Prostaglandins and the Initiation of Blastocyst Implantation and Decidualization

Total Page:16

File Type:pdf, Size:1020Kb

Prostaglandins and the Initiation of Blastocyst Implantation and Decidualization REPRODUCTIONREVIEW Prostaglandins and the initiation of blastocyst implantation and decidualization Thomas G Kennedy1,2, Carolina Gillio-Meina1 and Sen Han Phang1 Departments of 1Physiology and Pharmacology and 2Obstetrics and Gynaecology, The University of Western Ontario, London, Ontario, N6A 5C1 Canada Correspondence should be addressed to T G Kennedy; Email: [email protected] Abstract The process of blastocyst implantation in mammals is remarkably variable, especially in the extent of trophoblast invasion of the endometrium. In most species studied, the earliest macroscopically identifiable sign of blastocyst implantation is an increase in endometrial vascular permeability in areas adjacent to the blastocysts. This is followed in species with invasive implantation by decidualization, again localized to areas adjacent to the blastocysts. In some species, the application of a stimulus to the endometrium can result in increased endometrial vascular permeability and decidualization. Based initially on studies utilizing inhibitors of prostaglandin (PG) synthesis and more recently on studies using the techniques of transgenics, considerable evidence has accumulated indicating that PGs have an important role in the early events of implantation and artificially induced decidualization. However, which PGs are involved remains controversial. There may be differences between species, and different PGs may be involved at different times. Reproduction (2007) 134 635–643 Introduction trophoblast invasion of the endometrium. In some species there is little or no invasion of trophoblast cells While many different molecules have been implicated in into the endometrium, whereas in others the invasion is the signaling that occurs between the embryo and the extensive (Psychoyos 1973). In those species with no or endometrium at the initiation of implantation, this limited invasion, the endometrium undergoes little review will concentrate on the role of prostaglandins (PGs). More is known about the role of PGs in change in response to implantation. By contrast, in implantation in rodents than in other species, and those species with extensive invasion, the endometrium consequently this is the focus. In addition, the involve- undergoes substantial morphological and functional ment of PGs in artificially induced decidualization is changes referred to as the decidual transformation of reviewed because this reaction has been widely and the endometrium. In most species, this transformation profitably used as a model of implantation. primarily involves the endometrial stroma and is localized to implantation sites. The fibroblastic stromal cells proliferate and differentiate into decidual cells, Initiation of implantation and decidualization which ultimately form the maternal component of the placenta. Implantation of the embryo involves a complex series of In all species investigated – with the exception of sequential interactions between the embryo and the humans – there is an increase in the endometrial uterus, beginning with attachment of the blastocyst to the luminal epithelium of the endometrium and ending with vascular permeability localized to areas adjacent to the blastocysts (Psychoyos 1973). In mice and rats, this the formation of the definitive placenta (see Fig. 1 for the w timing of events in the rat). Embryo–endometrial occurs 4–8 h after the initial blastocyst attachment, is interactions can only be initiated when the embryo and the first macroscopically identifiable event in implan- the endometrium have reached a precise stage of tation, and is commonly taken as defining the beginning maturity; the embryo must be at the blastocyst stage, of implantation. The increase in endometrial vascular and hormone-dependent changes leading to the permeability is thought to be an essential prerequisite for development of a ‘receptive’ endometrium must have decidualization. The localized nature of the endometrial occurred (Psychoyos 1973). vascular permeability response and subsequent decid- The process of blastocyst implantation in mammals is ualization suggests that they occur in response to remarkably variable, especially in the extent of interactions between the embryo and the endometrium. q 2007 Society for Reproduction and Fertility DOI: 10.1530/REP-07-0328 ISSN 1470–1626 (paper) 1741–7899 (online) Online version via www.reproduction-online.org Downloaded from Bioscientifica.com at 09/24/2021 08:45:00PM via free access 636 T G Kennedy and others Figure 1 Timing of events occurring early in pregnancy in the rat. For mice, uterine closure and the increased endometrial vascular permeability occur w18 h earlier. Signaling between the embryo and the endometrium phenomenon of uterine ‘closure’ which results from the removal of fluid from the uterine lumen in the peri- What is the nature of the signals interchanged between implantation period, thereby bringing the embryo into the embryo and the endometrium? Many different close contact with the luminal epithelium (Martin et al. molecules have been implicated (for reviews, see Paria 1970, Hedlund et al.1972, Ljungkvist 1972). The et al. 2002, Dey et al. 2004). However, it is possible that intimate contact between trophoblastic and epithelial the primary signal given by the blastocyst may be cells that results may be sufficient to signal the presence physical rather than chemical in nature. The fact that a of the blastocyst. Finn & Porter (1975) have summarized variety of non-specific stimuli applied to the endome- the evidence against the initial signal being physical, but trium of rodents and some other species at an did not take into account the possibility that the appropriate time will increase endometrial vascular blastocyst may have an active role in physically permeability and result in decidualization suggests that perturbing the luminal epithelium. When cultured the endometrium is able to produce many, if not all, of in vitro, rat and mouse blastocysts undergo repetitive the signaling molecules involved. In addition, in the contractions and dilations (Cole 1967, Bitton-Casimiri human a conceptus does not have to be present to et al. 1970, Hurst & MacFarlane 1981). If these initiate decidualization; it begins ‘spontaneously’ in the contractions and dilations also occur in vivo, they will late luteal phase of the menstrual cycle with the presumably amplify the physical signal resulting from the differentiation of ‘predecidual cells’ (Kennedy 2003). close contact between the blastocyst and the luminal An exposure of the endometrium to progesterone epithelium. beyond the normal nonpregnant luteal phase results If the initial signal is physical in nature, it will then in a decidual transformation of the endometrium. be necessary for the luminal epithelial cells to convey Presumably because a signal from the embryo is not the signal to the endometrial stroma since it is the required for the initiation of decidualization, the stroma that is vascularized and undergoes deciduali- transformation in the human uterus is generalized rather zation. This would require the conversion of the than localized to the site of implantation. physical signal to a chemical signal by the epithelial Ultrastructural studies of the early stages of implan- cells. In vivo, the luminal epithelium has an essential tation have demonstrated physical interactions between role in decidualization as indicated by the work of trophoblastic cells of the blastocyst and endometrial Ferrando & Nalbandov (1968) and Lejeune et al. luminal epithelial cells. The endometrial vascular (1981), which demonstrated that if the luminal permeability response is preceded by interdigitation of epithelium is destroyed or removed, decidualization microvilli on trophoblastic and epithelial cells, followed cannot be obtained in response to stimuli that would by broad areas of apposition of cell membranes otherwise be deciduogenic. These observations are (Parkening 1976, Enders & Schlafke 1979, Segalen & consistent with the concept that the luminal epi- Chambon 1983). These interactions between the blas- thelium responds to natural and artificial deciduo- tocyst and the endometrium are facilitated by the genic stimuli with the production of compounds Reproduction (2007) 134 635–643 www.reproduction-online.org Downloaded from Bioscientifica.com at 09/24/2021 08:45:00PM via free access Prostaglandins and implantation/decidualization 637 which then result in decidualization. Whether an In addition, the concentrations of PGs are elevated in increase in endometrial vascular permeability can be the areas of increased endometrial vascular permeability obtained in the absence of the luminal epithelium is associated with the initiation of implantation not known. (Kennedy 1977, Evans & Kennedy 1978, Kennedy & Zamecnik 1978, Sharma 1979, Lim et al. 1999, Wang et al. 2004b) and exogenous PGs can reverse, at least PG synthesis and action partially, the effects of indomethacin on implantation (Oettel et al. 1979, Holmes & Gordashko 1980, Garg & PGs are widely produced in mammalian cells from free Chaudhury 1983). arachidonic acid (reviewed by Simmons et al. 2004). In species in which the application of a deciduogenic Arachidonic acid is present mainly in membrane stimulus to the sensitized uterus induces decidualiza- phospholipids and is released from these by the action tion, the extent of the decidual response and the increase of phospholipases, principally phospholipase A2. in endometrial vascular permeability which precedes it Arachidonic acid can be converted
Recommended publications
  • Decidualization and Syndecan-1 Knock Down Sensitize Endometrial Stromal Cells to Apoptosis Induced by Embryonic Stimuli
    RESEARCH ARTICLE Decidualization and Syndecan-1 Knock Down Sensitize Endometrial Stromal Cells to Apoptosis Induced by Embryonic Stimuli Sarah Jean Boeddeker1*, Dunja Maria Baston-Buest1, Tanja Fehm2, Jan Kruessel1, Alexandra Hess1 1 Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility (UniKiD), Medical Center University of Duesseldorf, Duesseldorf, Germany, 2 Department of Obstetrics and Gynecology, Medical Center University of Duesseldorf, Duesseldorf, Germany a11111 * [email protected] Abstract Human embryo invasion and implantation into the inner wall of the maternal uterus, the en- OPEN ACCESS dometrium, is the pivotal process for a successful pregnancy. Whereas disruption of the en- Citation: Boeddeker SJ, Baston-Buest DM, Fehm T, dometrial epithelial layer was already correlated with the programmed cell death, the role of Kruessel J, Hess A (2015) Decidualization and apoptosis of the subjacent endometrial stromal cells during implantation is indistinct. The Syndecan-1 Knock Down Sensitize Endometrial aim was to clarify whether apoptosis plays a role in the stromal invasion and to characterize Stromal Cells to Apoptosis Induced by Embryonic Stimuli. PLoS ONE 10(4): e0121103. doi:10.1371/ if the apoptotic susceptibility of endometrial stromal cells to embryonic stimuli is influenced journal.pone.0121103 by decidualization and Syndecan-1. Therefore, the immortalized human endometrial stro- Academic Editor: Zeng-Ming Yang, South China mal cell line St-T1 was used to first generate a new cell line with a stable Syndecan-1 knock Agricultural University, CHINA down (KdS1), and second to further decidualize the cells with progesterone. As a replace- Received: November 12, 2014 ment for the ethically inapplicable embryo all cells were treated with the embryonic factors and secretion products interleukin-1β, interferon-γ, tumor necrosis factor-α, transforming Accepted: February 9, 2015 growth factor-β1 and anti-Fas antibody to mimic the embryo contact.
    [Show full text]
  • Organoid Systems to Study the Human Female Reproductive Tract and Pregnancy
    Cell Death & Differentiation (2021) 28:35–51 https://doi.org/10.1038/s41418-020-0565-5 REVIEW ARTICLE Organoid systems to study the human female reproductive tract and pregnancy 1 1 1,2 Lama Alzamil ● Konstantina Nikolakopoulou ● Margherita Y. Turco Received: 4 February 2020 / Revised: 24 April 2020 / Accepted: 15 May 2020 / Published online: 3 June 2020 © The Author(s) 2020. This article is published with open access Abstract Both the proper functioning of the female reproductive tract (FRT) and normal placental development are essential for women’s health, wellbeing, and pregnancy outcome. The study of the FRT in humans has been challenging due to limitations in the in vitro and in vivo tools available. Recent developments in 3D organoid technology that model the different regions of the FRT include organoids of the ovaries, fallopian tubes, endometrium and cervix, as well as placental trophoblast. These models are opening up new avenues to investigate the normal biology and pathology of the FRT. In this review, we discuss the advances, potential, and limitations of organoid cultures of the human FRT. 1234567890();,: 1234567890();,: Facts Open questions ● The efficient and coordinated function of the FRT is ● How well do FRT organoids model the cellular essential for reproduction and women’s wellbeing. heterogeneity of the tissue of origin? Perturbations in these processes are the cause of a range ● Are the different cell states across the menstrual cycle of disorders from infertility to cancer. represented in the FRT organoid models? ● Organoids can be derived from healthy and pathological ● What are the signaling pathways and transcriptional tissues of the FRT.
    [Show full text]
  • The Pseudopregnant Uterus P
    Viability of \g=a\-momorcharin-treatedmouse blastocysts in the pseudopregnant uterus P. P. L. Tam, W. Y. Chan and H. W. Yeung Departments of Anatomy and *Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Summary. Mouse morulae and early blastocysts developed normally to the late blasto- cyst stage in the presence of \g=a\-momorcharinin culture. When these embryos were transferred to a pseudopregnant uterus, they showed a poor ability to induce the decidual reaction and many failed to implant. Those that had implanted showed retarded embryonic development and many implantation sites contained only tropho- blastic giant cells and extraembryonic membranes. Implantation of blastocysts was inhibited when the recipient animal was given \g=a\-momorcharinat the time of embryo transfer. We suggest that termination of early pregnancy by \g=a\-momorcharinis the result of the deleterious effect of the protein on the implanting embryos and the endo- metrium. Introduction A plant protein, -trichosanthin, which is isolated from Trichosanthes kirilowii has been used clinically in China for the termination of pregnancy. Although this agent is very effective in inducing mid-term abortion, side effects such as induced hypersensitivity are often observed in the treated women (Anon, 1976; Zhong & Wang, 1983). Recent effort is directed towards the search for alternative abortifacients as well as the use of these agents in early pregnancy. In our laboratory, a glycoprotein named a-momorcharin was purified from Momordica charantia which is related botanically to Trichosanthes. When a-momorcharin was administered intraperitoneally to pregnant mice on Days 1-6 of gestation, the incidence of implantation was significantly reduced (Law, Tarn & Yeung, 1983 ; Tarn, Law & Yeung, 1984).
    [Show full text]
  • Pregnancy-Related Extracellular Vesicles Revisited
    International Journal of Molecular Sciences Review Pregnancy-Related Extracellular Vesicles Revisited Carmen Elena Condrat 1,2, Valentin Nicolae Varlas 3,* , Florentina Duică 2, Panagiotis Antoniadis 4 , 2 2,5 2,6,7 5, Cezara Alina Danila , Dragos Cretoiu , Nicolae Suciu , Sanda Maria Cret, oiu * and Silviu Cristian Voinea 8 1 Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; [email protected] 2 Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; fl[email protected] (F.D.); [email protected] (C.A.D.); [email protected] (D.C.); [email protected] (N.S.) 3 Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 011171 Bucharest, Romania 4 Division of Molecular Diagnostics and Biotechnology, Antisel RO SRL, 024095 Bucharest, Romania; [email protected] 5 Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania 6 Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania 7 Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania 8 Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania; [email protected] Citation: Condrat, C.E.; Varlas, V.N.; * Correspondence: [email protected] (V.N.V.); [email protected] (S.M.C.) Duic˘a,F.; Antoniadis, P.; Danila, C.A.; Cretoiu, D.; Suciu, N.; Cret,oiu, S.M.; Abstract: Extracellular vesicles (EVs) are small vesicles ranging from 20–200 nm to 10 µm in diameter Voinea, S.C.
    [Show full text]
  • 57 Clinical Immunology Laboratory
    Clinical Immunology Laboratory TEST: Decidualization Score test PRINCIPLE: Molecular testing of endometrial biopsy samples for women with reproductive failures is important for evaluation of uterine receptivity and for a personalized therapeutic strategy [1, 2]. The test is based on molecular analysis of six factors that are associated and essential for decidualization: FOXO1, GZMB, IL15, SCNN1A, SGK1 and SLC2A1 [3-7]. The Decidualization score reflects how many of these factors are expressed at normal range in the tested sample. The Normal Decidualization score is “>4”. The score “4” is Borderline Normal. The score“<4 is Low Decidualization score. This test (Decidualization Score test) helps to determine if the molecular profile in endometrium is implantation friendly and could be used for selecting patients that require therapeutic actions to improve endometrial condition before IVF –ET procedure. SPECIMEN REQUIREMENTS: Endometrial biopsy sample obtained according to a standard procedure with a Pipelle catheter or similar. Natural cycle: take the biopsy 7 to 9 days after the LH surge. The day of the LH surge is considered as LH+0, and the biopsy will be taken at LH+7-9. The best way to identify the LH surge is with the urinary LH tests. Hormone Replacement Therapy cycle: upon initiation of an HRT cycle, take the biopsy after 5 full days of progesterone treatment. The day for the first intake of progesterone is considered as P+0 and the day of the biopsy is P+5. About 30-50 milligrams of tissue is required for analysis (for illustration purposes, this equates to one or two cubes of approximately 3x3 millimeters).
    [Show full text]
  • The Role of Endometrial Stem Cells in Recurrent Miscarriage
    REPRODUCTIONREVIEW Success after failure: the role of endometrial stem cells in recurrent miscarriage Emma S Lucas1,2, Nigel P Dyer3, Katherine Fishwick1, Sascha Ott2,3 and Jan J Brosens1,2 1Division of Biomedical Sciences, Warwick Medical School, Coventry, UK, 2Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK and 3Warwick Systems Biology Centre, University of Warwick, Coventry, UK Correspondence should be addressed to J Brosens; Email: [email protected] Abstract Endometrial stem-like cells, including mesenchymal stem cells (MSCs) and epithelial progenitor cells, are essential for cyclic regeneration of the endometrium following menstrual shedding. Emerging evidence indicates that endometrial MSCs (eMSCs) constitute a dynamic population of cells that enables the endometrium to adapt in response to a failed pregnancy. Recurrent miscarriage is associated with relative depletion of endometrial eMSCs, which not only curtails the intrinsic ability of the endometrium to adapt to reproductive failure but also compromises endometrial decidualization, an obligatory transformation process for embryo implantation. These novel findings should pave the way for more effective screening of women at risk of pregnancy failure before conception. Reproduction (2016) 152 R159–R166 Introduction Successful implantation of a human embryo is commonly date (Fragouli et al. 2013), each implanting blastocyst attributed to binary variables; i.e. nidation of a ‘normal’, is arguably unique. Furthermore, transient aneuploidy but not an ‘abnormal’, embryo in a ‘receptive’, but during development may not be unequivocally as not a ‘non-receptive’, endometrium is required for ‘bad’ as has been intuitively presumed because of the a successful pregnancy.
    [Show full text]
  • Intercellular Junctions Between Decidual Cells in the Growing
    BIOLOGY OF REPRODUCTION 15, 593-603 (1976) Intercellular Junctions Between Decidual Cells in the Growing Deciduoma of the Pseudopregnant Rat Uterus’ RUTH G. KLEINFELD, HENRY A. MORROW and VINCENT J. DeFEO Department of Anatomy and Reproductive Biology, The John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96822 Downloaded from https://academic.oup.com/biolreprod/article/15/5/593/2768190 by guest on 01 October 2021 ABSTRACT The appearance of gap junctions between decidual cells and the restructuring of the intercellular matrix of the endometrium was studied by electron microscopy in the developing primary deciduoma of the pseudopregnant rat uterus. Decidualization was induced by intraluminal injection of Hanks balanced salt solution at the time of peak sensitivity (Day 4). The progression of decidualization was followed through Day 9 of pseudopregnancy. At the time of sensitivity the periluminal stromal cells of the antimesometrial region are surrounded by an abundant collagenous matrix and there are relatively few contacts between processes of neighboring cells. When junctions exist they are of the maculae adherentes type. On the day following the deciduogenic stimulus (Day 5) contacts between cells are numerous and gap junctions are present. The presence of gap junctions between the early differentiating decidual cells suggests that cell to cell communication may be involved in the spread of decidualization. As decidualization progresses a rapid reduction in the amount of intercellular matrix occurs. With continued growth extensive infoldin and interdigitations of the plasma membranes develop between adjoining decidual cells forming a complex membranous labyrinth. Numerous gap junctions are present involving extensive areas of the cell surfaces.
    [Show full text]
  • Embryo–Epithelium Interactions During Implantation at a Glance John D
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 15-22 doi:10.1242/jcs.175943 SPECIAL ISSUE 3D CELL BIOLOGY CELL SCIENCE AT A GLANCE Embryo–epithelium interactions during implantation at a glance John D. Aplin* and Peter T. Ruane ABSTRACT specific adhesion molecules. We compare the rodent data with our At implantation, with the acquisition of a receptive phenotype in the much more limited knowledge of the human system, where direct uterine epithelium, an initial tenuous attachment of embryonic mechanistic evidence is hard to obtain. In the accompanying poster, – trophectoderm initiates reorganisation of epithelial polarity to enable we represent the embryo epithelium interactions in humans and stable embryo attachment and the differentiation of invasive laboratory rodents, highlighting similarities and differences, as well as trophoblasts. In this Cell Science at a Glance article, we describe depict some of the key cell biological events that enable interstitial cellular and molecular events during the epithelial phase of implantation to occur. implantation in rodent, drawing on morphological studies both in vivo and in vitro, and genetic models. Evidence is emerging for a repertoire of transcription factors downstream of the master steroidal KEY WORDS: Adhesion, Blastocyst, Endometrium, Epithelium, regulators estrogen and progesterone that coordinate alterations in Trophoblast epithelial polarity, delivery of signals to the stroma and epithelial cell death or displacement. We discuss what is known of the cell Introduction interactions that occur during implantation, before considering Implantation is the stage of pregnancy at which stable adhesion is initiated between the embryo and maternal tissue. Blastocyst-stage embryos hatch from the zona pellucida, exposing trophectoderm – Maternal and Fetal Health Research Group, Manchester Academic Health Sciences Centre, St Mary’s Hospital, University of Manchester, Manchester M13 which forms the primary interface with the endometrial epithelium.
    [Show full text]
  • Uterine Activin Receptor-Like Kinase 5 Is Crucial for Blastocyst Implantation and Placental Development
    Uterine activin receptor-like kinase 5 is crucial for blastocyst implantation and placental development Jia Penga,b,c, Diana Monsivaisa,c, Ran Youa, Hua Zhonga, Stephanie A. Pangasa,c,d, and Martin M. Matzuka,b,c,d,e,1 aDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; bDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; cCenter for Drug Discovery, Baylor College of Medicine, Houston, TX 77030; dDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and eDepartment of Pharmacology, Baylor College of Medicine, Houston, TX 77030 Contributed by Martin M. Matzuk, July 23, 2015 (sent for review May 5, 2015; reviewed by Thomas E. Spencer and Haibin Wang) Members of the transforming growth factor β (TGF-β) superfamily and secondary trophoblast giant cells. Thus, the mature placenta are key regulators in most developmental and physiological pro- is composed of the outer maternal decidua, the middle junc- cesses. However, the in vivo roles of TGF-β signaling in female tional zone (including spongiotrophoblasts and trophoblast giant reproduction remain uncertain. Activin receptor-like kinase 5 (ALK5) cells), and the innermost labyrinth (3). At midgestation, uterine is the major type 1 receptor for the TGF-β subfamily. Absence of natural killer (uNK) cells are the most abundant subset of lym- ALK5 leads to early embryonic lethality because of severe defects phocytes found in implantation sites (4). In mice, a few uNK cells in vascular development. In this study, we conditionally ablated are first detected at 5 dpc, the onset of decidualization, and uterine ALK5 using progesterone receptor-cre mice to define the substantially increase in the decidua basalis until midgestation physiological roles of ALK5 in female reproduction.
    [Show full text]
  • Uterine Disorders and Pregnancy Complications: Insights from Mouse Models
    Uterine disorders and pregnancy complications: insights from mouse models Hyunjung Jade Lim, Haibin Wang J Clin Invest. 2010;120(4):1004-1015. https://doi.org/10.1172/JCI41210. Review Series Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debatable whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipulated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identified many similarities in female reproduction between the two species. This Review brings together information from studies using animal models, in particular mouse models, that shed light on normal and pathologic aspects of uterine biology and pregnancy complications. Find the latest version: https://jci.me/41210/pdf Review series Uterine disorders and pregnancy complications: insights from mouse models Hyunjung Jade Lim1 and Haibin Wang2 1Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Research Center for Transcription Control, Konkuk University, Seoul, Korea. 2State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debat- able whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipu- lated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identi- fied many similarities in female reproduction between the two species.
    [Show full text]
  • Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical Implications
    cells Review Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical Implications Hans-Werner Denker Universitätsklinikum, Institut für Anatomie, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany; [email protected] Abstract: The experimental production of complex structures resembling mammalian embryos (e.g., blastoids, gastruloids) from pluripotent stem cells in vitro has become a booming research field. Since some of these embryoid models appear to reach a degree of complexity that may come close to viability, a broad discussion has set in with the aim to arrive at a consensus on the ethical implications with regard to acceptability of the use of this technology with human cells. The present text focuses on aspects of the gain of organismic wholeness of such stem cell-derived constructs, and of autonomy of self-organization, raised by recent reports on blastocyst-like cysts spontaneously budding in mouse stem cell cultures, and by previous reports on likewise spontaneous formation of gastrulating embryonic disc-like structures in primate models. Mechanisms of pattern (axis) formation in early embryogenesis are discussed in the context of self-organization of stem cell clusters. It is concluded that ethical aspects of development of organismic wholeness in the formation of embryoids need to receive more attention in the present discussions about new legal regulations in this field. Keywords: stem cells; embryoids; blastoids; gastruloids; blastocyst; expanded potential stem cells; development; morphogenesis; self-organization; ethics Citation: Denker, H.-W. Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical 1. Introduction Implications.
    [Show full text]
  • European Society of Human Reproduction and Embryology
    European Society of Human Reproduction and Embryology COURSE 4 Implantation Special Interest Group Early Pregnancy Sepcial Interest Group Endometriosis and Endometrium 18 June 2006 Prague - Czech Republic Contents Program page 2 Submitted contributions Mediators of implantation - P. Bischof (CH) page 3 Molecular mechanisms of decidualization - J. Brosens (UK) page 7 Genomics of human endometrial receptivity - J. Horcajadas (E) page 12 The role of the endometrium in early pregnancy nutrition – G. Burton (UK) page 17 Time of implantation - D. Baird (USA) page 21 Implantation and recurrent miscarriage, clinical aspects – S. Quenby (UK) page 30 Myometrial contractility and implantation - D. De Ziegler (CH) (UK) page 34 1 Course 4 - A joint pre-congress course organised by the Special Interest Groups Early Pregnancy and the Special Interest Group Endometriosis and Endometrium “Implantation” PROGRAM Course Coordinators: SIG Early Pregnancy: E. Jauniaux (UK) N. Exalto (NL), SIG Endometrium and Endometriosis: T. D’Hooghe (B), J. Horcajadas (E) Course description: An update on basic and clinical aspects of implantation. 09.00 - 09.45 Mediators of implantation - P. Bischof (CH) 09.45 - 10.30 Endometrial cell-surface barrier - TBA 10.30 - 11.00 Coffee break 11.00 - 11.30 Molecular mechanisms of decidualization - J. Brosens (UK) 11.30 - 12.00 Genomics of human endometrial receptivity - J. Horcajadas (E) 12.00 - 12.30 The role of the endometrium in early pregnancy nutrition – G. Burton (UK) 12.30 - 13.30 Lunch 13.30 - 14.15 Time of implantation - D. Baird (USA) 14.15 - 15.00 Role of ultrasound in endometrial evaluation - D. Timmerman (B) 15.00 - 15.30 Coffee break 15.30 - 16.15 Implantation and recurrent miscarriage, clinical aspects – S.
    [Show full text]