for the most recent([12 Myr) times. The youngest stars in the galaxy are forming primarily along the inner edge of the large H I shell. Somewhat older populations,[50 Myr, are found inward of the youngest stars. Progressively older star formation, from D50È100 Myr, appears to have some spatially coherent structure and is more centrally concentrated.
    [Show full text]
  • NASA Teacher Science Background Q&A
    National Aeronautics and Space Administration Science Teacher’s Background SciGALAXY Q&As NASA / Amazing Space Science Background: Galaxy Q&As 1. What is a galaxy? A galaxy is an enormous collection of a few million to several trillion stars, gas, and dust held together by gravity. Galaxies can be several thousand to hundreds of thousands of light-years across. 2. What is the name of our galaxy? The name of our galaxy is the Milky Way. Our Sun and all of the stars that you see at night belong to the Milky Way. When you go outside in the country on a dark night and look up, you will see a milky, misty-looking band stretching across the sky. When you look at this band, you are looking into the densest parts of the Milky Way — the “disk” and the “bulge.” The Milky Way is a spiral galaxy. (See Q7 for more on spiral galaxies.) 3. Where is Earth in the Milky Way galaxy? Our solar system is in one of the spiral arms of the Milky Way, called the Orion Arm, and is about two-thirds of the way from the center of the galaxy to the edge of the galaxy’s starlight. Earth is the third planet from the Sun in our solar system of eight planets. 4. What is the closest galaxy that is similar to our own galaxy, and how far away is it? The closest spiral galaxy is Andromeda, a galaxy much like our own Milky Way. It is 2. million light-years away from us.
    [Show full text]
  • High-Redshift Quasars and the Epoch of Reionization
    High-redshift quasars and the epoch of reionization Xiaohui Fan (University of Arizona) Feige Wang, Jinyi Yang and collaborators AAS Jan 2021 Probing early universe with high-redshift quasars • Epoch of the first luminous quasars: • can we reach z>10? • Growth of early supermassive black holes: • massive BH seed needed? • Environment of early quasars: • do they live in the most overdense environment and most massive galaxies? • History of reionization: • when? sources? uniform or patchy? The Highest Redshift Frontier Now Infrared Optical Moutai z=7.64, Wang, Yang, XF 2021 Pisco z=7.54, Bañados et al. 2018 Pōniuāʻena z=7.52, Yang, Wang, XF et al. 2020 Radio Deep into the Reionization Epoch Quasars at the End of Reionization Reionization-Era Quasars From 2000 to 2010 From 2011 to Now New Redshift Record Holder: J0313-1806 at z=7.64 BH Mass: 1.6x10^9 M_sun Wang et al. 2021 Constraints on BH seeds Wang et al. 2021 Co-evolution of BHs and galaxies? Or not? • Kinematics from ALMA/[CII] with sub-kpc spatial resolution • Diversity in host galaxy properties • SFR ~100 - few x1000 M_sun/yr -> sites of massive galaxy assembly • But with modest dynamical mass: Shao et al.2018 • on average ~order of mag below local M-sigma relation • No strong correlation between BH and SFR/mass of hosts Decarli et al. 2018 • Wang et al. 2019 Wang+21 Patchy Reionization? z=7.5: weak Ly a damping wing Evolution of neutral fraction Universe Age (Gyr) 1.2 1.1 1.0 0.9 0.8 0.7 1.0 McGreer+2015 Davies+2018 0.8 Wang+2020 i This Work HI x 0.6 h 0.4 0.2 z=7.0: strong Ly a damping
    [Show full text]