MNRAS 000,1–18 (2020) Preprint 26 November 2020 Compiled using MNRAS LATEX style file v3.0

The accretion rates and mechanisms of Herbig Ae/Be

C. Wichittanakom,1,2★ R. D. Oudmaijer,2 J. R. Fairlamb,3 I. Mendigutía,4 M. Vioque,2 and K. M. Ababakr5 1Department of Physics, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Pathum Thani 12120, Thailand 2School of Physics and Astronomy, EC Stoner Building, University of Leeds, Leeds LS2 9JT, UK 3Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI, 96822, USA 4Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, ESA-ESAC Campus, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain 5Erbil Polytechnic University, Kirkuk Road, Erbil, Iraq

Accepted for publication in MNRAS 493, 234–249 (2020). Accepted 2020 January 07. Received 2020 January 01; in original form 2019 October 09

ABSTRACT This work presents a spectroscopic study of 163 Herbig Ae/Be stars. Amongst these, we present new data for 30 objects. Stellar parameters such as temperature, reddening, mass, and age are homogeneously determined. Mass accretion rates are determined from H훼 emission line measurements. Our data is complemented with the X-Shooter sample from previous studies and we update results using DR2 parallaxes giving a total of 78 objects with homogeneously determined stellar parameters and mass accretion rates. In addition, mass accretion rates of an additional 85 HAeBes are determined. We confirm previous findings that the mass accretion rate increases as a function of , and the existence of a different slope for lower and higher mass stars respectively. The mass where the slope changes is +1.37 determined to be 3.98−0.94 M . We discuss this break in the context of different modes of disk accretion for low- and high mass stars. Because of their similarities with T Tauri stars, we identify the accretion mechanism for the late-type Herbig stars with the Magnetospheric Accretion. The possibilities for the earlier-type stars are still open, we suggest the Boundary Layer accretion model may be a viable alternative. Finally, we investigated the mass accretion - age relationship. Even using the superior Gaia based data, it proved hard to select a large enough sub-sample to remove the mass dependency in this relationship. Yet, it would appear that the mass accretion does decline with age as expected from basic theoretical considerations. Key words: accretion, accretion discs – stars: formation – stars: fundamental parameters – stars: pre-main-sequence – stars: variables: T Tauri, Herbig Ae/Be – techniques: spectroscopic

1 INTRODUCTION surface (Kahn 1974). Moreover, they form very quickly and reach the main sequence before their surrounding cloud disperses (Palla Herbig Ae/Be stars (HAeBes) are optically visible intermediate pre- & Stahler 1993). This suggests that their evolutionary processes are main sequence (PMS) stars whose masses range from about 2 to very different from T Tauri stars. 10 M . These PMS stars were first identified by Herbig(1960), using three criteria: “Stars with spectral type A and B with emis- The accretion onto classical T Tauri low-mass stars is magneti- arXiv:2001.05971v2 [astro-ph.SR] 25 Nov 2020 sion lines; lie in an obscured region; and illuminate fairly bright cally controlled. The magnetic field from the truncates material nebulosity in its immediate vicinity”. HAeBes play an important in the disc and from this point, material falls onto the star along role in understanding massive star formation, because they bridge the field line. After matter hits the photosphere, it produces X-ray the gap between low-mass stars whose formation is relatively well radiation that is absorbed by surrounding particles. Then, these par- understood, and high-mass stars whose formation is still unclear. ticles heat up and re-radiate at ultraviolet wavelengths, producing The study of their formation is not well understood as massive an UV-excess that can be observed and from which the accretion stars are very rare and as a consequence on average far away, and luminosity can be calculated (Bouvier et al. 2007; Hartmann et al. often optically invisible (Lumsden et al. 2013). A long standing 2016). It was found later, that a correlation between the line lumi- problem has also been that their brightness is very high, such that nosity and the accretion luminosity exists, allowing accretion rates radiation pressure can in principle stop accretion onto the stellar of classical T Tauri stars to be determined from the UV-excess and absorption line veiling (Calvet et al. 2004; Ingleby et al. 2013). HAeBes have similar properties as classical T Tauri stars, for ★ E-mail: [email protected] (CW) instance having emission lines, UV-excess, a lower surface gravity

© 2020 The Authors 2 C. Wichittanakom et al. than main-sequence stars (Hamann & Persson 1992; Vink et al. and a discussion respectively. Section 7 provides a summary of the 2005) and they are usually identified by an infrared (IR) excess main conclusions of this paper. from circumstellar discs (Van den Ancker et al. 2000; Meeus et al. 2001). Because their envelopes are radiative, no magnetic field is expected to be generated in HAeBe stars as this usually happens 2 OBSERVATIONS AND DATA REDUCTION in stars by convection. Indeed, magnetic fields have rarely been detected towards them (Catala et al. 2007; Alecian et al. 2013). As a 2.1 IDS and sample selection result magnetically controlled accretion is not necessarily expected The data were collected in June 2013 using the Intermediate Disper- to apply in the case of the most massive objects, requiring another sion Spectrograph (IDS) instrument and the RED+2 CCD detector accretion mechanism. However, how the material arrives at the with 2048 × 4096 pixels (pixel size 24 휇m), which is attached to the stellar surface in the absence of magnetic fields is still unclear. Cassegrain focus of the 2.54-m Isaac Newton Telescope (INT) at the Several lines of evidence have indicated a difference between Observatorio del Roque de los Muchachos, La Palma, Spain. The the lower mass Herbig Ae and higher mass Herbig Be stars. Spec- observations spanned six nights between the 20th and the 25th June tropolarimetric studies suggest that Herbig Ae stars and T Tauri 2013. Bias frames, flat field frames, object frames and arc frames stars may form in the same process (Vink et al. 2005; Ababakr et al. of Cu-Ar and Cu-Ne comparison lamp were taken each night to 2017). Accretion rates of HAeBes are determined from the mea- prepare for the data reduction. surement of UV-excess (Mendigutía et al. 2011b) who have found In the first two nights the spectrograph was set up with a that the relationship between the line luminosity and the accretion 1200 lines mm−1 R1200B diffraction grating and a 0.9 or 1.0 arc- luminosity is similar to the classical T Tauri stars. A spectroscopic second wide slit in order to obtain spectra across the Balmer dis- variability study suggests that a Herbig Ae star is undergoing mag- continuity. The wavelength coverage was 3600–4600 Å, centred at netospheric accretion in the same manner as classical T Tauri stars 4000.5 Å. In this range the hydrogen lines of H훾, H훿, H(7-2), H(8- (Schöller et al. 2016) while Mendigutía et al.(2011a) find the Herbig 2), H(9-2) and H(10-2) can be analysed. This combination provides Be stars to have different H훼 variability properties than the Herbig a reciprocal dispersion of 0.53 Å pixel−1 with a spectral resolution Ae stars. Therefore, magnetically influenced accretion in HAeBes of ∼ 1 Å and a resolving power of 푅 ∼ 4000. would still be possible. A study employing X-shooter spectra for 91 For the next two nights the R1200Y grating was used to observe HAeBes was carried out by Fairlamb et al.(2015, 2017, hereafter spectra in the visible. Its spectral range covers 5700 to 6700 Å, F15 and F17 respectively). They determined the stellar parameters centred at 6050.4 Å. This range includes the He i line at 5876 Å, in a homogenous fashion, derived mass accretion rates from the the [O i ] line and the H훼 line at 6562 Å. This setup results in UV-excess and found the relationship between accretion luminosity 휆6300 a reciprocal dispersion of 0.52 Å pixel−1 and a resolving power of and line luminosity for 32 emission lines in the range 0.4–2.4 휇m. 푅 ∼ 6500. The final 2 nights used the R1200R grating to observe 47 objects in their sample were taken from Thé et al.(1994, table the spectral range of 8200–9200 Å, centred at 8597.2 and 8594.4 Å. 1), which to this date contains the strongest (candidate) members This range covers the O i line at 8446 Å, all lines of the Ca ii triplet of the group. The Fairlamb papers were published before the Gaia and many lines of the Paschen series. With this setup the reciprocal parallaxes became available, and the distances used may need revi- dispersion becomes 0.51 Å pixel−1, giving a resolving power of sion as these can affect parameters such as the radius, luminosity, 푅 ∼ 9000. stellar mass and mass accretion rate. The sample consists of 45 targets, with 30 HAeBes, and 15 A Gaia astrometric study of 252 HAeBes was carried out standard stars. 26 Herbig stars were chosen from the catalogue of by Vioque et al.(2018) hereafter V18. They presented parallaxes Thé et al.(1994, table 1) and 4 from Vieira et al.(2003). About 67 per for all known HAeBes from the Gaia Data Release 2 (Gaia DR2) cent of HAeBes in the final sample are in the northern hemisphere. Catalogue (Gaia Collaboration et al. 2016, 2018). Also, they col- There are 7 HAeBes which are also in the sample of F15. Spectra of lected effective temperatures, optical and infrared photometry, vi- standard stars were observed each night for spectral comparisons. sual extinctions, H훼 equivalent widths, emission line profiles and A log of the observations of the 30 HAeBes is shown in Table1 binarities from the literature. They derived distances, , while a log of the observations of the standard stars is presented in masses, ages, infrared excesses, photometric variabilities for most Table A1 (See Appendix A in the online version of this paper). of their sample. This is the largest astrometric study of HAeBes to The data reduction was performed using the Image Reduc- date. These Gaia DR2 parallaxes are useful for improving the stellar tion and Analysis Facility (IRAF1). Standard procedures were used parameters of the previous studies. in order to process all frames. Generally, there are three steps of The main aim of this paper is to determine stellar parameters data reduction; bias subtraction, flat field division and wavelength and accretion rates of 30 Northern HAeBes using a homogeneous calibration. First, many bias frames were taken and averaged to re- approach, extending the mostly Southern F15 sample. In parallel, duce some noise and the bias level was removed from the CCD the results of F15 will be updated using the distances determined data. Next, flat field division was used to remove the variations of from the Gaia DR2 parallaxes and a redetermined extinction to- CCD signal in each pixel. All flat frames were averaged before sub- wards the objects. As such, this becomes the largest homogeneous tracting the bias. Then, all of the object frames were divided by spectroscopic analysis of HAeBes to date. In addition, the accretion the normalised flat-field frame in order to correct the pixel-to-pixel rates of HAeBes in the V18 study are determined for the 104 objects variation of the detector sensitivity. The object frame was extracted for which H훼 emission line equivalent widths are collected from to a one-dimensional spectrum by defining the extraction aperture the literature or determined from archival spectra. The structure of this paper is as follows. Section 2 presents the spectroscopic data observation of all targets. Details of observa- 1 IRAF is distributed by the National Optical Astronomy Observatory, tions, instrumental setups and reduction procedures are given in this which is operated by the Association of Universities for Research in As- section. Section 3 and 4 detail the determination of stellar parame- tronomy (AURA) under a cooperative agreement with the National Science ters and mass accretion rates. Sections 5 and 6 focus on the analysis Foundation.

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 3

on the centre of the profile and subtracting the sky background. wavelength of the synthetic profile using the IRAF DOPCOR task. Finally, the data were wavelength calibrated. The accuracy of the The effective temperature and surface gravity are obtained from the wavelength calibration is measured from an RMS of the fit and is fit of the normalised synthetic spectra to the normalised observed less than 10 per cent of the reciprocal dispersion (< 0.05 Å pixel−1). spectra by considering continuum features and the wings of the For illustration, the H훼 profiles of all 30 objects are displayed in profile above the normalised intensity of 0.8. This intensity was Figure B1 (See Appendix B in the online version of this paper). chosen because this part of the wings is sensitive to variation of the log(푔) while the central part of the profile of a Herbig Ae/Be star can be contaminated by emission. 3 STELLAR PARAMETERS AND MASS ACCRETION The width of the Balmer lines depends upon both effective RATE DETERMINATIONS temperature and surface gravity. Different combinations of 푇eff and log(푔), can create the same width. This degeneracy can be solved by Measurement of accretion rates requires accurate stellar parameters visual inspection of absorption features in the wings and continuum of the star in question. Therefore, this section aims to determine either side of the lines. The final value for the effective temperature accretion rates by first determining the stellar parameters, such as the and surface gravity are the average value of the best fit for each effective temperature, surface gravity, distance, radius, reddening, profile (H훾, H훿 and H휖). The uncertainties of 푇eff and log(푔) were luminosity, mass and age. These will be determined by combining chosen to be the typical difference in the values determined for the the IDS spectra, stellar model atmosphere grids, photometry from three lines respectively. If the standard error becomes zero or less the literature, the Gaia DR2 parallaxes and stellar isochrones. than that, the step size will be adopted. An example of spectral typing by fitting the Balmer line profile of HD 141569 (black) and the BOSZ model (blue) is demonstrated in Figure1. 3.1 Effective temperature and surface gravity To estimate the effective temperature of the target, a comparison of the known standard star spectra with the unknown target spectrum is performed. The list of standard stars including spectral types is shown in Table A1 (See Appendix A in the online version of this paper). The conversion from the spectral type to effective tempera- ture can be found from Straižys & Kuriliene(1981). Then, the range of effective temperatures was explored in more detail with spectra computed from model atmospheres. The model atmospheres used in this work are grids of BOSZ- Kurucz model atmospheres computed by Bohlin et al.(2017). The BOSZ models are calculated from ATLAS-APOGEE ATLAS9 (Mészáros et al. 2012) which came from the original ATLAS code version 9 (Kurucz 1993). The metallicity [M/H] = 0, carbon abun- dance [C/H] = 0, alpha-element abundance [훼/H] = 0, micro- turbulent velocity 휉 = 2.0 km s−1, rotational broadening velocity 푣 sin 푖 = 0.0 km s−1, and instrumental broadening 푅 = 5000 are adopted. This instrumental broadening is chosen for matching the resolution of the blue spectra. The range of effective temperature 푇eff is from 3500 K to 30000 K with steps of 250 K (from 3500 K to 12000 K), 500 K (from 12000 K to 20000 K) and 1000 K (from 20000 K to 30000 K). The range of surface gravity log(푔) is from 0.0 dex to 5.0 dex with steps of 0.5 dex. By using linear interpola- tion, log(푔) with steps of 0.1 dex were calculated. The procedure to obtain the effective temperature and surface gravity in this work follows the same method by F15. The effective temperature and surface gravity determination is carried out by primarily comparing the wings of the observed hydrogen Balmer lines H훾, H훿 and H휖 with synthetic profiles produced with solar metallicity from BOSZ models. The shapes of the hydrogen profiles are not very sensitive to metallicity (Bohlin et al. 2017) while their widths are dominated by pressure broadening, while rotation hardly affects the shapes. H훼 is not used for spectral typing because it is frequently strongly in emission for HAeBes. This phenomenon can affect the shape of the wings and cause difficulty of fitting the BOSZ models to target spectra. H훽 is also not used for spectral typing because it appears around the edge of the blue spectrum which makes a proper characterization of H훽’s line profile troublesome. In order to carry out the fitting, both the observed profiles and the synthetic profiles are normalised based on the continuum on both the blue and red side of the profile. Next, the observed wavelengths of the target profiles were corrected to the vacuum

MNRAS 000,1–18 (2020) 4 C. Wichittanakom et al. ) respectively. . 00 0 . . ◦ Dahm & Hillenbrand ) 2 2 13 14 14 13 13 17 13 8 2 2 2 2 2 17 13 17 13 13 14 14 14 ( 푐 ------Herbst &( 1999 ); Shevchenko ) 16 ( 16 16 16 15 16 16 16 16 RI Clarke et al. ( 2006 ); ) 푐 7 ( Oudmaijer et al. ( 2001 ); ) 15 ( Herbig ( 1958 ); ) and (DEC) in the units of angle ( . s ) BVR 6 ( 7.23 7.139.62 7.08 9.10 - 8.79 - 7.02 8.45 9.17 8.679.33 8.35 8.80 - 8.41 - 8.01 7.93 6.94 6.83 6.77 - 6.73 7.86 7.73 - 7.66 7.47 7.39 7.347.77 - 7.379.24 7.29 - 9.01 9.02 6.84 - 8.62 . m 13.33 12.77 12.39 - 11.95 13.56 12.5914.56 11.93 12.52 11.25 -11.48 - 10.6912.02 11.20 11.35 - 9.96 - 9.63 10.56 13.71 12.56 11.8514.55 13.47 - - 11.09 12.28 10.65 10.2113.22 12.33 9.8910.53 10.13 11.714.00 - 13.2911.37 - 12.86 - 10.98 9.50 9.67 - - 11.01 10.58 12.39 14.22 13.3810.01 12.8411.14 9.28 10.2812.63 - - 11.37 9.71 10.38 12.25 8.53 - - 9.12 9.37 11.08 10.5113.28 10.08 12.79 12.49 - - 9.55 12.16 14.28 12.0312.82 10.19 11.8112.81 11.10 11.78 - 11.09 - 8.80 - 10.31 10.58 . h 2 11 5 3 3 3 3 12 3 3 2 3 2 3 10 1 7 9 4 2 4 1 2 4 2 6 4 4 4 8 De Winter et al. ( 2001 ); ) Wolf &( 1985 ); Stahl 14 ) ( 5 ( Fernandez ( 1995 ); ) 13 ( Hernández et al. ( 2004 ); ) 4 ( Garrison ( 1970 ); ) 12 ( Mora et al. ( 2001 ); ) 3 ( Skiff ( 2014 ); ) 11 ( Vieira et al. ( 2003 ); ) 2 ( Calvet & Cohen ( 1978 ); ) 10 ( (J2000) (J2000) (June 2013) R1200B R1200Y R1200R B Y R Hillenbrand et al. ( 1992 ); ) 1 ( ( 1959 ); Walker ) Log of observations of 30 HAeBes. Column 1 gives the object name. Columns 2 and 3 are right ascension (RA) in the units of time ( 9 ( Zacharias et al. ( 2012 ). ) PDS 144 15:49:15.3 -26:00:54.8 22; 24 - 900 900 - 97 83 A5 V NameV594 Cas RA 00:43:18.3 +61:54:40.1 21; DEC 23; 24 Obs Date 600 600 Exposure Time (s) 600 152 160 50 SNR B8 Spectral Type Photometry (mag) HD 141569 15:49:57.8 -03:55:16.3 20; 22; 24 60 60 60 302 385 194 A0 Ve HD 142666HD 15:56:40.0 145718HD -22:01:40.0 16:13:11.6 150193 20; -22:29:06.7 16:40:17.9 22; 24 21; -23:53:45.2 23; 25 21; 23; 90; 24; 180 25 90; 150 90 90 150 180 300 19 120; 300 180 147 54 47 30 258 160 A8 Ve 96 74 A2 IVe A8 IV PDS 469 17:50:58.1 -14:16:11.8 23; 25 - 1200 1200 - 127 62 A0 HD 163296MWC 17:56:21.3 297VV -21:57:21.9 Ser 18:27:39.5MWC 20; 300 23; -03:49:52.1 24; 25AS 18:28:47.9 310 21; 18:29:25.7 22; 24; 25 +00:08:39.8PDS 60 543 -06:04:37.3 21;HD 23; 18:33:21.3 179218 25 900 21; 23; 25 18:48:00.7HD 19:11:11.3 -04:58:04.8 190073 60 +02:54:17.1 +15:47:15.6V1685 10; 20; 20:03:02.5 Cyg 60 22; 24 21; 900 22; 24 21; +05:44:16.7LkHA 900 23; 20:20:28.2 134 25 1200; 600 21; +41:21:51.6 23; 60 25 40; 20:48:04.8 900 22 600; 600 60 20; 22; +43:47:25.8 24; 900 25 60 16 1200 60 20; 22; 24 600 60 600 102 600 270 1200 1200 120 125 48 600; 60 600 91 B0 120 1200 35 A1 29 Vep 180 600; 60 120 144 120; 113 300 39 19 600 120 128 153 140 65 114 B1 Ia+[e] 149 311 B6 205 600 82 B1e 166 90 B1 79 B2 Ve A0 A0 IVe IVp+sh 192 95 B8 HD 200775LkHA 21:01:36.9 324 +68:09:47.8HD 203024 21:03:54.2 20;V645 22; 21:16:03.0 Cyg 24; +50:15:10.0 25 +68:54:52.1 21; 23; 21:39:58.3 25 21; 60 23; 24; +50:14:20.9 25 21; 23; 25 120 900 60; 30 30; 1200 60 180 900 161 1200 1200 192 180 50 52 1200 56 166 187 123 B3 20 65 86 B8 152 A5 V O8.5 V361 CepV373 Cep 21:42:50.2V1578 Cyg +66:06:35.1 21:43:06.8LkHA 21:52:34.1 257 20; +66:06:54.2 22; 24; 25SV +47:13:43.6 Cep 20; 21:54:18.8 22; 24 21; 23; 300 +47:12:09.7 24; 25 22:21:33.2 20; 22; 23; 24 300 +73:40:27.1 900 300 20; 22; 900 24 300; 600 1200 300 1200 300 240 1200 146 1200 86 219 96 300 225 84 143 54 191 103 179 300 B4 129 A0 B8 87 A2e 188 112 A2 IVe V375 LacHD 216629 22:34:41.0V374 22:53:15.6 Cep +40:40:04.5 +62:08:45.0V628 Cas 23; 23:05:07.5 25 20; 22; 24 +62:15:36.5 23:17:25.6 20; +60:50:43.4 22; 24 21; 23; 24; 90 25 - 600 900 180 1200 600; 60 450 180 1200 600 450 91 - 26 121 251 109 130 173 110 149 71 138 B3 IVe+A3 B5 A7 Vep B0eq Ve 17 ( Table 1. References. Column 4 lists the observationfree dates. spectral Columns regions 5–7 centred present at the the exposure wavelength times 4200, for 6050 each and grating. 8800 Å The for signal-to-noise R1200B, ratios R1200Y for and each R1200R grating grating are respectively. given Spectral in types columns and 8–10. photometry These are were listed determined along using with references a in 20 Å columns wide 11–16. line ( 2015 );

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 5

Figure 2. The effective temperature derived in this work compared to tem- Figure 1. The normalised spectrum of HD 141569 fits with BOSZ model peratures derived from spectral types in the literature listed in Table1 and of 푇eff = 9500 K and log(푔) = 4.2. Table A1. The spectral type was converted to temperature using the values provided in Straižys & Kuriliene(1981), and an uncertainty of a subclass of spectral type was assigned for the temperature. HAeBes and standard stars are denoted in circle and square respectively. Circles with larger cir- For a given 푇eff, normally, the higher the log(푔), the broader the cle around them indicate the objects that temperature from Fairlamb et al. Balmer profile. Therefore, the region of the wings of the hydrogen (2015) is used. The standard deviation (휎) between both log(푇eff ) is only profile near the continuum level can be used to obtain both effective 0.02. The solid line is the expected line of correlation and the dashed lines temperature and surface gravity as was mentioned earlier. Unfortu- are 3 휎 deviation from the solid line. nately, there is a non-linear relationship between the surface gravity and width of the Balmer profile for objects that have 푇eff < 8000 K. For this reason, a spectroscopic log(푔) can not be determined and 3.2 Visual extinction, distance and radius the surface gravity is calculated instead using the stellar mass and The second step is to use the synthetic BOSZ spectral energy dis- radius (see later). For 3 objects (PDS 144S, PDS 469 and V375 Lac) tribution and previous photometry results to determine the visual no near UV blue spectra were taken during the observations. For- extinction or reddening (퐴푉 ) by fitting the synthetic surface flux 2 tunately, a FEROS spectrum of PDS 469 was found in the ESO density to observed photometry. In the case of zero extinction or Science Archive Facility and was used to determine temperature for extinction corrected photometry, the flux density 푓 of the BOSZ and surface gravity. In the case of PDS 144S and V375 Lac, visible model and the observed fluxes differ by the ratio of distance to the spectra including H훼 profiles in combination with spectral types star and its radius (퐷/푅∗). The spectral energy distribution grid of from the literature were investigated in order to adopt their effective the BOSZ models are set up for the effective temperatures from temperatures. the previous step with a range of scaling factors 퐷/푅∗. The value 7 objects show extremely strong emission lines. These strong of log(푔) does not have a significant effect on the spectral energy emissions have an influence on the wings on even the whole Balmer distribution shape. Therefore, log(푔) = 4.0 was adopted at this profiles. Both 푇eff and log(푔) could therefore not be determined stage. by this method. Instead, for these objects, estimated temperatures The observed photometry is dereddened using the extinction from the literature are adopted. The stars for which this process is values 퐴휆/퐴푉 from Cardelli et al.(1989) with the standard ra- performed on are noted in the last column of Table2. tio of total to selective extinction parameter 푅푉 = 3.1 and zero- There are 7 objects in this work that overlap with F15. The magnitude fluxes from Bessell(1979). By varying 퐴푉 in steps of difference in temperatures of these objects is on average 180 K, 0.01 magnitude, the best fit of the photometry and BOSZ models which is smaller than the step-size used by both studies. Figure2 will then yield the best fitting reddening values. Only the BVRI mag- compares the effective temperature derived in this work (Table2) nitudes are used, as the U-band and JHKLM photometry are often with estimated values from the literature. The good correlation affected by the Balmer continuum excess and IR-excess emission would suggest that our method is reliable, the fact that it is applied respectively, i.e. they can not automatically be used in the fitting. to the entire sample ensures a homogeneous study. All of the observed BVR푐I푐 or BVR photometry from the litera- ture are shown in Table1. For 3 objects (HD 203024, LkHA 257 and V374 Cep) their Sloan photometry needed to be converted to Johnson-Cousins photometry. This was done using the transforma- 2 Based on observations collected at the European Southern Observatory tion equations provided by Smith et al.(2002). The uncertainties in under ESO programmes 084.A-9016(A). the resulting 퐴푉 and 퐷/푅∗ are assigned to be at values that resulted

MNRAS 000,1–18 (2020) 6 C. Wichittanakom et al.

of all targets are presented in Table2. The positions of the 21 HAeBes on the HR diagram are represented with red symbols in Figure4 As mentioned above, the 9 targets that are not included in the plot have low quality parallaxes or do not have parallaxes at all. Since the 3 objects (HD 142666, HD 145718 and SV Cep) have had 푇eff < 8000 K, their surface gravity cannot be determined from fitting the spectra with stellar atmospheric models. Instead, their surface gravities were calculated from the stellar mass and radius derived from the parallexes instead. These are also noted in the log(푔) column of Table2.

3.4 Extending the sample with HAeBes in the southern hemisphere The original driver for the INT observations presented here was to extend the spectroscopic analysis of the, mostly southern, sample of F15 to the northern hemisphere. However, F15 determined spectro- scopic distances using their spectral derived values of the surface gravity or literature values for the distances to their 91 HAeBes. The availability of Gaia-derived distances warrants a re-determination Figure 3. The synthetic spectral energy distribution BOSZ model (black of the stellar parameters. To this end we use the distances from line) is fitted to the dereddened photometry (red point) of HD 141569. the Gaia DR2 parallax (V18). In parallel, we re-assessed the ex- The observed BVR푐I푐 photometry of HD 141569 were taken from Vieira tinction values using the same photometric bands BVR푐I푐 as above et al.(2003). A synthetic spectral energy distribution BOSZ model with to ensure consistency in the determination of the extinction. Most 푇eff = 9500 K and log(푔) = 4.0 is fitted to the dereddened photometry. of the photometry used for the photometry fitting can be found in 퐴 = . +0.02 This provides the reddening 푉 0 38−0.03 mag and the scaling factor Fairlamb et al.(2015, table A1). We collated Sloan photometry 퐷/푅 = . +1.1 ∗ 63 7−0.7 pc/R . from Zacharias et al.(2012) for 3 objects (HD 290500, HT CMa and HD 142527) and one object, HD 95881, from APASS3 DR10 and converted these to the Johnson-Cousins system. Moreover, we twice of the minimum chi-squared value. Figure3 demonstrates an also used the brightest V-band magnitude of Johnson BVR photom- example of photometry fitting. etry for 2 objects, HD 250550 and KK Oph, and Johnson BVRI The scaling factor 퐷/푅∗ allows us to calculate stellar radius 푅∗, photometry for Z CMa from Herbst & Shevchenko(1999). The provided the stellar distance 퐷 is known. The Gaia DR2 catalogue redetermined stellar parameters for the 91 HAeBes from F15 are provides astrometric parameters, such as positions, proper motions listed in Table C1 (See Appendix C in the online version of this and parallaxes for more than 1.3 billion targets including most of paper). For the sample as a whole, the luminosities resulting from the known HAeBes. The distances to most of our targets were de- the revised distances and extinctions are on average similar to the termined by V18 using Gaia DR2 parallaxes. Re-normalised unit original F15 values, however the contribution to the scatter around weight error (RUWE) is used to select sources with good astrome- the mean differences is dominated by the new distances. We thus try. We adopted RUWE < 1.4 as a criterion for good parallaxes (see conclude that the improvement in distance values dominates that of Gaia Data Release 2 document). 7 stars have low quality parallaxes, the extinction when arriving at the final luminosities. and for 2 stars no parallaxes are presented in the Gaia archive. These We now have the largest spectroscopic sample of HAeBes and are noted in the final column of Table2. In total, stellar radii could the homogeneously determined stellar parameters including mass be determined for 26 out of the 30 targets. accretion rates, which will be determined in the next section. 7 targets in F15’s sample which are also in this work’s sample were left out, leaving 84 HAeBes in their sample. Unfortunately, 22 out of 3.3 Stellar luminosity, mass and age the 84 objects (not including PDS 144S) have low quality or do not have a Gaia DR2 parallax. These objects cannot be placed on the HR 푅 푇 Using the stellar radius ∗ and the effective temperature eff, the diagram at this stage. The final sample contains 83 Herbig Ae/Be 퐿 luminosity ∗ can be determined from the Stefan-Boltzmann law. objects. Figure4 demonstrates all these HAeBes ( 21 + 62) placed The next step is to estimate the mass and age of the HAeBes using in the HR diagram. Many targets are gathered around 2 M and isochrones. Stellar isochrones of Marigo et al.(2017) from 0.01 to few targets are located at high-mass tracks. This can be understood 100 Myr are used in order to extract a mass and an age of the target by the initial mass function IMF (Salpeter 1955). Low-mass stars from the luminosity-temperature Hertzsprung-Russell diagram. A are more common than high-mass stars. Moreover, low-mass stars 푍 = . 푌 = . metallicity 0 01 and helium mass fraction 0 267 are evolve slower across the HR diagram. chosen, because these values are close to solar values. After each star is placed on the HR diagram, the two closest points on an isochrone are used to obtain the mass of the star by interpolating between those points. Uncertainties of mass and age are derived from the error bars of the effective temperature 푇eff and the luminosity 퐿∗ on the HR diagram. All determined parameters 3 https://www.aavso.org/apass-dr10-download

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 7

Table 2. Determined stellar parameters. Columns 2–9 are effective temperature, surface gravity, visual extinction, distance, radius, luminosity, mass and age respectively. Distance 퐷 in column 5 is obtained from Vioque et al.(2018). This table is available in electronic form at https://cdsarc.unistra.fr/ viz-bin/cat/J/MNRAS/493/234.

Name 푇eff log(푔) 퐴푉 퐷 푅∗ log(퐿∗) 푀∗ Age − (K) [cm s 2] (mag) (pc) (R )[L ](M ) (Myr) +250 . +0.10 . +0.18 +16 . +0.52 . +0.15 . +0.45 . +0.53 V594 Cas 11500−250 3 70−0.10 2 27−0.23 569−14 3 86−0.53 2 37−0.17 3 51−0.42 1 29−0.38 +500 푎 . +0.30 . +0.07 푑 PDS 144S 7750−500 4 00−0.30 1 02−0.07 - ---- +250 . +0.10 . +0.02 . +0.91 . +0.03 . +0.06 . +0.02 . +1.87 HD 141569 9500−250 4 20−0.10 0 38−0.03 110 63−0.88 1 74−0.04 1 34−0.07 2 06−0.15 5 89−0.64 +250 . +0.10 푐 . +0.07 . +2 . +0.11 . +0.10 . +0.12 . +1.79 HD 142666 7250−250 4 00−0.10 0 82−0.08 148 3−1.9 2 21−0.12 1 08−0.11 1 64−0.11 7 76−1.30 +250 . +0.10 푐 . +0.06 . +3.2 . +0.10 . +0.10 . +0.07 . +0.84 HD 145718 7750−250 4 20−0.10 1 10−0.06 152 5−3 1 85−0.10 1 05−0.10 1 62−0.03 8 71−1.12 +250 . +0.10 . +0.16 . +2.7 . +0.26 . +0.14 . +0.21 . +0.93 HD 150193 9250−250 4 10−0.10 1 88−0.20 150 8−2.5 2 34−0.27 1 56−0.15 2 12−0.12 4 57−1.02 +750 푎 . +0.30 . +0.12 푑 PDS 469 9500−750 3 80−0.30 1 94−0.13 - ---- +250 . +0.10 . +0.01 . +2 . +0.05 . +0.07 . +0.07 . +0.28 HD 163296 9000−250 4 10−0.10 0 29−0.02 101 5−1.9 1 87−0.05 1 31−0.07 1 95−0.07 6 03−0.27 +2000 푏 . +0.10 . +0.41 +22 . +3.12 . +0.39 . +6.11 . +0.07 MWC 297 24000−2000 4 00−0.10 7 87−0.64 375−18 9 28−3.04 4 41−0.50 14 53−4.84 0 04−0.02 +1000 . +0.30 . +0.22 푑 VV Ser 14000−1000 4 30−0.30 3 74−0.27 - ---- +2000 푏 . +0.20 . +0.21 +250 . +1.96 . +0.39 . +3.76 . +0.09 MWC 300 23000−2000 3 00−0.20 3 85−0.28 1400−160 6 02−1.44 3 96−0.39 10 09−1.89 0 09−0.05 +2000 . +0.35 . +0.20 +350 . +1.71 . +0.36 . +3.92 . +0.08 AS 310 26000−2000 4 40−0.35 3 86−0.24 2110−240 5 70−1.27 4 13−0.36 11 60−2.18 0 07−0.04 +2500 푏 . +0.10 . +0.28 +240 . +5.99 . +0.42 . +18.28 . +0.01 PDS 543 28500−2500 4 00−0.10 7 11−0.40 1410−160 16 24−4.57 5 19−0.45 30 02−10.85 0 01−0.01 +250 . +0.10 . +0.02 +5.6 . +0.12 . +0.07 . +0.16 . +0.47 HD 179218 9500−250 3 95−0.10 0 33−0.02 266−5.2 3 62−0.11 1 98−0.07 2 86−0.20 2 04−0.26 +250 . +0.10 . +0.04 +100 . +1.28 . +0.16 . +0.78 . +0.14 HD 190073 9750−250 3 50−0.10 0 20−0.04 870−70 9 23−0.94 2 84−0.14 5 62−0.65 0 28−0.10 +4000 푏 . +0.10 . +0.34 +46 . +1.51 . +0.49 . +4.57 . +0.27 V1685 Cyg 23000−4000 4 06−0.10 3 33−0.51 910−39 5 48−1.51 3 88−0.61 9 53−2.55 0 11−0.07 +250 . +0.10 . +0.19 +36 . +0.71 . +0.17 . +0.56 . +0.60 LkHA 134 11000−250 4 00−0.10 2 44−0.24 843−31 4 53−0.70 2 43−0.19 3 77−0.56 1 02−0.34 +3000 . +0.25 . +0.15 푑 HD 200775 19000−3000 4 27−0.25 1 85−0.17 - ---- +500 . +0.10 . +0.14 +16 . +0.34 . +0.16 . +0.41 . +0.49 LkHA 324 12500−500 4 00−0.10 3 94−0.16 605−14 3 15−0.33 2 34−0.17 3 36−0.30 1 51−0.41 +500 . +0.29 . +0.24 푒 HD 203024 8500−500 3 83−0.29 0 52−0.31 - ---- +7000 푏 . +0.35 . +0.29 푑 V645 Cyg 30000−7000 3 75−0.35 4 21−0.40 - ---- +500 . +0.10 . +0.14 +35 . +0.52 . +0.15 . +0.65 . +0.16 V361 Cep 16750−500 4 00−0.10 1 97−0.15 893−31 4 34−0.48 3 12−0.15 5 56−0.57 0 40−0.11 +1250 푏 . +0.50 . +0.20 푑 V373 Cep 11500−1250 3 50−0.50 3 24−0.23 - ---- +500 . +0.20 . +0.08 +30 . +0.41 . +0.15 . +0.45 . +0.39 V1578 Cyg 10500−500 3 80−0.20 1 46−0.08 773−27 4 77−0.37 2 39−0.15 3 74−0.41 1 02−0.28 +250 . +0.10 . +0.07 +18 . +0.11 . +0.10 . +0.06 . +1.32 LkHA 257 9250−250 4 05−0.10 2 28−0.08 794−16 1 84−0.11 1 35−0.10 1 98−0.04 5 76−0.51 +500 . +0.11 푐 . +0.04 . +4 . +0.05 . +0.14 . +0.04 . +10.40 SV Cep 8000−500 4 37−0.11 0 78−0.05 344 3−3.8 1 48−0.06 0 91−0.15 1 63−0.14 11 00−2.49 +750 푎 . +0.10 . +0.14 푒 V375 Lac 8000−750 4 30−0.10 2 31−0.16 - ---- +1000 . +0.10 . +0.13 +31 . +0.94 . +0.18 . +1.71 . +0.04 HD 216629 21500−1000 4 00−0.10 2 86−0.15 805−27 7 59−0.83 4 04−0.18 10 83−1.54 0 07−0.02 +1000 . +0.10 . +0.15 +40 . +1.05 . +0.22 . +1.46 . +0.12 V374 Cep 15500−1000 3 50−0.10 3 20−0.18 872−35 7 72−0.98 3 49−0.23 7 50−1.28 0 16−0.06 +5000 푏 . +0.10 . +0.36 푑 V628 Cas 31000−5000 4 00−0.10 5 05−0.55 - ----

Notes. (푎) Stars for which NUV-B spectra were not obtained. (푏) Stars which display extremely strong emission lines. (푐) Stars for which parallactic log(푔) is used. (푑) Stars which have low quality parallaxes in the Gaia DR2 Catalogue (see the text for discussion). (푒) Stars which do not have parallaxes in the Gaia DR2 Catalogue.

3.5 Combining with additional HAeBes with Gaia DR2 data 1 and table 2) and the calculated surface gravity. This will enable from V18 us to compute mass accretion rates for a further 85 objects below. Table D1 presents all of the emission lines measurements and de- In order to expand the sample further, the rest of 144/252 objects in termined accretion rates of the V18 sample (See Appendix D in the the sample of V18 were investigated. There are 101 objects which online version of this paper). satisfy the condition RUWE < 1.4. They are also included in Fig- ure4.H 훼 equivalent widths are provided for most objects in Vioque et al.(2018, their table 1 and table 2) with references. Spectra for 14 훼 objects without H data in the V18 sample were found in the ESO 4 ACCRETION RATE DETERMINATION Science Archive Facility. These were downloaded and their H훼 EWs were measured. The stellar radii and surface gravities were calcu- We now will determine the mass accretion rates of the combined lated using the temperatures, luminosities and masses provided in sample of Herbig Ae/Be stars. The underlying assumption of the V18. The intrinsic equivalent widths were measured from BOSZ methodology is that the stars accrete material according to the MA models for the temperature provided in Vioque et al.(2018, table paradigm, which, as demonstrated by Muzerolle et al.(2004), can

MNRAS 000,1–18 (2020) 8 C. Wichittanakom et al.

Figure 4. The placement of all 184 HAeBes in the HR diagram. The red circles are this work sample of 21 HAeBes, whereas 62 HAeBes in the sample of Fairlamb et al.(2015) are denoted as the blue circles and 101 HAeBes in Vioque et al.(2018) are shown as the green circles. All of these objects satisfy the condition RUWE < 1.4. The PMS tracks with initial mass from 1 to 40 M (Bressan et al. 2012; Tang et al. 2014) are plotted as solid lines and isochrones of 0.01, 0.1, 1 and 10 Myr (Marigo et al. 2017) are plotted as dashed lines. explain the observed excess fluxes in Herbig Ae/Be stars. The in- corresponding to the effective temperature and surface gravity de- falling material shocking the photosphere gives rise to UV-excess termined earlier. emission, whose measurement can be converted into an accretion The line luminosity 퐿line was calculated using the unreddened luminosity. Knowledge of the stellar parameters can then return a stellar flux at the wavelength of H훼 and distance to the star. The value of the mass accretion rate. relationship between accretion luminosity and line luminosity goes F15 derived the accretion rates for their sample from the UV as (cf. e.g. Mendigutía et al. 2011b). excess following the methodology of Muzerolle et al.(2004) and extending the work of Mendigutía et al.(2011b). Unfortunately, as  퐿   퐿  log acc = 퐴 + 퐵 × log line , (1) mentioned before, our current observational set-up did not allow for L L such accurate measurements. However, as for example pointed out 퐴 퐵 by Mendigutía et al.(2011b), the accretion luminosity correlates where and are constants corresponding to the inter- (퐿 / ) with the line strengths of various types of emission lines. They cept and the gradient of the relation between log acc L and (퐿 / ) will therefore also correlate with the mass accretion rate (see also log line L respectively. This relationship has, most recently, Fairlamb et al. 2017). As such, the line strengths do provide an been determined for 32 accretion diagnostic emission lines by 훼 퐴 = . ± . observationally cheap manner to derive the accretion rate of an F17. For the case of H , the constants are 2 09 0 06 and 퐵 = . ± . object without having to resort to the rather delicate and time- 1 00 0 05. The mass accretion rate is then determined from consuming process of measuring the UV excess. We should note the accretion luminosity, stellar radius and stellar mass by Equation that despite this, it is not clear whether the observed correlation is 2. intrinsically due to accretion or some other effect (Mendigutía et al. 2015a). ¤ 퐿acc푅∗ 푀acc = (2) We have chosen the H훼 line for the accretion luminosity deter- 퐺푀∗ mination, as these lines are strongest lines present in the spectra. To Table3 summarises the EW measurements for the H훼 line and arrive at a measurement of the total line emission, we need to take mass accretion rates in all HAeBes. account of the fact that the underlying line absorption is filled in The final set of 78 mass accretion rates (21+57) based on the with emission. Therefore, the intrinsic absorption equivalent width INT and X-Shooter data is the largest, and arguably the best such 퐸푊int needs to be subtracted from the observed equivalent width collection to date as they were determined in a homogeneous and 퐸푊obs. The intrinsic EW is measured from the synthetic spectra consistent manner. To arrive at the largest sample possible however,

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 9 we expand the sample using data provided in the comprehensive slope can vary depending on both the number and spread of data study by V18. Adding 85 objects from V18 results in a large sample points used. For example, at both the high and low mass ends, the of 163 Herbig Ae/Be stars with mass accretion rates4 slopes will have a large uncertainty simply because of small number statistics. We quantify the difference in slopes by combining the un- 5 ANALYSIS certainties on both low and high mass gradients, 휎, and compare this to the difference in slopes, Δ(slope). This is shown in the top We have obtained new spectroscopic data of 30 northern Herbig panel of Figure6. The Δ(slope) reaches its maximum significance Ae/Be stars which are used to determine their stellar parameters, of 4휎 for a luminosity of 194 L , which was determined by a extinction and H훼 emission line fluxes. Combined with Gaia DR2 triple-Gaussian fit to the curve. For the lower mass HAeBes, the   parallaxes, this led to the determination of the mass accretion rates linear best fit provides the empirical calibration of log 퐿acc = L for 21 of these objects. This dataset complements the large southern   (−0.87±0.11)+(1.03±0.08)×log 퐿∗ . This is in agreement with sample of F15, for which we re-determined stellar parameters using L the Gaia parallaxes and extinctions in the same manner as for the the best fit for low-mass stars in the work of Mendigutía et al.(2011b) 1.2 northern sample. This full sample contains 78 objects with homoge- (퐿acc ∝ 퐿∗ ). For the higher mass HAeBes, the best fit provides the     neously determined values. To this we add 85 objects from the V18 expression of log 퐿acc = (0.19±0.27) + (0.60±0.08) ×log 퐿∗ . study for which literature values have been adapted and new H훼 L L line measurements have been added using data from archives. This led to a total of 163 objects for which we have stellar parameters, 5.2 Mass accretion rate as a function of stellar mass distances, H훼 emission line fluxes and mass accretion rates derived from these using the MA paradigm available. In the following we One of the main questions regarding the formation of massive stars will investigate the dependence of the MA-derived accretion rate is at which mass the mass accretion mechanism changes from mag- on stellar mass, and find that there is a break in properties around netically controlled accretion to another mechanism, which could be 4M . direct accretion from the disk onto the star. Above we saw that there is a difference in the accretion luminosity to stellar luminosity rela- tionships for different masses. So, we now move to look at the mass 5.1 Accretion luminosity as a function of stellar luminosity accretion rates and investigate various subsamples individually. Before addressing the mass accretion rate, let us first discuss the accretion luminosity, as that is less dependent on the stellar pa- rameters. In Figure6 we show the accretion luminosity versus the stellar luminosity for the entire sample. The accretion luminosity increases monotonically with stellar luminosity, which confirms earlier reports (F15, Mendigutía et al. 2011b). However, the sample under consideration is much larger than previously. It would appear that the slope decreases, while the scatter in the relationship increases, with mass. To investigate whether there is a significant difference in accretion luminosities between high- and low mass objects, and if so, to determine the mass where there is a turn-over, we split the data into a low mass and a high mass sample, with a varying turnover mass. We then fitted a straight line to the data from the lowest mass to this intermediate mass, and a straight line from the intermediate mass to the largest mass. The intermediate mass was varied from the second smallest to the second largest mass. This resulted in values of the slopes and their statistical uncer- tainty for a range of masses. When taking the difference in slopes and expressing this in terms of the respective uncertainties in the fit, we arrive at a statistical assessment whether the low- and high mass samples have a different slope. This approach takes into account the issue that the absolute value of the difference-in-slopes may not be a reliable indicator of the turn-over point. This is because each

4 When drafting this manuscript, a paper by Arun et al.(2019) was pub- lished reporting on the accretion rates using Gaia data of a somewhat smaller sample than here. Notable differences are that we use homogeneously deter- mined stellar parameters for a large fraction of the sample and the fact that their sample is not selected for parallax quality and therefore includes faulty Gaia parallax measurements affecting the derived distances. It would also appear that their determination of the H훼 line luminosity does not account for underlying absorption, which will affect especially the weakly emitting sources. As the authors do not provide all relevant datatables, it proved hard to investigate and assess further differences.

MNRAS 000,1–18 (2020) 10 C. Wichittanakom et al. profile, line flux, line luminosity, 훼 H . ] ) 10 09 17 18 10 10 15 10 15 14 12 13 22 24 20 16 18 29 17 15 10 1 11 10 19 17 10 10 13 11 09 18 12 15 21 25 19 15 15 26 17 18 09 ...... − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 acc − + − + − + − + − + − + − + − + − + − + − + − + − + − + − − + + − + − + − + − + − + ¤ yr 푀 ( 95 17 46 95 67 54 48 28 77 97 31 33 23 56 61 79 75 79 24 35 36

...... 4 5 7 6 5 5 6 5 4 4 6 5 6 4 3 6 6 7 7 7 5 M log − − − − − − − − − − − − − − − − − − − − − ) 27 26 . . 12 11 19 16 11 10 14 10 14 15 13 18 20 21 20 16 15 18 18 09 13 12 19 16 11 10 14 10 15 18 13 22 22 26 21 16 15 18 17 09 ...... 0 ][ 0 acc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − +

− + + − + − + − + − + − − + − + + − + − + − + − + − + − + − + − + − − + − + − + 퐿 ( L 35 . 53 48 08 58 72 06 04 14 97 31 08 43 57 16 08 73 71 12 22 09 ...... 0 2 2 0 0 1 2 1 2 2 2 1 2 1 3 4 0 0 0 0 2 log − ) 03 02 03 03 03 02 11 03 02 09 02 02 03 03 04 04 03 02 14 03 02 08 02 02 ...... 04 03 03 04 08 11 11 04 03 04 03 04 05 10 14 14 05 03 ...... 0 0 0 0 0 0 0 0 0 0 0 0 ][ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 line 0 0 0 0 0 0 0 0 0 + − + − + − + − + − + − + − + − + − + − + − + −

+ − + − + − + − + − + − + − + − + − ------퐿 ( L 01 51 37 03 05 01 52 36 38 44 97 87 ...... 44 39 05 88 22 34 07 99 00 ...... 2 1 0 0 1 1 0 1 1 2 1 1 0 0 0 0 0 0 1 1 0 log − − − − − − − − − − − − 13 13 14 15 15 13 14 13 15 15 15 14 14 14 13 14 14 14 15 13 14 11 13 16 14 15 14 14 15 14 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 )[ 2 ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × − line 16 01 01 02 10 02 01 02 03 06 18 10 04 02 02 11 05 02 03 01 02 01 05 24 07 73 04 11 03 14 ...... 퐹 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 28 16 21 82 65 57 30 21 75 47 83 81 76 04 93 05 41 55 17 91 15 21 35 04 83 03 57 51 29 96 ...... 8 1 1 2 2 1 2 3 3 4 4 7 9 5 2 7 4 3 2 1 6 2 1 9 5 5 1 3 1 9 https://cdsarc.unistra.fr/viz-bin/cat/J/MNRAS/493/234 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) (W m 1 15 15 15 17 16 17 16 16 15 16 16 16 14 16 15 15 15 14 16 15 15 14 15 16 15 15 15 15 17 15 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − emission line profile classification scheme according to Reipurth et al. ( 1996 ): single-peaked (I); double-peaked and the Å 훼 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 2 휆 − H × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × 퐹 10 72 60 36 52 09 84 02 08 56 77 05 39 45 63 99 12 42 60 35 31 81 11 02 85 50 84 17 70 11 ...... 44 6 33 4 67 2 40 1 41 4 31 3 10 5 21 9 48 2 25 8 11 7 42 5 25 1 13 7 24 1 37 6 53 1 14 3 12 1 88 5 19 3 55 4 24 1 . . . . . 20 8 02 1 05 6 24 1 49 1 19 1 26 4 ...... 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ± ± ± ± ± cor ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 99 80 33 99 34 56 70 24 71 32 59 80 85 28 92 11 39 14 11 51 15 37 00 . . . . . 54 50 29 85 35 54 42 ...... 퐸푊 ...... 5 2 3 8 3 8 8 37 20 31 12 18 29 62 35 10 71 78 35 14 47 26 15 27 90 126 101 111 141 459 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 02 45 25 09 20 19 13 13 17 18 25 17 14 26 01 05 15 05 13 06 08 03 04 06 02 03 06 07 02 19 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 int ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 퐸푊 37 89 92 30 42 60 43 48 50 86 18 01 80 82 10 62 68 40 11 15 74 21 64 63 66 13 95 04 50 21 ...... 44 2 67 3 40 1 41 3 31 4 09 3 21 12 06 10 39 7 24 5 32 2 23 5 36 9 50 10 10 8 87 15 53 12 23 8 . . . . 00 12 03 7 05 12 05 14 ...... 42 14 . . . . 16 14 04 14 01 2 04 4 17 13 08 11 01 14 2 0 0 1 . 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ...... 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± obs ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 89 70 04 84 95 02 88 29 39 74 65 71 47 79 07 04 55 79 . . . . 40 54 70 29 ...... 83 . . . . 18 88 16 83 65 46 38 ...... 5 2 1 0 32 17 18 19 55 30 99 66 68 24 39 11 14 81 2 8 0 0 4 2 6 124 107 140 455 10 − − − − − − − − − − − − − − − − − − − − − − 훼 퐸푊 H profile (Å) (Å) (Å) (W m The equivalent width measurements and accretion rates. Column 2 provides the V628 Cas IV B V374 Cep II B HD 216629 II B V375 Lac IV B SV Cep III R LkHA 257 I V1578 Cyg III B V373 Cep III B V361 Cep I HD 203024V645 Cyg I I LkHA 324 II R HD 200775 II R LkHA 134 I V1685 Cyg II B HD 190073 IV B HD 179218 I PDS 543 I AS 310 I MWC 300 III B VV Ser II R MWC 297 I HD 163296 I PDS 469 I HD 150193 III B HD 145718 I HD 142666 IV R PDS 144SHD 141569 I II R Name V594 Cas IV B accretion luminosity and mass accretion rate respectively. This table is available in electronic form at Table 3. secondary peak rises above half strengthof of the the primary primary peak, peak classfor (II); II absorption. double-peaked and and Columns III the 3–10 are secondary present label peak with observed rises B equivalent below or half width, R strength intrinsic of respectively; equivalent regular the width, P-Cygni primary profile corrected peak (IV equivalent (III), B); width, when and the continuum inverse secondary flux P-Cygni peak profile density is (IV at located R). central blueward The or wavelength classifications redward of are the based on the emission lines in Figure B1 corrected

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 11

Let us first consider the sample with homogeneously derived with masses up until 4 M behave similarly to the T Tauri stars. mass accretion rates, before investigating the full sample. The rela- Again, stellar parameters of these classical T Tauri stars were not tionship between mass accretion rate and stellar mass of the com- derived in the same manner as HAeBes in this work. This may have bined sample from this work and Fairlamb et al.(2015, 2017) that an effect on our conclusion. are present in Thé et al.(1994, table 1), is shown in the left hand panel of Figure7. The sample of Thé et al.(1994), contains the 5.3 Mass accretion rate as a function of stellar age best established HAeBes, and is thus least contaminated by pos- sible misclassified objects. It can be seen that the mass accretion In Figure5 we illustrate the mass accretion rates across the HR- rate increases with stellar mass, and that there is a different be- diagram. As expected, it can be seen that the accretion rates are haviour for objects with masses below and above the mass range largest for the brightest and most massive objects. However, the with log(푀∗) = 0.4–0.6. This break is consistent with the major sample may allow an investigation into the evolution of the mass finding in F15 that the relationship between mass accretion rate and accretion rate as a function of stellar age as provided by the evo- stellar mass shows a break around the boundary between Herbig Ae lutionary models. In general it can be stated that, in terms of evo- and Herbig Be stars. In particular, they found that the relationship lutionary age, the younger objects have higher accretion rates than between mass accretion rate and mass has a different slope for the older objects. As illustration, we show the mass accretion rate as a lower and higher mass objects respectively. With our improved sam- function of age in the top panel of Figure9. It is clear that the ac- ple in hand, we can now revisit this finding and we determine the cretion rate decreases with age (as also shown in F15); the Pearson mass at which the break occurs with higher precision in the same correlation coefficient is -0.87. way as we found the turnover luminosity earlier. However, when considering any properties as a function of We found that the maximum slope difference is at the 4.4 휎 age, there is always the issue that higher mass stars evolve faster (푀 ) = . +0.14 푀 = level for the Thé et al. sample at log ∗ 0 56−0.14 or ∗ than lower mass stars. Hence, the observed fact that higher mass . +1.38 3 61−0.98 M . The uncertainty in the mass is decided where the objects have higher accretion rates could be the main underlying difference in slope is 1휎 smaller than at maximum. If we focus on reason for a trend of decreasing accretion rate with time. Indeed, the total combined sample of 78 objects from this work and F15, the in the top panel of Figure9 the range in accretion rates covers the (푀 ) = . +0.14 푀 = . +1.46 break is established at log ∗ 0 58−0.14 or ∗ 3 81−1.05 M entire accretion range of the accretion vs. mass relation, so it is hard with the maximum gradient difference about 6.4 휎. as shown in the to disentangle from this graph whether there is also an accretion middle panel of Figure7. It can be seen that this plot shows the same rate - age relation. relationship as the one in the left-hand panel. When considering the This can in principle be circumvented when selecting a sample full, combined sample of 163 objects from this work, F15 and of objects in a small mass range, so that the spread in mass accretion V18 whose mass accretion rates are shown in the right-hand panel rates is minimized. This needs to be offset against the number of (푀 ) = . +0.13 of Figure7, the break is now found at the log ∗ 0 60−0.12 objects under consideration. In the lower panels of Figure9 we show 푀 = . +1.37 how the accretion rate change with the age of stars in 3 different or ∗ 3 98−0.94 M with the maximum difference of gradient about 6.6 휎. mass bins (2.0-2.5 M , 2.5-3.0 M and 3.0-3.5 M . A best fit We note that both the significance of the difference in slopes taken into account the uncertainties in both the mass accretion rate as well as the mass at which the break occurs increases with the and age to the 30 objects where 2.0 M < M∗ < 2.5 M shows ¤ −1.95±0.49 number of objects. This could be due to the number of objects; a 푀acc ∝ 퐴푔푒 with a Pearson’s correlation coefficient especially as the Thé et al.(1994) sample is sparsely populated -0.55. The 9 stars with masses 2.5 M < M∗ < 3.0 M have a at the high mass end, which could increase the uncertainty on the gradient of a best fit is −1.40 ± 1.47 (correlation coefficient 0.40). resulting slope and thus lower the significance of the difference in The error of the best fit gradient becomes slightly larger than its slopes between high and low mass objects. Alternatively, it could own value, which is due to the smaller number of objects involved. be affected by a larger contamination of non-Herbig Be stars in the The 8 objects with 3.0 M < M∗ < 3.5 M in the bottom panel of full sample. It is notoriously hard to differentiate between a regular Figure9 have a gradient of a best fit is −0.37 ± 1.25 with a linear Be star and a Herbig Be star. Given the low number statistics of the correlation -0.36. It can be seen that the error of the best fit gets Thé et al.(1994) sample and the similarity of the break in mass of larger than 3 times of its own absolute value. This is more likely to the other two samples, we will proceed with a break in slope at 4 be due to the lack of HAeBes when the stellar mass increases. M . The 2.0-2.5 M sample is best suited to study any trend in accretion rate with age in the sense that the accretion rates change by 0.4 dex across this mass range (cf. the slope of 4.05 found for 5.2.1 Literature comparisons with T Tauri stars the low mass objects in Sec. 5.2). The spread in accretion rates in the graph is twice that, and if the additional decrease in mass ¤ −1.95±0.49 It is interesting to see how the accretion luminosities compare to accretion rate is due to evolution, we find 푀acc ∝ 퐴푔푒 . those of T Tauri stars at the low mass range. With the large caveat This value is the only such determination for Herbig Ae/Be stars that no Gaia DR2 study of T Tauri stars and their stellar parameters in a narrow mass range, other determinations were based on full and accretion rates exists at the moment, we show in Figure8 the samples of HAeBe stars which contain many different masses and 퐿acc against 퐿∗ for the whole sample of 163 HAeBes in this work suffer from a mass-age degeneracy (e.g. F15, Mendigutía et al. compared to classical T Tauri stars of which all luminosity values (2012)). Despite the relatively large errorbars, we note that our are taken from Hartmann et al.(1998), White & Basri(2003), Calvet determination is remarkably close to the observed values for T et al.(2004) and Natta et al.(2006). On one hand, the gradient of Tauri stars by Hartmann et al.(1998), who find an 휂 between 1.5- best fit for the classical T Tauri stars is 1.17 ± 0.09 which is close, 2.8, while theoretically these authors predict 휂 to be larger than 1.5 and well within the errorbars, to 1.03 ± 0.08 for low-mass HAeBes. for a single 훼 viscous disk. We also refer the reader to the discussion On the other hand, high-mass HAeBes shows a flatter relationship in Mendigutía et al.(2012), who, remarkably, find a similar value 퐿 ∝ 퐿0.60±0.08 +1.4 of acc ∗ . It would seem that the Herbig Ae and Be stars of the exponent to ours: 1.8−0.7 as determined for their full sample.

MNRAS 000,1–18 (2020) 12 C. Wichittanakom et al.

Figure 5. The placement of all 163 HAeBes in the HR diagram. The PMS tracks with initial mass from 1 to 40 M (Bressan et al. 2012; Tang et al. 2014) and isochrones of 0.01, 0.1, 1 and 10 Myr (Marigo et al. 2017) are plotted as solid and dashed lines respectively. The colour map denotes the accretion rate.

6 DISCUSSION age dependence. We present the first attempt to do so. A small subset in a narrow mass range leads us to suggest that the accretion rate In the above we have worked out the mass accretion rates for a large decreases with time. sample of 163 Herbig Ae/Be stars. Tothis end new and spectroscopic archival data were employed. A large fraction of the sample now has In the following we aim to put these results into context, but homogeneously determined astrophysical parameters, while Gaia we start by discussing the various assumptions that had to be made parallaxes were used to arrive at updated luminosities for the sample to arrive at these results. objects. We compared the mass accretion rates derived using the MA paradigm for Herbig Ae/Be stars with various properties. We find that: 6.1 On the viability of the MA model to determine accretion rates of Herbig Ae/Be stars • The mass accretion rate increases with stellar mass, but the sample can be split into two subsets depending on their masses. In the above we have determined accretion luminosities and accre- • The low mass Herbig Ae stars’ accretion rates have a steeper tion rates to young stars. However, the question remains whether the dependence on mass than the higher mass Herbig Be stars. magnetic accretion shock modelling that underpins these computa- • The above findings corroborate previous reports in the litera- tions should be applicable. After all, A and B-type stars typically ture. The larger sample and improved data allows us to determine do not have magnetic field detections, and indeed, are not expected the mass where the largest difference in slopes between high and to harbour magnetic fields as their radiative envelopes would not low mass objects occurs. We find it is 4 M . create a dynamo that in turn can create a magnetic field. This was • Bearing in mind the caveat that T Tauri stars do not yet have verified in a study of Intermediate Mass T Tauri stars (IMTTS) by Gaia based accretion rates, it appears that the Herbig Ae stars’ Villebrun et al.(2019) who found that the fraction of pre-Main Se- accretion properties display a similar dependence on luminosity as quence objects with a magnetic field detection drops markedly as the T Tauri stars. they become hotter (for similar masses). These authors suspect that • In general, younger objects have larger mass accretion rates, any B-field detections in Herbig Ae/Be stars could be fossil fields but it proves not trivial to disentangle a mass dependence from an from the evolutionary stage immediately preceding them. The fields

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 13

mechanism in those. The large sample by Ababakr et al.(2017) allowed them to identify the transition region to be around spectral type B7/8. Cauley & Johns-Krull(2014) studied the He i 1.083 휇m line profiles of a large sample of Herbig stars and found that both T Tauri and Herbig Ae stars could be explained with MA, while the Herbig Be stars could not. Reiter et al.(2018) did not detect a difference in line morphology between the few (5) magnetic Herbig Ae/Be stars and the rest of the sample. They argued that Herbig Ae stars may therefore not accrete similarly to T Tauri stars. However, based on Poisson statistics alone, even if all magnetic objects showed either a P Cygni or Inverse P Cygni profile, a sample of 5 would not be sufficient to conclusively demonstrate that the magnetic objects are, or are not, different from the non-magnetic objects. Clearly, more work needs to be done in this area. Costigan et al.(2014) investigated the H훼 line variability properties of Herbig Ae/Be stars and T Tauri stars and found that both the timescales and amplitude of the variability were similar for the Herbig Ae and T Tauri, which also led these authors to suggest that the mode of accretion of these objects are similar. A notion also implied by our result in Figure8 that the accretion luminosities of both Herbig Ae and T Tauri stars appear to have the same dependence on the stellar luminosity. Finally, Mendigutía et al.(2011a) found that the H 훼 line width variability of Herbig Be stars is considerably smaller than for Herbig Ae stars, which is in turn smaller than for TTs (see Figure 37 in Fang et al. 2013). This may suggest smaller line emitting Figure 6. The logarithmic accretion luminosities versus stellar luminosities regions/magnetospheres as the stellar mass increases, and thus a for the full, 163 stars, sample. Also shown are linear fits to the full sample and eventual transition from MA to some other mechanism responsible to the low- and high-mass stars respectively. As can be seen in the top panel, for accretion. the difference in slopes between the low- and high-mass objects is most To summarize this section, various studies of different obser- 퐿 > significant at at ∗ 194 L (see text for details). The gradients of best vational properties have confirmed the many similarities between fits for the whole sample, low-mass and high-mass HAeBes are 0.85 ± 0.03, T Tauri and Herbig Ae stars, which in turn hint at a similar accre- 1.03 ± 0.08 and 0.60 ± 0.08 respectively. tion mechanism, the magnetically controlled accretion. In turn, this would validate our use of the MA shock modelling to derive mass would not only be weaker, but also more complex, hampering their accretion rates for at least the lower mass end of the Herbig Ae/Be direct detection. star range. Before we discuss the accretion mechanisms for low- and Muzerolle et al.(2004) showed that the MA models provided high mass stars, we address the use of line luminosities to arrive at qualitative agreement with the observed emission line profiles of accretion luminosities and rates below. the Herbig Ae star UX Ori. In the process, they also found that the B-field geometry should be more complex than the usual dipole 6.2 On the use of line emission as accretion rate diagnostic field in T Tauri stars and the expected field strength would be much below the usual T Tauri detections, in line with the Villebrun et al. The only “direct” manner to determine the mass accretion rate is to (2019) findings. measure the accretion luminosity, which is essentially the amount of Since, based on statistical studies and targeted individual in- gravitational potential energy that is converted into radiation at ultra- vestigations evidence has emerged that Herbig Ae stars are similar violet wavelengths. This can then be turned into a mass accretion to the T Tauri stars. Garcia Lopez et al.(2006) showed that the rate once the stellar mass and radius are known. The determination accretion rate properties of the Herbig Ae stars constitute a natural of the contribution of the accretion shock to the total UV emission extension to the T Tauri stars, while F15 demonstrated that the MA for HAeBe objects is not straightforward due to the fact that these model can reproduce the observed UV excesses towards most of stars intrinsically emit many UV photons by virtue of their higher their Herbig Ae/Be stars with realistic parameters for the shocked temperatures. regions. A small number of objects, all Herbig Be stars, could not be Calvet et al.(2004) showed that the Br 훾 emission strengths explained with the MA model. They exhibit such a large UV-excess observed towards a sample of IMTTS correlated with the accretion that they would require shock covering factors larger than 100%, luminosity as determined by the UV excess for a large mass range which is clearly unphysical. extending to 3.7 M (the mass of their most massive target, GW Ori, Vink et al.(2002) and Vink et al.(2005) were the first to point with spectral type G0 - cool enough to unambiguously determine out the remarkable similarity in the observed linear spectropolari- the UV excess emission). This was already known for lower mass metric properties of the H훼 line in Herbig Ae stars and T Tauri objects, but, significantly, these authors extended it to higher masses. stars. The polarimetric line effects in these types of objects can In addition, these authors also showed that the mass accretion rate be explained with geometries consistent with light scattering off correlated with the stellar mass over this mass range. Therefore (magnetically) truncated disks. In contrast, the very different effects they also demonstrated that line emission, in this case the hydrogen observed towards the Herbig Be stars were more consistent with recombination Br훾, can be used to measure accretion rates to masses disks reaching onto the central star - hinting at a different accretion of at least up to ∼4 M . Mendigutía et al.(2011b) measured the

MNRAS 000,1–18 (2020) 14 C. Wichittanakom et al.

Figure 7. The difference of the gradient of the best fits between the low-mass and the high-mass HAeBes in terms of the uncertainty of the gradient difference (top panel) and the mass accretion rates versus stellar masses (bottom panel). Left: 43 stars from this work sample and the sample of Fairlamb et al.(2015) presents in table 1 of Thé et al.(1994). Objects are separated into the low-mass HAeBes, 푀∗ < 3.61 M , and the high-mass HAeBes, 푀∗ > 3.61 M . The slopes of best fits for the whole sample, low-mass and high-mass HAeBes are 2.94 ± 0.24, 4.72 ± 0.49 and 1.20 ± 0.65 respectively. Middle: 78 objects from this work sample and the sample of Fairlamb et al.(2015). The break is defined at 푀∗ = 3.81 M . The gradients of best fits for the whole sample, low-mass and high-mass HAeBes are 2.60 ± 0.19, 4.78 ± 0.34 and 1.14 ± 0.46 respectively. Right: 163 objects are separated into the low-mass HAeBes and the high-mass HAeBes at 푀∗ = 3.98 M . The gradients of best fits for the whole sample, low-mass and high-mass HAeBes are 2.67 ± 0.13, 4.05 ± 0.24 and 1.26 ± 0.34 respectively.

UV-excess of Herbig Ae/Be stars using UV-blue spectroscopy and luminosity and stellar luminosity that gives rise to a correlation be- photometry respectively and noted the correlation with emission tween the line strengths and accretion. Hence, although the lines may line strengths (see also Donehew & Brittain 2011). F15 and F17 not necessarily be directly accretion-related, the empirical correla- took this further and demonstrated the strong correlation between tions between emission line luminosities and accretion luminosities emission line strength and accretion luminosity for a much larger are strong enough to validate their use as accretion tracers. sample and a mass range going up to 10–15 M . It extended to an When we revisit the various studies mentioned above, it is no- 4 accretion luminosity of 10 L and was shown to hold for a large table that a distinction between Herbig Ae and Herbig Be stars is number of different emission lines. found, spectroscopically (Cauley & Johns-Krull 2014), spectropo- One should keep in mind the caveat, also pointed out by F17, larimetrically (Vink et al. 2005), due to spectral variability (Costi- that high spatial resolution optical and near-infrared studies of the gan et al. 2014), and even when considering the accretion rates from hydrogen line emission do not necessarily identify the line emitting UV-excesses (F15). regions of Herbig Ae/Be stars with the magnetospheric accretion Based on the break in accretion rates, we can move this bound- channels. Already in 2008, Kraus et al.(2008) reported that their ary to a critical mass of 4M , remarkably close, but not perfectly milli-arcsec resolution AMBER interferometric data indicated dif- so, to the boundary of around B7/8 put forward by Ababakr et al. ferent Br훾 line forming regions which were consistent with the (2017). It is thus implied that there is a transition from magneti- MA scenario for some objects but with disk-winds for others. Fur- cally controlled accretion in low-mass HAeBes to another accretion ther studies by e.g. Mendigutía et al.(2015b) find the line emis- mechanism in high-mass HAeBes at around 4 M . The remaining sion region consistent with a rotating disk. Similarly, Tambovtseva question is what this mechanism should be. et al.(2016) and Kreplin et al.(2018) find the disk-wind a more likely explanation for the emitting region than the compact accre- tion channels. Even higher resolution H훼 CHARA data discussed 6.3 If MA does not operate in massive objects, what then? by Mendigutía et al.(2017) present a similar diversity. The spectropolarimetric finding of a disk reaching onto the star is There thus remains the question whether we can use emission reminiscent of the Boundary Layer (BL) accretion mechanism that lines to probe accretion if they are apparently not related to the ac- was found to be a natural consequence of a viscous circumstellar cretion process itself, or indeed, why the line luminosities correlate disk around a stellar object (Lynden-Bell & Pringle 1974). The BL with the accretion luminosity at all. It is well known that accretion is a thin annulus close to the star in which the material reduces its onto young stars drives jets and outflows, where the mass ejection (Keplerian) velocity to the slow rotation of the star when it reaches rates are of order 10% of the accretion rates (see e.g. Purser et al. the stellar surface. It is here that kinetic energy and angular momen- 2016). If this is also the case for Herbig Ae/Be stars, then one could tum will be dissipated. The BL mechanism was originally used to expect the emission lines to be correlated with the accretion rates. explain the observed UV excesses of low mass pre-Main Sequence On the other hand, Mendigutía et al.(2015a) pointed out that while stars (Bertout et al. 1988) until observations led to strong support the physical origin of the lines may not be related to the accretion for the magnetic accretion scenario instead (Bouvier et al. 2007). process per se, it is the underlying correlation between accretion One of the difficulties the BL mechanism had was the smaller red-

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 15

Figure 8. Accretion luminosity versus stellar luminosity for 163 HAeBes in this work and classical T Tauri stars from Hartmann et al.(1998), White & Basri(2003), Calvet et al.(2004) and Natta et al.(2006). Red, green and blue 1.17±0.09 dashed lines are the best fit for T Tauri stars (퐿acc ∝ 퐿∗ ), low-mass 1.03±0.08 0.60±0.08 HAeBes (퐿acc ∝ 퐿∗ ) and high-mass HAeBes (퐿acc ∝ 퐿∗ ) respectively. Figure 9. Ages versus mass accretion rates. From top to bottom all sam- ple, the mass range 2.0-2.5 M , 2.5-3.0 M and 3.0-3.5 M . The best ¤ −1.11±0.05 ¤ fit is shown in the dashed line where 푀acc ∝ 퐴푔푒 , 푀acc ∝ 퐴푔푒−1.95±0.49, 푀¤ ∝ 퐴푔푒1.40±1.47 and 푀¤ ∝ 퐴푔푒−0.37±1.25 respec- shifted absorption linewidths predicted from the Keplerian widths acc acc tively. The colour map indicates stellar mass of each mass bin. expected from the BL than from freefall in the case of MA (Bertout et al. 1988). It had been suggested in the past to operate in Herbig Ae/Be objects (eg Blondel & Djie 2006 who studied Herbig Ae stars; Mendigutía et al. 2011b; Cauley & Johns-Krull 2014) but has than through Magnetospheric Accretion. This also means that the never been adapted and tested for masses of Herbig Be stars and accretion rate has to be larger in BL to arrive at the same accretion greater. luminosity. In turn, this has as implication that if we derive the mass It is very much beyond the scope of this paper to address the accretion rates using the MA paradigm, while the accretion is due to BL theoretically, but let us suffice with a basic consideration to see BL, then the resulting accretion luminosities and rates would have whether we would be able to expect a different slope in the derived been underestimated. accretion rate or luminosity for an object undergoing MA or BL Earlier, we found that the (MA derived) accretion luminosities accretion. In both situations infalling material converts energy into have the same dependence of the accretion luminosity on the stellar radiation. In MA the energy released by a mass 푑푀 falling onto luminosity for T Tauri stars and Herbig Ae stars, while we find a a star with mass and radius 푀∗ and 푅∗ respectively will be the smaller gradient for the more massive stars. If we would assume that 퐺푀∗ 푑푀 this dependence would hold for more massive stars too, then it could gravitational potential energy of the infalling material, 푅∗ , times a factor close to 1 accounting for the fact that material is not be concluded that the accretion rates have been underestimated falling from infinity. for massive Herbig Be stars. If the BL scenario was the acting How would this amount of released energy compare to that mechanism for the Herbig Be stars then the accretion luminosities in the BL scenario for infalling material of the same mass 푑푀? would be larger - possibly resulting in the same relationship between For the BL case, the accretion energy will be at most the kinetic accretion and stellar luminosity as the lower mass stars, and no break energy of the rotating material prior to being decelerated in the would be visible. very thin layer close to the stellar surface. As the material rotates Could that be the case here? The accretion onto the stars likely Keplerian, we know that the centripetal force equals the force of depends on the rates the accretion disks are fed and mass needs to be 푑푀 푣2 퐺푀∗ 푑푀 transported through the disk, so it may be reasonable to assume that gravity, 푅 = 2 . We thus find that the kinetic energy ∗ 푅∗ this process is less dependent on the stellar parameters and a simple 1 푑푀푣2 = 퐺푀∗ 푑푀 , which is half the gravitational potential energy 2 2푅∗ correlation between accretion onto the star and stellar luminosity for the same mass. (or mass) would be expected. It is intriguing that the BL scenario In other words, the energy released in the BL scenario will for more massive stars might explain why we obtain lower accretion be less than that released by MA for the same mass. Therefore if rates when we assume MA for the more massive objects resulting the mass accretion rate is the same, we obtain a lower accretion in a break at around 4 M . An in-depth investigation into the BL is luminosity for objects accreting material through a Boundary Layer certainly warranted.

MNRAS 000,1–18 (2020) 16 C. Wichittanakom et al.

7 FINAL REMARKS CW thanks Thammasat University for financial support in the form of a PhD scholarship at the University of Leeds. IM ac- In this paper we presented an analysis of a new set of optical spec- knowledges the funds from a “Talento” Fellowship (2016-T1/TIC- troscopy of 30 northern Herbig Ae/Be stars. This was combined 1890, Government of Comunidad Autónoma de Madrid, Spain). with our data and analysis of southern objects in F15 resulting in a M. Vioque was funded through the STARRY project which re- set of temperatures, gravities, extinctions and luminosities that were ceived funding from the European Union’s Horizon 2020 research derived in a consistent manner. As such this constitutes the largest and innovation programme under MSCA ITN-EID grant agree- homogeneously analysed sample of 78 Herbig Ae/Be stars to date. ment No 676036. This work has made use of data from the Euro- To these we added 85 objects from the Gaia DR2 study of V18. pean Space Agency (ESA) mission Gaia (https://www.cosmos. The total sample of 163 objects allowed us to derive the accretion esa.int/gaia), processed by the Gaia Data Processing and Anal- luminosities and mass accretion rates using the empirical power- ysis Consortium (DPAC, https://www.cosmos.esa.int/web/ law relationship between accretion luminosity and line luminosity gaia/dpac/consortium). Funding for the DPAC has been pro- as derived under the MA paradigm. vided by national institutions, in particular the institutions partici- We identified a subset in the total sample as being the strongest pating in the Gaia Multilateral Agreement. This research has made Herbig Ae/Be star candidates known. The set contains 60 per cent use of IRAF which is distributed by the National Optical Astronomy of the objects in Table 1 from the Thé et al.(1994) catalogue. All Observatory, which is operated by the Association of Universities trends found in the large sample are also present in this subsample. for Research in Astronomy (AURA) under a cooperative agreement This implies that the large sample likely has a low contamination with the National Science Foundation. This publication has made and is therefore a good representation of the Herbig Ae/Be class. use of SIMBAD data base, operated at CDS, Strasbourg, France. • We find that the mass accretion rate increases with stellar It has also made use of NASA’s Astrophysics Data System and mass, and that the lower mass Herbig Ae stars’ accretion rates have the services of the ESO Science Archive Facility. Based on ob- a steeper dependence on mass than the higher mass Herbig Be stars. servations collected at the European Southern Observatory under This confirms previous findings, but the large sample allows us to ESO programmes 60.A-9022(C), 073.D-0609(A), 075.D-0177(A), determine the mass where this break occurs. This is found to be 076.B-0055(A), 082.A-9011(A), 082.C-0831(A), 082.D-0061(A), 4 M . 083.A-9013(A), 084.A-9016(A) and 085.A-9027(B). This research • A comparison of accretion luminosities of the Herbig Ae/Be was made possible through the use of the AAVSO Photometric All- stars with those of T Tauri stars from the literature indicates that Sky Survey (APASS), funded by the Robert Martin Ayers Sciences the Herbig Ae stars’ accretion rates display a similar dependence Fund and NSF AST-1412587. on luminosity as the T Tauri stars. This provides further evidence that Herbig Ae stars may accrete in a similar fashion as the T Tauri stars. We do caution however that T Tauri stars do not yet have REFERENCES Gaia-based accretion rates. • We also find that in general, younger objects have larger mass Ababakr K. M., Oudmaijer R. D., Vink J. S., 2017, MNRAS, 472, 854 accretion rates. However, it is not trivial to disentangle a mass Abt H. A., Morrell N. I., 1995, ApJS, 99, 135 and age dependence from each other: More massive stars have Acke B., van den Ancker M. E., Dullemond C. P., 2005, A&A, 436, 209 Alecian E., et al., 2013, MNRAS, 429, 1001 larger accretion rates, but have much smaller ages as well. A small Arun R., Mathew B., Manoj P., Ujjwal K., Kartha S. S., Viswanath G., subset selected in a narrow mass range leads us to suggest that Narang M., Paul K. T., 2019,AJ, 157, 159 the accretion rate does indeed decrease with time. The best value Baines D., Oudmaijer R. D., Porter J. M., Pozzo M., 2006, MNRAS, 367, ¤ could be determined for the mass range 2.0-2.5 M . We find 푀acc ∝ 737 −1.95±0.49 퐴푔푒 . Bertout C., Basri G., Bouvier J., 1988, ApJ, 330, 350 Bessell M. S., 1979, PASP, 91, 589 Finally, we discussed the similarities and differences between Blondel P. F. C., Djie H. R. E. T. A., 2006, A&A, 456, 1045 the accretion properties of lower mass and higher mass Herbig pre- Boehm T., Catala C., 1995, A&A, 301, 155 Main Sequence stars. In particular we discuss the various lines of Bohlin R. C., Mészáros S., Fleming S. W., Gordon K. D., Koekemoer A. M., evidence that suggest they accrete in different fashions. In addition, Kovács J., 2017,AJ, 153, 234 from linear spectropolarimetric studies, the Herbig Be stars are Borges Fernandes M., Kraus M., Lorenz Martins S., de Araújo F. X., 2007, found to have disks reaching onto the stellar surface while the Herbig MNRAS, 377, 1343 Ae stars (with the break around 4 M ) have disks with inner holes, Bouvier J., Alencar S. H. P., Harries T. J., Johns-Krull C. M., Romanova similar to the T Tauri stars. M. M., 2007, Protostars and Planets V, pp 479–494 Bressan A., Marigo P., Girardi L., Salasnich B., Dal Cero C., Rubele S., We therefore put forward the Boundary Layer mechanism as a Nanni A., 2012, MNRAS, 427, 127 viable manner for the accretion onto the stellar surface of massive Calvet N., Cohen M., 1978, MNRAS, 182, 687 pre-Main Sequence stars. More work needs to be done, but an Calvet N., Muzerolle J., Briceño C., Hernández J., Hartmann L., Saucedo initial, crude, estimate of the accretion luminosity dependency on J. L., Gordon K. D., 2004,AJ, 128, 1294 mass – assuming a global correlation between mass accretion rate Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245 and stellar mass for all masses – can explain the observed break in Carmona A., van den Ancker M. E., Audard M., Henning T., Setiawan J., accretion properties. Rodmann J., 2010, A&A, 517, A67 Catala C., et al., 2007, A&A, 462, 293 Cauley P. W., Johns-Krull C. M., 2014, ApJ, 797, 112 Clarke A. J., Lumsden S. L., Oudmaijer R. D., Busfield A. L., Hoare M. G., ACKNOWLEDGEMENTS Moore T. J. T., Sheret T. L., Urquhart J. S., 2006, A&A, 457, 183 Costigan G., Vink J. S., Scholz A., Ray T., Testi L., 2014, MNRAS, 440, The authors would like to thank to the anonymous reviewer who pro- 3444 vided constructive comments which helped improve the manuscript. Cowley A., 1972,AJ, 77, 750

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 17

Cowley A., Cowley C., Jaschek M., Jaschek C., 1969,AJ, 74, 375 Mendigutía I., Oudmaijer R. D., Mourard D., Muzerolle J., 2017, MNRAS, Dahm S. E., Hillenbrand L. A., 2015,AJ, 149, 200 464, 1984 De Vaucouleurs A., 1957, MNRAS, 117, 449 Mészáros S., et al., 2012,AJ, 144, 120 De Winter D., van den Ancker M. E., Maira A., Thé P. S., Djie H. R. E. T. A., Miroshnichenko A. S., Gray R. O., Vieira S. L. A., Kuratov K. S., Bergner Redondo I., Eiroa C., Molster F. J., 2001, A&A, 380, 609 Y. K., 1999, A&A, 347, 137 Donehew B., Brittain S., 2011,AJ, 141, 46 Miroshnichenko A. S., et al., 2000, A&AS, 147, 5 Drilling J. S., Jeffery C. S., Heber U., Moehler S., Napiwotzki R., 2013, Miroshnichenko A. S., et al., 2002, A&A, 388, 563 A&A, 551, A31 Mora A., et al., 2001, A&A, 378, 116 Dunkin S. K., Barlow M. J., Ryan S. G., 1997, MNRAS, 290, 165 Morgan W. W., Keenan P. C., 1973, ARA&A, 11, 29 Fairlamb J. R., Oudmaijer R. D., Mendigutía I., Ilee J. D., van den Ancker Muzerolle J., D’Alessio P., Calvet N., Hartmann L., 2004, ApJ, 617, 406 M. E., 2015, MNRAS, 453, 976 Nakano M., Sugitani K., Watanabe M., Fukuda N., Ishihara D., Ueno M., Fairlamb J. R., Oudmaijer R. D., Mendigutia I., Ilee J. D., van den Ancker 2012,AJ, 143, 61 M. E., 2017, MNRAS, 464, 4721 Natta A., Testi L., Randich S., 2006, A&A, 452, 245 Fang M., Kim J. S., van Boekel R., Sicilia-Aguilar A., Henning T., Flaherty Oudmaijer R. D., Drew J. E., 1999, MNRAS, 305, 166 K., 2013, ApJS, 207, 5 Oudmaijer R. D., et al., 2001, A&A, 379, 564 Fernandez M., 1995, A&AS, 113, 473 Palla F., Stahler S. W., 1993, ApJ, 418, 414 Frasca A., Miroshnichenko A. S., Rossi C., Friedjung M., Marilli E., Mura- Pogodin M. A., Hubrig S., Yudin R. V., Schöller M., González J. F., Stelzer torio G., Busà I., 2016, A&A, 585, A60 B., 2012, Astronomische Nachrichten, 333, 594 Fulbright J. P., 2000,AJ, 120, 1841 Polster J., Korčáková D., Votruba V., Škoda P., Šlechta M., Kučerová B., Gaia Collaboration et al., 2016, A&A, 595, A2 Kubát J., 2012, A&A, 542, A57 Gaia Collaboration et al., 2018, A&A, 616, A1 Purser S. J. D., et al., 2016, MNRAS, 460, 1039 Garcia Lopez R., Natta A., Testi L., Habart E., 2006, A&A, 459, 837 Reipurth B., Pedrosa A., Lago M. T. V. T., 1996, A&AS, 120, 229 Garrison R. F., 1970,AJ, 75, 1001 Reiter M., et al., 2018, ApJ, 852, 5 Gray R. O., Corbally C. J., Garrison R. F., McFadden M. T., Robinson P. E., Salpeter E. E., 1955, ApJ, 121, 161 2003,AJ, 126, 2048 Sartori M. J., Gregorio-Hetem J., Rodrigues C. V., Hetem Jr. A., Batalha C., Hamann F., Persson S. E., 1992, ApJS, 82, 285 2010,AJ, 139, 27 Hartmann L., Calvet N., Gullbring E., D’Alessio P., 1998, ApJ, 495, 385 Schöller M., et al., 2016, A&A, 592, A50 Hartmann L., Herczeg G., Calvet N., 2016, ARA&A, 54, 135 Skiff B. A., 2014, VizieR Online Data Catalog,1 Herbig G. H., 1958, ApJ, 128, 259 Smith J. A., et al., 2002,AJ, 123, 2121 Herbig G. H., 1960, ApJS, 4, 337 Spezzi L., et al., 2008, ApJ, 680, 1295 Herbig G. H., Bell K. R., 1988, Third Catalog of Emission-Line Stars of the Straižys V., Kuriliene G., 1981, Ap&SS, 80, 353 Orion Population : 3 : 1988 Tambovtseva L. V., Grinin V. P., Weigelt G., 2016, A&A, 590, A97 Herbst W., Shevchenko V. S., 1999,AJ, 118, 1043 Tang J., Bressan A., Rosenfield P., Slemer A., Marigo P., Girardi L., Bianchi Hernández J., Calvet N., Briceño C., Hartmann L., Berlind P., 2004,AJ, L., 2014, MNRAS, 445, 4287 127, 1682 Thé P. S., de Winter D., Pérez M. R., 1994, A&AS, 104, 315 Hernández J., Calvet N., Hartmann L., Briceño C., Sicilia-Aguilar A., Van den Ancker M. E., Bouwman J., Wesselius P. R., Waters L. B. F. M., Berlind P., 2005,AJ, 129, 856 Dougherty S. M., van Dishoeck E. F., 2000, A&A, 357, 325 Hill P. W., Lynas-Gray A. E., 1977, MNRAS, 180, 691 Vieira S. L. A., Corradi W. J. B., Alencar S. H. P., Mendes L. T. S., Torres Hillenbrand L. A., Strom S. E., Vrba F. J., Keene J., 1992, ApJ, 397, 613 C. A. O., Quast G. R., Guimarães M. M., da Silva L., 2003,AJ, 126, Hube D. P., 1970, Mem. RAS, 72, 233 2971 Ingleby L., et al., 2013, ApJ, 767, 112 Vieira R. G., Gregorio-Hetem J., Hetem A., Stasińska G., Szczerba R., 2011, Kahn F. D., 1974, A&A, 37, 149 A&A, 526, A24 Kraus S., et al., 2008, A&A, 489, 1157 Villebrun F., et al., 2019, A&A, 622, A72 Kreplin A., Tambovtseva L., Grinin V., Kraus S., Weigelt G., Wang Y., 2018, Vink J. S., Drew J. E., Harries T. J., Oudmaijer R. D., 2002, MNRAS, 337, MNRAS, 476, 4520 356 Kurucz R., 1993, ATLAS9 Stellar Atmosphere Programs and 2 km/s Vink J. S., Drew J. E., Harries T. J., Oudmaijer R. D., Unruh Y., 2005, grid. Kurucz CD-ROM No. 13. Cambridge, Mass.: Smithsonian Astro- MNRAS, 359, 1049 physical Observatory, 1993., 13 Vioque M., Oudmaijer R. D., Baines D., Mendigutía I., Pérez-Martínez R., Kučerová B., et al., 2013, A&A, 554, A143 2018, A&A, 620, A128 Lesh J. R., 1968, ApJS, 17, 371 Walker M. F., 1959, ApJ, 130, 57 Lumsden S. L., Hoare M. G., Urquhart J. S., Oudmaijer R. D., Davies B., Wheelwright H. E., Oudmaijer R. D., Goodwin S. P., 2010, MNRAS, 401, Mottram J. C., Cooper H. D. B., Moore T. J. T., 2013, ApJS, 208, 11 1199 Lynden-Bell D., Pringle J. E., 1974, MNRAS, 168, 603 White R. J., Basri G., 2003, ApJ, 582, 1109 Manoj P., Bhatt H. C., Maheswar G., Muneer S., 2006, ApJ, 653, 657 Wolf B., Stahl O., 1985, A&A, 148, 412 Marigo P., et al., 2017, ApJ, 835, 77 Zacharias N., Finch C. T., Girard T. M., Henden A., Bartlett J. L., Monet Meeus G., Waters L. B. F. M., Bouwman J., van den Ancker M. E., Waelkens D. G., Zacharias M. I., 2012, VizieR Online Data Catalog, 1322 C., Malfait K., 2001, A&A, 365, 476 Zuckerman B., et al., 2008, ApJ, 683, 1085 Mendigutía I., Eiroa C., Montesinos B., Mora A., Oudmaijer R. D., Merín B., Meeus G., 2011a, A&A, 529, A34 Mendigutía I., Calvet N., Montesinos B., Mora A., Muzerolle J., Eiroa C., Oudmaijer R. D., Merín B., 2011b, A&A, 535, A99 Mendigutía I., Mora A., Montesinos B., Eiroa C., Meeus G., Merín B., 8 SUPPORTING INFORMATION Oudmaijer R. D., 2012, A&A, 543, A59 Mendigutía I., Oudmaijer R. D., Rigliaco E., Fairlamb J. R., Calvet N., Supplementary appendices are available for download alongside this Muzerolle J., Cunningham N., Lumsden S. L., 2015a, MNRAS, 452, article on the MNRAS website (https://academic.oup.com/mnras). 2837 Table 2, 3, C1, C2 and D are available in elec- Mendigutía I., de Wit W. J., Oudmaijer R. D., Fairlamb J. R., Carciofi A. C., tronic form at https://cdsarc.unistra.fr/viz-bin/cat/J/ Ilee J. D., Vieira R. G., 2015b, MNRAS, 453, 2126 MNRAS/493/234.

MNRAS 000,1–18 (2020) 18 C. Wichittanakom et al.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 19 ) respectively, . 00 0 . . ◦ ) and declination (DEC) in the units of angle ( . s . m . h (J2000) (J2000) (June 2013) R1200B R1200Y R1200R R1200B R1200Y R1200R Ref. NameFeige 98HD 130109 RABD+26 14:38:15.8 2606 14:46:14.9HD +27:29:33.0 14:49:02.4 147394 +01:53:34.4 DEC 23 +25:42:09.2HD 152614 21; 23 16:19:44.4 23HD 153653 +46:18:48.1 16:54:00.5 Obs DateHD 157741 21; +10:09:55.3 23 17:00:29.4 60;HD 20 158485 20; +06:35:01.3 22; 17:24:33.8 24HD - 160762 20; +15:36:21.8 17:26:04.8 22; 24 20HD - 161056 Exposure 22; +58:39:06.8 Time 23; 17:39:27.9 20 (s) 24 30HD 175426 21; +46:00:22.8 23 17:43:47.0 300 60HD 177724 21; 20; -07:04:46.6 23 18:53:43.6 10 150 - - 15HD 186307 +36:58:18.2 23 19:05:24.6 40 -HD 196504 20; +13:51:48.5 22; 19:41:57.6 60 24 - 30; 40; - 179 15HD 30 199081 21; +40:15:14.9 23; 20:37:04.7 20 25 15; 30 25 +26:27:43.0 20:53:14.8 SNR 60 - 60 257 319 40 420 20; 25 15 +44:23:14.1 10; - 5 - 36 21; 23; 25 339 40 376 10 94 - - - - 30 124 247 - 20 179 40 - - 10 Spectral A0 Type 52 - IIInn 534 247 69 - - 20 - B8 V 245 2 sdB9III:He1 184 157 B5 439 - IV 302 A7 20; V 60 1 - A5 5 390 60 224 4 B9 - V 40 234 - 6 204 464 395 3 - 6 492 A4 - B3 V IV A0 IV-Vnn B2 V - 118 10 - 6 7 - 9 B3 Vn B5 V 125 235 8 7 A6 V B8 V 6 11 Log of observations of standard stars. Column 1 gives the object name. Columns 2 and 3 are right ascension (RA) in the units of time ( Table A1. References: (1) Drilling et( 2013 ); al. (2) &Abt( 1977 ); Lynas-Gray & (10) Morrell ( 1995 );Gray (3) etFulbright( 2000 ); al. ( 2003 ); (4) (11) MorganHube ( 1970 ). &( 1973 ); Keenan (5) ( 1972 );Cowley (6) Cowley et al. ( 1969 ); (7) Lesh ( 1968 ); (8) De( 1957 ); Vaucouleurs (9) Hill column 4 lists the observationcolumns dates. 11–12. Columns 5–7 present the exposure times for each grating. The signal-to-noise ratios for each grating are given in columns 8–10. Spectral type is listed along with references in

MNRAS 000,1–18 (2020) 20 C. Wichittanakom et al.

Figure B1. The H훼 line profiles for the 30 objects listed in Table 1.

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 21

Figure B1 – continued .

MNRAS 000,1–18 (2020) 22 C. Wichittanakom et al. ) and . s . m . h 42 26 20 36 03 15 36 86 16 18 84 00 27 85 15 58 15 42 24 47 13 60 59 13 42 06 01 83 76 05 32 93 77 91 77 89 64 64 97 36 51 01 ...... 2 0 1 0 0 1 1 0 0 1 0 3 1 0 2 0 1 0 0 0 1 2 0 2 0 0 2 1 0 1 1 2 4 0 0 2 0 0 2 0 0 3 − − − + − + + − + + − + − + − − + + − − + − − − + − − − − − + + + − − + + + + + + + Age 31 98 24 81 08 24 25 13 63 47 01 13 17 80 91 61 91 79 05 08 75 ...... 6 3 3 0 0 3 5 5 3 3 5 8 6 3 8 6 8 4 1 7 2 12 27 04 40 51 39 20 08 14 27 24 11 07 16 04 04 02 24 33 08 87 32 46 02 92 83 41 24 15 05 38 04 21 16 22 11 07 07 01 31 07 57 ) (Myr) ...... 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗

+ − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − 푀 M 10 47 33 31 81 34 94 01 44 34 21 89 86 26 87 80 60 18 40 82 18 ...... 2 2 2 4 8 2 1 2 2 2 2 1 1 2 1 1 1 2 3 1 3 ) 17 31 10 29 23 23 16 11 11 18 16 17 12 11 08 07 09 16 11 42 09 16 25 11 27 24 20 15 11 11 18 17 16 12 11 08 07 09 16 11 35 09 ...... ∗ ...... ]( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 퐿

+ − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − ( L 44 83 62 74 49 61 36 47 67 70 46 25 33 65 21 27 04 45 94 98 18 ...... log 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 38 09 15 67 14 39 62 20 15 15 27 14 12 15 18 05 10 07 13 34 23 08 . 60 22 16 17 15 67 18 44 30 19 19 14 17 06 11 08 16 38 23 09 ...... )[ 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + − ∗

+ − + + − + − − + − + − + − + − + + − − + + + − − − + + + + + + − − − − − + − − ------푅 R 35 59 50 06 47 34 58 25 08 91 78 77 56 14 48 06 85 87 39 12 80 ...... 1 2 2 3 3 2 2 2 2 1 2 1 2 1 2 1 1 6 1 1 15 2 4 9 3 . . . . 7 8 37 7 9 42 9 9 29 51 44 64 11 15 12 18 11 29 17 20 17 11 25 12 10 10 33 64 53 94 12 18 14 21 13 37 19 24 19 12 31 13 + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − 푒 푒 푒 푑 푑 푑 푑 푑 푑 푑 푑 5 9 D - - - . . ------366 398 857 853 887 697 410 398 389 399 408 429 421 438 432 359 455 387 1130 311 324 푏 푏 12 24 54 51 29 01 13 08 35 07 08 03 07 05 04 35 13 02 14 05 06 25 03 03 03 04 39 06 02 03 10 19 11 08 25 07 07 03 06 05 03 26 12 03 13 04 36 34 23 02 06 20 03 03 03 05 29 05 03 04 ...... 13 07 10 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . 0 0 푉 0 0 + − + + + + − + − − − − + − + − + − + − + − + − + − + − + − + − + − + − + − + + + − − − + + + + − − − − + + + + − − − − + − + − 퐴 45 11 62 47 03 79 48 06 92 59 58 40 74 34 54 05 78 40 37 51 31 59 39 33 41 35 36 15 55 99 ...... 55 03 . . 1 3 5 2 1 1 1 1 4 0 0 0 0 0 0 2 1 0 1 0 1 0 0 0 0 0 3 1 0 0 1 1 ] (mag) (pc) ( . 30 24 30 20 16 40 16 12 15 15 10 13 30 25 35 30 25 20 13 20 50 15 13 15 12 25 11 40 40 15 15 25 20 50 30 11 30 20 16 40 11 13 15 17 10 15 30 25 35 30 25 11 13 20 15 11 12 25 11 40 40 15 15 25 ) 2 ...... − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 푔 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ( + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − 20 75 20 00 20 30 30 80 18 72 35 90 10 97 20 25 00 60 25 15 22 30 99 23 27 25 47 80 10 38 40 90 log ...... 4 3 4 4 4 4 4 3 4 3 4 3 4 3 4 4 4 3 4 4 4 4 3 4 4 4 3 3 4 4 4 3 250 500 250 500 250 500 250 500 250 500 250 500 4000 2000 1000 1500 2000 4000 2000 1000 1500 2000 250 250 250 375 250 250 500 750 500 250 500 250 250 125 250 500 250 500 250 250 250 250 250 250 375 250 250 500 750 500 250 500 250 250 125 250 500 250 500 250 250 250 + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − eff 푇 ) respectively. Columns 4–11 are effective temperature, surface gravity, visual extinction, distance, radius, luminosity, mass and age respectively. Temperature 9000 8000 9750 7875 9500 9000 9750 9750 9000 8500 8500 9750 9000 8375 7750 9750 7000 9500 8500 9500 8500 10500 10500 10250 11000 10500 10000 . 12000 12000 12500 15000 17000 00 0 . . ◦ (J2000) (J2000) (K) [cm s Stellar parameters of 91 Herbig Ae/Be stars in the Fairlamb et al. ( 2015 ) sample. Column 1 gives the object name. Columns 2 and 3 are right ascension (RA) in the units of time ( LkHa 339VY Mon 06:10:57.8 -06:14:39.6 06:31:06.9 +10:26:04.9 PDS 24 06:48:41.6 -16:48:05.6 R MonV590 Mon 06:39:09.9 06:40:44.6 +08:44:09.5 +09:48:02.1 PDS 124 06:06:58.4 -05:55:06.7 V791 Mon 06:02:14.8 -10:00:59.5 HD 250550 06:01:59.9 +16:30:56.7 V350 Ori 05:40:11.7 -09:42:11.0 V599 Ori 05:38:58.6 -07:16:45.6 HD 37411 05:38:14.5 -05:25:13.3 HD 290764 05:38:05.2 -01:15:21.6 HD 37357 05:37:47.0 -06:42:30.2 BF Ori 05:37:13.2 -06:35:00.5 HD 290770 05:37:02.4 -01:37:21.3 HD 37258 05:36:59.2 -06:09:16.3 V380 Ori 05:36:25.4 -06:42:57.6 T Ori 05:35:50.4 -05:28:34.9 HD 245185 05:35:09.6 +10:01:51.4 HD 244314HK 05:30:19.0 Ori +11:20:20.0 UY 05:31:28.0 Ori +12:09:10.1 05:32:00.3 -04:55:53.9 HD 244604 05:31:57.2 +11:17:41.3 HD 287823HD 05:24:08.0 287841 +02:27:46.8 HD 05:24:42.8 290409 +01:43:48.2 HD 05:27:05.4 35929 +00:25:07.6 HD 290500 05:27:42.7 05:29:48.0 -08:19:38.4 -00:23:43.5 PDS 174V1012 Ori 05:06:55.5HD 34282 05:11:36.5 -03:21:13.3 -02:22:48.4 05:16:00.4 -09:48:35.3 NameUX RA Ori 05:04:29.9 DEC -03:47:14.2 declination (DEC) in theand units surface of gravity are anglehttps://cdsarc.unistra.fr/viz-bin/cat/J/MNRAS/493/234 taken ( from Fairlamb et al. ( 2015 ). Distance is obtained from Vioque et al. ( 2018 ). The rest of parameters are redetermined in this work. This table is available in electronic form at Table C1.

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 23 00 10 80 34 55 22 03 60 01 03 09 01 08 07 47 00 04 03 33 32 39 20 26 65 03 03 35 76 69 . . 53 48 82 05 25 01 05 18 03 11 13 58 01 07 05 24 22 70 25 32 31 15 06 12 68 95 ...... 27 ...... 1 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 + − 0 − + − + − + − + − + − + − + − + − + − + − + − + − − + + − + − + − + − + − + − + − + − + − + − + + − − + −− + Age 00 29 24 79 14 55 01 14 20 03 21 19 82 01 09 13 01 79 76 49 00 00 04 06 70 95 14 . 06 ...... 1 3 4 0 0 0 0 0 0 3 0 1 0 0 0 5 4 5 0 1 2 0 0 1 2 2 0 11 82 39 24 58 14 67 58 71 25 37 62 09 . . 20 13 17 02 69 03 67 17 77 04 29 70 88 19 03 03 67 36 39 02 17 36 . . . . . 33 16 02 03 67 15 62 40 98 16 35 03 90 04 11 11 94 41 40 26 28 44 . . . . . ) (Myr) ...... 5 2 5 5 2 7 3 8 9 5 14 24 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 ∗ − + − + − + − + − +

+ − − + − + − + − + − + + − − + − + − + + − + − + − + − + − + − + − + − + − + − + − + − − + 푀 10 41 19 89 60 M 13 85 44 18 48 17 40 02 45 22 79 06 31 49 16 14 98 05 89 26 26 56 87 ...... 3 2 2 1 7 2 7 6 6 6 3 9 8 2 2 1 5 3 3 3 2 2 24 19 11 12 12 36 ) 14 08 11 09 11 12 25 11 24 22 77 16 20 13 51 25 13 09 09 09 19 12 27 72 40 13 18 15 15 08 11 08 11 12 27 12 25 23 65 18 19 14 43 24 13 10 09 09 21 13 19 62 39 14 19 14 ...... ∗ ...... ]( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 퐿

+ − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + + − − ( L 43 79 45 85 20 76 97 13 13 66 03 99 28 15 36 78 71 41 50 35 94 54 18 21 24 28 05 89 ...... log 2 1 1 0 3 1 4 3 3 4 4 2 3 2 5 3 3 1 1 1 2 2 2 4 4 2 2 1 86 37 95 04 30 58 90 42 11 99 38 10 23 81 33 77 03 22 10 05 05 10 87 07 22 34 60 09 11 09 69 22 90 28 33 31 ...... 26 10 04 04 09 14 46 29 43 69 11 10 10 92 28 63 35 34 41 ...... 01 ...... )[ 0 2 0 4 1 5 0 4 0 0 3 1 5 1 6 1 5 . 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 2 0 0 0 0 + − + − + − + − + − + − + − + − ∗

+ − + + − − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − ------− +− 푅 R 02 68 29 33 49 72 14 84 36 75 87 68 28 32 19 60 44 61 79 98 86 00 00 51 72 68 19 ...... 09 ...... 2 2 1 1 2 9 6 8 3 6 1 1 1 5 4 6 2 2 3 2 12 15 12 11 10 17 10 13 6 1 1 2 69 7 ...... 7 2 66 45 76 53 66 8 2 82 53 92 62 83 1 1 0 80 140 350 150 440 230 190 110 150 260 310 400 0 100 9 170 510 210 630 360 280 140 210 370 460 600 25 40 46 37 11 33 10 28 47 55 43 12 39 + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − 푒 푑 푑 푑 푑 푑 3 8 2 D - . . - - - - - . 110 396 689 932 911 951 558 668 1168 1023 1475 1316 1121 1170 2440 3100 1830 4040 1930 1910 1590 1820 2550 2550 2890 411 184 104 푏 푏 푏 07 03 03 14 04 07 06 08 02 60 05 20 06 56 09 08 02 00 07 05 07 01 10 17 49 14 37 07 17 15 12 07 03 02 04 07 05 08 01 12 38 04 16 06 35 09 07 03 03 05 05 06 02 09 14 33 13 27 07 15 13 10 ...... 04 28 09 03 23 09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0 0 푉 0 0 0 + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + + − − + − + − + − + − 퐴 27 69 17 12 45 37 13 35 51 64 34 00 23 44 32 95 03 00 54 37 70 06 92 26 96 12 92 29 24 38 80 ...... 72 09 61 . . . 1 0 0 0 1 1 0 1 5 0 0 1 1 6 2 0 1 0 1 0 1 0 1 0 4 2 2 1 2 2 0 0 3 1 ] (mag) (pc) ( 20 20 06 13 10 20 20 10 40 16 35 10 30 20 16 30 20 15 12 10 15 30 20 11 13 27 25 30 20 17 40 20 20 20 20 20 06 15 10 20 20 10 40 16 35 10 30 20 16 30 20 15 13 10 15 30 20 12 13 27 25 30 20 17 20 20 40 20 ) 2 ...... − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 푔 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ( + − + − + + − + − + − + − + − + − + − − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − 30 30 34 08 60 30 80 20 90 31 94 30 50 00 25 50 10 40 89 00 40 40 50 08 78 16 25 00 20 53 20 90 90 00 log ...... 4 4 4 4 3 4 3 3 2 4 2 3 3 4 4 3 4 4 3 4 4 3 3 4 3 3 4 4 4 2 4 3 3 4 500 250 500 250 250 500 250 500 500 500 250 250 250 500 500 250 500 250 250 500 250 500 500 500 250 250 250 500 1500 1000 1000 3500 3000 1500 2000 3500 1000 1500 1500 1500 1000 1000 3500 3000 1500 2000 3500 1000 1500 1500 250 500 250 250 250 250 250 250 500 250 500 250 250 250 250 250 250 500 + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − eff 푇 9750 9750 7250 9750 8750 9750 9250 7000 8500 15250 10500 10500 10000 10000 13000 10750 19000 14000 12500 13000 12500 10500 10500 25500 11500 34000 17500 30000 16000 14000 17500 29500 26000 22500 11:03:40.5 -59:25:59.0 08:55:45.9 -44:25:14.1 08:44:23.6 -59:56:57.8 07:28:36.7 -21:57:49.2 (J2000) (J2000) (K) [cm s . 푐 푐 푐 continued 푐 – PDS 344 11:40:32.8 -64:32:05.7 HD 101412 11:39:44.4 -60:10:27.7 HD 100546 11:33:25.4 -70:11:41.2 HD 100453 11:33:05.5 -54:19:28.5 HD 98922 11:22:31.6 -53:22:11.4 HD 97048 11:08:03.3 -77:39:17.4 HD 96042 HD 95881 11:01:57.6 -71:30:48.3 HD 94509 10:53:27.2 -58:25:24.5 HD 305298 10:33:04.9 -60:19:51.3 PDS 37 10:10:00.3 -57:02:07.3 HD 87403 10:02:51.4 -59:16:54.6 HD 85567 09:50:28.5 -60:58:02.9 PDS 297 09:42:40.3 -56:15:34.1 PDS 286 09:06:00.0 -47:18:58.1 PDS 281 HD 76534 08:55:08.7 -43:27:59.8 PDS 33 08:48:45.6 -40:48:21.0 HD 72106TYC 8581-2002-1 08:29:34.8 -38:36:21.1 HD 68695 08:11:44.5 -44:05:08.7 PDS 134 07:32:26.6 -21:55:35.7 HD 59319 PDS 133 07:25:04.9 -25:45:49.6 NX PupPDS 27 07:19:28.2 -44:35:11.2 07:19:35.9 -17:39:17.9 HD 53367PDS 241 07:04:25.5 -10:27:15.7 07:08:38.7 -04:19:04.8 HU CMa 07:04:06.7 -11:26:08.5 PDS 229Z CMa 06:55:40.0 -03:09:50.5 07:03:43.1 -11:33:06.2 NamePDS 130 RA 06:49:58.5 -07:38:52.2 DEC GU CMa 07:01:49.5 -11:18:03.3 HT CMa 07:02:42.5 -11:26:11.8 Table C1

MNRAS 000,1–18 (2020) 24 C. Wichittanakom et al. Stars ) 푐 ( DR2 Catalogue. Gaia 20 22 . 65 02 13 79 08 01 88 23 14 63 38 01 33 56 48 42 07 13 06 67 10 87 99 58 40 18 46 50 01 60 86 26 73 09 14 . 47 ...... 0 11 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 2 12 + − − + − + − + − + − + − + − + − + − + − + − − + + − − + + − − + + − + + − Age 20 04 50 14 25 90 13 74 76 09 41 02 01 46 72 78 25 30 98 ...... 0 5 2 7 4 8 1 6 3 7 0 5 6 3 0 0 0 3 10 61 51 59 34 10 40 12 12 02 21 10 13 11 15 11 16 04 83 74 62 56 . . 07 52 11 19 06 17 13 20 13 04 02 18 11 84 29 68 37 . . ) (Myr) ...... 4 4 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 ∗ − + + −

+ − + − − + − + − + − + − + − + − + − − + − + − + − + + − − + + − + 푀 79 92 M 04 87 57 05 67 97 74 26 69 16 61 67 35 45 39 46 26 ...... 2 2 1 2 1 2 1 2 1 2 1 1 2 2 4 6 6 14 21 Stars which do not have parallaxes in the ) ) 46 09 21 09 14 10 08 09 10 11 26 07 09 14 08 75 39 12 26 푒 36 08 21 09 13 10 08 09 09 10 27 07 08 13 09 59 35 13 27 ...... ∗ ...... ( ]( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 퐿

+ − + − + − + − + − + − + − + − + − + − + − + + − − + − + − + − + − + − + − ( L 43 36 05 82 50 10 95 18 39 14 87 41 86 94 73 67 77 31 30 ...... log 4 1 2 0 1 1 1 1 1 1 4 1 0 0 1 1 2 3 3 05 59 00 08 43 06 23 09 15 09 15 12 04 05 28 11 38 56 46 75 . 09 08 52 07 24 10 16 09 13 12 05 05 28 13 41 60 55 01 ...... )[ 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 + − ∗

+ − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − ------푅 R 61 12 86 20 21 32 85 34 32 92 19 78 49 42 33 89 60 91 37 ...... 9 1 3 2 2 1 4 2 3 2 1 1 2 2 1 3 5 4 11 88 91 9 5 9 2 9 9 6 3 1 2 7 1 4 6 4 ...... 0 2 3 0 1 2 2 2 1 1 1 2 2 3 2 2 3 2 2 2 1 2 120 110 300 160 150 430 18 13 43 28 44 22 15 52 33 57 + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − 6 5 푑 푑 푑 푑 푑 푑 5 8 1 4 3 3 7 8 D ...... ------63 . 375 382 833 643 705 1810 1340 2950 140 152 101 150 161 155 157 148 134 135 110 푏 푏 64 05 14 02 13 17 06 03 05 08 20 07 03 04 22 02 32 22 23 03 06 13 15 41 04 12 03 12 15 06 03 04 08 17 07 03 04 18 03 25 18 19 02 05 11 13 ...... DR2 Catalogue (see the text for discussion). 12 05 10 04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . 0 0 푉 0 0 + − + − + − + − + − + − + − + − + − + − + − + − + + − − + − + − + − + − + − + − + + − − + − + − + − 퐴 87 37 10 51 54 80 23 87 48 95 61 02 45 21 53 29 00 02 65 15 29 81 20 ...... 57 20 Gaia . . 7 0 2 0 1 1 1 0 0 0 2 1 0 0 0 0 4 2 1 0 0 0 2 1 1 ] (mag) (pc) ( 30 15 20 20 10 15 17 15 12 14 08 16 25 16 15 12 12 10 18 20 35 20 12 30 30 30 15 20 20 10 15 17 15 13 17 08 11 25 14 15 12 12 10 18 20 35 20 12 30 30 ) 2 ...... − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 푔 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ( + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − 00 38 30 70 26 47 27 37 75 05 93 13 75 13 35 31 94 90 41 20 00 60 89 80 80 log ...... 4 4 4 3 4 4 4 4 3 4 3 4 3 4 4 4 3 3 4 4 4 3 3 3 3 Stars of which photometry were used for the photometry fitting different from values listed in Fairlamb et al. ( 2015 , table A1) (see text for details). 500 250 500 500 500 250 500 500 ) 1500 3000 1000 2000 1500 1000 1500 1500 3000 1000 2000 1000 250 250 500 250 250 250 250 250 250 250 250 250 250 125 250 500 250 250 250 250 250 250 250 250 250 250 250 250 125 250 + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − 푏 ( eff 푇 8500 9250 6250 6250 9000 8000 8500 7500 6500 7500 7750 9750 7750 6375 8000 10500 10250 16000 14000 24500 28000 11000 12500 15000 18500 Stars which have low quality parallaxes in the ) 푑 ( . 18:27:39.5 -03:49:52.1 17:56:21.2 -21:57:21.8 16:40:17.9 -23:53:45.1 16:13:11.5 -22:29:06.6 15:56:40.0 -22:01:40.0 15:49:15.3 -26:00:54.7 15:49:57.7 -03:55:16.3 15:04:56.0 -63:07:52.6 (J2000) (J2000) (K) [cm s 푎 푎 푎 푎 푎 푐 푎 푎 continued Stars which are also in this work’s sample. – ) 푎 ( MWC 297 KK OphHD 163296 17:10:08.1 -27:15:18.8 PDS 431 16:54:59.1 -43:21:49.7 AK Sco 16:54:44.8 -36:53:18.5 PDS 415HD 150193 16:18:37.2 -24:05:18.1 HD 145718 HD 144668 16:08:34.2 -39:06:18.3 HD 144432 16:06:57.9 -27:43:09.7 HD 142527 15:56:41.8 -42:19:23.2 HD 142666 HD 141926 15:54:21.7 -55:19:44.3 PDS 144S HD 141569 HD 139614 15:40:46.3 -42:29:53.5 HD 135344B 15:15:48.4 -37:09:16.0 HD 132947 DG Cir 15:03:23.7 -63:22:58.8 PDS 364 13:20:03.5 -62:23:54.0 PDS 69 13:57:44.1 -39:58:44.2 HD 114981 13:14:40.6 -38:39:05.6 NameHD 104237 RA 12:00:05.0 -78:11:34.5 DEC V1028 CenPDS 361 13:01:17.8 -48:53:18.7 13:03:21.4 -62:13:26.2 Table C1 Notes. which have small emissions.

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 25 . ] ) 28 19 23 12 19 22 20 22 17 17 20 22 20 24 20 22 36 37 25 10 23 1 22 15 24 09 23 20 19 20 19 15 25 20 18 22 19 27 30 30 22 15 23 ...... − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 acc − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − − + + − − + + − + ¤ yr 푀 ( 74 54 60 37 18 59 74 81 47 48 78 66 60 22 31 02 62 39 36 82 20

...... 6 6 6 5 4 6 6 6 6 6 6 6 6 7 6 7 7 7 7 6 7 M log − − − − − − − − − − − − − − − − − − − − − ) 35 30 . . 20 21 11 20 21 21 21 17 18 21 23 19 23 22 24 36 24 14 23 18 17 19 20 12 23 20 20 20 17 18 21 21 18 23 21 23 30 23 14 22 ...... 0 ][ 0 acc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + −

+ − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − 퐿 ( L 19 . 88 95 95 22 07 75 63 63 10 92 80 74 83 36 91 54 05 23 12 30 ...... 0 0 0 0 2 3 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 log − ) 05 08 09 08 07 08 06 06 09 09 06 08 10 10 17 18 09 03 08 06 08 09 08 08 07 06 06 10 09 06 08 09 10 13 14 08 03 07 ...... 05 09 05 12 . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ][ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 line 0 0 + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + −

+ − + − ------퐿 ( L 14 14 34 46 46 99 17 29 35 26 73 18 55 28 04 86 97 79 21 ...... 13 98 . . 1 1 1 1 1 1 0 1 1 1 1 1 1 1 2 2 1 0 1 0 0 log − − − − − − − − − − − − − − − − − − − 14 14 15 15 15 15 14 15 13 15 15 15 15 15 14 15 14 14 16 15 14 15 15 15 14 15 15 15 15 15 14 15 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 )[ https://cdsarc.unistra.fr/viz-bin/cat/J/MNRAS/493/234 2 ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × − line 54 07 06 09 33 22 05 43 12 70 08 32 63 78 14 72 07 11 90 49 04 02 54 28 22 48 36 69 18 64 05 61 ...... 퐹 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 21 57 53 55 20 16 49 39 35 13 68 58 02 41 93 14 06 32 99 03 68 14 56 12 43 36 27 26 23 61 18 94 ...... 7 4 3 1 3 3 5 3 6 7 8 8 7 7 8 7 2 1 5 9 1 8 9 3 1 4 1 2 1 4 2 4 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) (W m 1 15 16 17 17 16 16 16 16 14 16 16 16 16 16 16 16 16 16 17 16 16 16 16 16 15 16 16 16 16 16 16 16 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − Å 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 2 휆 − × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × 퐹 75 69 06 03 74 13 71 70 08 29 44 69 48 03 35 66 55 65 81 22 17 52 23 14 00 97 61 18 06 83 59 03 ...... profile, line flux, line luminosity, accretion luminosity and mass accretion rate respectively. Equivalent widths are taken from Fairlamb et al. 훼 H 99 3 95 2 09 5 21 4 89 1 97 1 83 5 6007 2 1 63 4 46 7 40 4 54 5 4455 9 35 4 5 38 7 5553 5 3 74 2 57 6 67 3 33 2 60 2 73 1 67 3 49 3 51 4 . 52 8 11 2 39 2 64 4 ...... 1 1 1 2 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ± cor ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 86 26 73 45 37 96 02 57 86 62 66 69 72 49 33 06 22 30 04 65 47 58 60 65 62 05 65 26 . 88 15 86 40 ...... 퐸푊 . . . . 9 7 4 5 26 69 38 18 27 96 12 58 16 11 15 14 95 15 37 17 10 28 77 12 29 14 14 11 12 60 12 123 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 30 41 57 00 56 34 46 33 47 36 50 30 31 53 45 58 48 55 31 50 32 56 64 62 47 30 84 93 96 79 87 65 ...... 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 int ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 퐸푊 98 98 13 66 03 55 35 64 31 70 00 61 98 07 28 48 79 79 54 14 00 22 58 36 23 65 45 35 63 94 69 46 ...... 76 9 76 8 52 9 79 12 37 14 25 7 39 10 48 13 35 12 50 14 72 15 61 15 34 6 . 37 12 47 15 43 13 46 14 39 15 43 13 25 13 ...... 50 15 ...... 33 15 57 13 41 14 26 15 51 14 69 8 55 15 43 13 55 16 40 16 34 14 1 . 1 0 1 1 0 0 0 0 0 0 0 1 ...... 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± obs ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± (Å) (Å) (Å) (W m 51 81 10 83 08 83 88 08 56 86 04 19 47 . 39 07 38 02 33 15 46 ...... 18 퐸푊 ...... 09 69 76 98 32 54 35 36 74 18 39 ...... 5 1 2 0 0 4 1 17 60 25 13 88 48 81 24 13 61 14 54 3 1 4 4 2 1 0 8 4 4 2 114 10 − − − − − − − − − − − − − − − − − − − − The equivalent width measurements and accretion rates of 91 Herbig Ae/Be stars in the Fairlamb et al. ( 2015 ) sample. Columns 2–9 present observed equivalent width, intrinsic equivalent width, corrected VY Mon R Mon V590 Mon PDS 24 LkHa 339 PDS 124 V791 Mon V350 Ori HD 250550 HD 37411 V599 Ori HD 37357 HD 290764 BF Ori V380 Ori HD 37258 HD 290770 T Ori UY Ori HD 245185 HK Ori HD 244604 HD 244314 HD 290500 HD 35929 HD 290409 HD 287841 HD 287823 V1012 Ori HD 34282 PDS 174 Name UX Ori ( 2017 ). The rest of parameters are redetermined in this work. This table is available in electronic form at Table C2. equivalent width, continuum flux density at central wavelength of the

MNRAS 000,1–18 (2020) 26 C. Wichittanakom et al. ] ) 18 18 12 33 15 12 13 11 28 16 42 13 37 15 12 19 23 20 09 15 26 20 16 17 1 17 17 15 29 12 13 16 15 28 21 35 13 32 15 13 22 20 20 07 19 26 17 16 15 ...... − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 acc + − − + − − + − + + − − + − + − + + − − + + − − + + − + − + − + − + − + − + − − + + − − + + − + ¤ yr 푀 ( 32 55 59 79 83 33 88 07 14 03 90 71 86 16 43 96 99 73 89 04 52 86 03 10

...... 6 6 6 7 4 6 4 5 6 4 5 4 6 4 5 6 6 5 5 4 5 5 6 6 M log − − − − − − − − − − − − − − − − − − − − − − − − ) 32 28 . . 16 19 14 13 13 14 15 26 24 42 13 37 22 12 21 21 19 14 24 21 15 17 15 16 18 14 13 13 16 18 25 29 35 14 32 25 14 20 20 20 14 28 26 15 17 15 ...... 0 ][ 0 acc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − +

− + − − + + − − + − + − + − + + − − + + − − + + − + − + − + − + − + − + − − + + + − + − + − 퐿 ( L 35 . 39 90 97 44 19 37 27 85 46 37 68 58 64 18 61 53 77 79 43 26 71 41 38 ...... 0 1 0 0 2 1 2 2 1 3 1 2 0 3 2 0 0 1 1 3 2 1 1 1 log − ) 06 07 03 14 03 18 31 22 07 07 11 06 07 05 07 07 06 03 11 03 19 26 19 07 07 13 07 08 08 05 ...... 05 07 09 11 05 08 06 12 15 05 08 11 15 05 10 07 15 18 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ][ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 line 0 0 0 0 0 0 0 0 0 + − + − + − + − + − + − + − + − + − + − + − + − + − + − + −

+ − + − + − + − + − + − + − + − + − ------퐿 ( L 70 19 12 44 90 24 72 51 48 56 32 30 38 68 71 ...... 35 28 18 37 59 55 09 34 17 ...... 0 1 1 2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 log − − − − − − − − − − − − − − − 15 14 13 14 13 14 13 14 15 13 15 13 16 13 14 15 15 15 15 15 14 13 15 13 12 15 15 13 16 15 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 )[ 2 ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × − ------line 03 13 08 27 07 21 04 05 18 01 65 02 21 06 19 10 36 60 09 27 05 01 23 15 02 16 20 07 18 11 ...... 퐹 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 08 22 02 06 53 50 18 45 14 01 66 20 92 45 72 18 99 63 36 47 16 08 75 64 21 87 40 95 08 59 ...... 1 1 2 1 1 4 1 1 1 2 1 1 3 3 4 1 4 5 2 7 2 1 5 2 1 9 5 1 2 3 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) (W m 1 17 16 15 15 15 15 15 15 16 15 16 15 16 15 16 17 15 14 15 17 16 16 16 15 16 17 16 14 14 16 16 15 17 17 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − Å 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 2 휆 − × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × 퐹 59 90 12 14 23 20 11 06 27 53 63 60 11 95 89 12 80 58 51 00 30 73 39 73 57 26 22 27 65 62 65 95 37 43 ...... 61 1 99 6 90 3 68 7 61 5 09 6 39 3 02 2 82 6 83 2 57 1 67 2 65 6 72 3 73 1 9885 4 1 51 4 66 2 4199 1 1 24 1 67 9 34 8 . . 28 2 89 2 52 3 17 5 21 9 73 4 42 2 59 8 71 1 26 9 ...... 0 3 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 1 0 1 ± ± cor ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 76 95 03 43 46 68 97 88 17 01 77 84 93 03 20 75 60 57 64 52 09 81 61 58 . . 96 75 24 97 94 12 56 82 29 22 ...... 퐸푊 ...... 4 0 3 2 3 1 2 5 1 2 30 15 39 24 37 21 23 57 30 16 18 16 18 45 77 12 11 73 61 32 19 42 123 110 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 53 55 02 00 35 14 36 58 46 65 19 14 78 39 94 63 32 39 98 68 54 39 58 71 60 78 87 44 42 40 00 91 96 47 ...... 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 int ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 퐸푊 28 50 23 04 54 36 61 83 60 51 87 41 80 95 35 33 25 87 76 76 42 93 84 13 98 84 74 40 21 02 97 09 75 63 ...... 47 3 91 7 45 7 42 15 44 10 34 13 39 9 53 6 47 6 42 3 34 5 41 5 4573 8 4 9940 9 9 35 11 48 4 70 11 . . 69 15 48 15 29 4 52 4 ...... 42 13 . . . . 77 10 80 3 41 3 63 9 41 11 49 5 63 14 48 16 07 7 82 9 0 3 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± obs ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± (Å) (Å) (Å) (W m 89 11 23 96 64 43 53 84 25 84 00 22 01 20 55 00 94 86 17 . . 15 10 36 62 ...... 05 퐸푊 . . . . 27 20 01 79 42 30 78 48 84 41 ...... 0 3 8 7 22 23 14 24 12 16 50 26 11 12 37 73 63 52 20 14 31 5 3 0 6 7 4 8 0 5 7 119 103 11 − − − − − − − − − − − − − − − − − − − − − − − . continued – PDS 344 HD 101412 HD 100546 HD 98922 HD 100453 HD 96042 HD 97048 HD 95881 HD 94509 HD 305298 PDS 37 HD 87403 HD 85567 PDS 297 PDS 281 PDS 286 HD 76534 PDS 33 HD 72106 TYC 8581-2002-1 HD 68695 HD 59319 PDS 134 PDS 133 NX Pup PDS 27 PDS 241 HD 53367 Z CMa HU CMa HT CMa GU CMa PDS 229 Name PDS 130 Table C2

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 27 ] ) 22 19 24 26 20 33 27 18 20 13 19 23 21 21 10 08 26 15 1 21 19 23 24 17 28 24 15 18 13 07 12 23 15 20 21 23 22 ...... − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 acc − − + + − − + + − + − + − − − − − + + + + − − − + − − + + + − − + + + + ¤ yr 푀 ( 52 91 58 61 61 49 33 61 99 00 37 25 49 23 43 34 11 67

...... 3 6 6 7 6 7 7 6 6 6 4 7 7 7 5 6 6 5 M log − − − − − − − − − − − − − − − − − − ) 28 32 26 28 . . . . 21 19 25 18 28 19 21 15 20 22 23 23 11 16 22 16 22 18 24 17 25 18 20 14 23 21 22 21 12 16 23 16 ...... 0 0 ][ 0 0 acc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + − + −

+ − + − + − + − + + + + − − − − + − + + − − + − + + − − + + − − 퐿 ( L 26 04 . . 19 62 87 83 65 38 33 05 40 04 09 35 27 15 54 86 ...... 0 0 4 0 0 0 0 0 1 0 3 0 0 0 1 2 1 1 log − − ) 05 12 10 05 14 05 06 05 11 06 06 08 06 13 08 05 13 09 05 11 05 06 04 09 06 05 07 06 15 09 ...... 04 08 05 05 10 05 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ][ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 line 0 0 0 + − + − + − + − + + + + − + − − − − + + − + + − − − + + − −

+ − + − + − ------퐿 ( L 47 22 35 26 13 44 71 76 04 05 00 74 82 55 23 ...... 10 31 06 . . . 1 1 2 1 2 1 1 0 2 2 2 1 0 0 0 2 1 0 log − − − − − − − − − − − − − − − 11 14 13 16 15 16 14 14 14 14 13 14 14 15 13 14 14 13 15 14 15 14 15 14 − − − − − − − − − − − − − − − − − − − − − − − − 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 )[ 2 ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × − ---- line 01 31 09 74 32 55 61 26 41 28 14 27 18 07 04 16 76 13 18 02 08 21 07 17 ...... 퐹 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 86 64 06 90 22 55 74 02 67 60 16 32 59 36 64 73 76 04 98 71 05 84 07 96 ...... 2 7 1 5 7 3 7 1 4 2 2 1 1 1 3 1 4 2 6 2 1 3 5 8 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) (W m 1 14 15 15 17 15 16 15 15 15 15 15 15 16 15 17 15 15 15 15 16 16 16 15 17 15 − − − − − − − − − − − − − − − − − − − − − − − − − − Å 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 2 휆 − × × × × × × × × × × × × × × × × × × × × × × × × × 퐹 81 84 38 40 23 83 57 66 56 06 59 02 22 24 68 76 69 57 42 14 50 12 90 77 17 ...... 01 4 87 2 6764 1 5 71 3 1635 3 48 2 9 4648 1 4 55 7 94 1 66 4 69 7 55 1 7221 2 5 48 1 . . 16 6 08 1 39 1 54 1 35 2 24 7 70 1 ...... 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 ± ± cor ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 52 62 65 51 66 13 63 53 78 19 88 26 42 49 08 24 01 42 . . 22 88 94 19 56 58 32 ...... 퐸푊 ...... 9 5 1 6 6 1 9 19 41 21 12 22 13 27 61 13 88 76 12 29 46 10 10 594 108 − − − − − − − − − − − − − − − − − − − − − − − − − 60 64 05 61 17 41 45 17 33 31 20 56 38 31 45 51 50 62 34 57 70 53 56 96 70 ...... 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 int ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 퐸푊 02 36 49 07 65 12 53 70 26 07 55 96 75 10 52 06 04 18 40 66 01 35 64 63 00 ...... 90 4 52 7 31 16 68 13 43 3 98 13 83 13 74 9 30 7 . . 36 16 95 5 57 16 9868 6 45 11 14 75 5 4546 5 5 ...... 33 11 ...... 50 10 30 5 52 14 68 11 61 13 57 15 0 0 . 0 0 0 0 0 0 1 ...... 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ± ± obs ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± (Å) (Å) (Å) (W m 00 61 15 12 48 74 98 38 42 . . 63 82 59 95 98 41 60 97 60 ...... 38 퐸푊 ...... 27 10 34 14 48 13 ...... 3 0 5 6 0 8 4 3 7 25 16 43 13 47 78 69 1 3 8 5 0 5 590 101 10 − − − − − − − − − − − − − − − − − − continued – MWC 297 HD 163296 KK Oph PDS 431 AK Sco HD 150193 PDS 415 HD 142527 HD 144432 HD 144668 HD 145718 HD 142666 HD 139614 PDS 144S HD 141926 HD 135344B HD 141569 Name HD 104237 DG Cir HD 132947 V1028 Cen PDS 361 HD 114981 PDS 364 PDS 69 Table C2

MNRAS 000,1–18 (2020) 28 C. Wichittanakom et al. ] ) 20 28 22 23 24 28 27 17 19 22 22 22 31 28 28 32 44 22 21 42 21 1 20 28 22 23 22 27 25 21 20 24 20 24 29 26 25 34 39 25 24 39 22 ...... − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 acc + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − ¤ yr 푀 ( 32 15 80 89 96 04 13 57 87 00 98 23 94 01 02 18 42 80 34 85 96

...... 7 6 6 6 5 6 6 6 6 7 6 7 6 7 7 7 7 7 7 4 6 M log − − − − − − − − − − − − − − − − − − − − − ) 19 21 19 21 . . . . 15 17 19 14 19 15 15 19 18 18 21 16 19 17 22 22 19 17 17 19 19 17 15 17 19 14 19 14 15 18 17 18 20 16 19 17 22 23 ...... 0 0 ][ 0 0 acc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + − + −

+ − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − ------퐿 ( L 01 26 . . 28 64 41 43 31 32 85 39 41 34 11 61 52 57 32 47 04 74 68 ...... 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 2 0 log − − ) 05 02 04 09 03 04 03 05 03 05 04 07 08 03 03 03 04 04 05 03 06 04 03 05 05 10 05 03 04 03 03 05 03 05 04 08 09 03 03 04 ...... 08 09 . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ][ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 line 0 + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + −

+ − 푎 푎 푎 푎 푎 푎 푎 퐿 ------( L 81 45 10 68 66 78 77 24 70 68 75 98 48 57 52 77 62 05 35 41 ...... 65 . 0 1 2 1 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 1 0 log − − − − − − − − − − − − − − − − − − − − 14 15 14 15 15 14 14 16 14 15 14 15 16 17 15 15 14 14 13 14 15 14 15 15 14 14 15 − − − − − − − − − − − − − − − − − − − − − − − − − − − 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 )[ 2 ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × − ------line 02 18 02 13 08 04 20 16 13 18 09 09 14 06 05 28 14 12 03 21 02 09 05 23 08 21 36 ...... 퐹 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 20 49 12 47 26 72 13 08 61 06 26 82 71 03 92 10 06 28 15 83 45 91 66 41 31 48 24 ...... 2 7 4 4 1 1 7 5 2 2 4 2 2 4 1 4 9 2 6 4 2 1 1 4 4 7 5 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( profile, line flux, line luminosity, accretion luminosity and mass accretion rate 훼 ) (W m 1 14 16 16 16 17 17 18 15 16 15 15 16 16 16 16 15 16 15 15 16 14 16 15 16 16 16 15 16 16 14 17 H − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − Å . 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 2 휆 − × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × 퐹 35 26 48 12 89 13 19 17 25 16 25 42 15 94 74 99 64 59 67 07 69 36 51 94 01 98 29 01 51 04 59 ...... 1 6 6 4 11 1 66 2 37 3 27 2 37 9 62 2 66 1 48 1 50 3 70 1 25 2 64 7 90 1 30 1 12 2 47 2 08 4 39 1 67 1 85 2 10 1 07 2 26 6 20 1 05 3 08 3 19 1 ...... 0 0 0 0 0 0 0 0 4 0 0 0 0 0 1 0 2 0 0 0 3 0 0 0 0 0 0 cor ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± - - - - 32 29 45 81 08 50 15 99 66 66 64 38 23 93 58 75 66 30 04 89 43 30 60 80 24 85 69 ...... 퐸푊 ...... 7 7 2 1 7 3 45 13 37 30 45 11 27 12 13 13 34 19 21 58 13 17 27 27 21 36 23 − − − − − − − − − − − − − − − − − − − − − − − − − − − 27 22 09 19 14 14 05 32 13 16 19 11 12 11 05 03 02 35 34 02 05 25 06 03 08 14 00 08 34 04 16 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 int ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 퐸푊 43 29 09 10 85 66 14 13 18 75 64 97 94 82 99 82 51 58 45 28 00 19 20 66 80 28 43 19 65 37 06 ...... 8 9 5 8 8 6 6 5 6 6 6 9 7 7 8 4 15 13 15 12 13 14 12 15 14 11 15 14 15 13 14 3 3 2 3 3 3 9 7 8 3 2 3 2 7 6 2 5 4 2 3 2 1 10 13 12 11 10 ) respectively. Observed equivalent width is listed along with references in columns 4–5. The rest of parameters are derived in this work. . 00 0 . . ◦ 60 58 47 50 63 89 07 08 66 85 10 obs 10 22 12 14 07 07 70 63 20 29 45 01 20 ...... 04 ...... 20 05 . 0 0 0 4 0 0 1 2 0 0 3 . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± 퐸푊 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 60 10 90 00 00 40 80 00 10 80 40 50 30 00 80 30 40 00 30 50 80 00 20 93 ...... 28 ...... 00 95 . . . https://cdsarc.unistra.fr/viz-bin/cat/J/MNRAS/493/234 4 2 4 4 4 1 2 7 6 3 9 9 0 12 19 15 45 21 17 21 41 22 16 31 4 5 12 − − − − − − − − − − − − − − − − − − − − − − − − (J2000) (J2000) (Å) Ref. (Å) (Å) (W m ) and declination (DEC) in the units of angle ( . s . m . h The equivalent width measurements and accretion rates of 144 Herbig Ae/Be stars in the Vioque et( 2018 ) al. sample. Column 1 gives the object name. Columns 2 and 3 are right ascension (RA) in the HD 36917 05:34:46.9 -05:34:14.5 HD 36982 05:35:09.8 -05:27:53.2HD 37371 - 05:38:09.9 -00:11:01.1 - NV Ori 05:35:31.3 -05:33:08.8 CQ TauV1787 Ori 05:35:58.4 05:38:09.3 +24:44:54.0 -06:49:16.5 HBC 442 05:34:14.1 -05:36:54.1 HD 288012 05:33:04.7 +02:28:09.7 - - HD 31648HD 34700 04:58:46.2HD 290380 +29:50:36.9 05:19:41.4 05:23:31.0 +05:38:42.7 -01:04:23.6 HD 36112RY Ori 05:30:27.5HD 36408 +25:19:57.0 05:32:09.9 05:32:14.1 -02:49:46.7 +17:03:29.2 AB Aur 04:55:45.8 +30:33:04.2 HD 35187CO Ori 05:24:01.1 +24:57:37.5 05:27:38.3 +11:25:38.9 XY Per AV892 Tau 03:49:36.3 04:18:40.6 +38:58:55.4 +28:19:15.6 IP Per 03:40:46.9 +32:31:53.7 PDS 4 03:39:00.5 +29:41:45.7 BD+30 549 03:29:19.7 +31:24:57.0 - - HD 17081 02:44:07.3 -13:51:31.3 HBC 334 02:16:30.1 +55:22:57 HD 9672 01:34:37.7 -15:40:34.8 PDS 2 01:17:43.4 -52:33:30.7 HBC 7 00:43:25.3 +61:38:23.3 VX Cas 00:31:30.6 +61:58:50.9 MQ Cas 00:09:37.5 +58:13:10.7 - - HBC 324 00:07:30.6 +65:39:52.6 NameHBC 1 RA 00:07:02.6 +65:38:38.3 DEC Columns 6–12 present intrinsic equivalentrespectively. width, This corrected table is equivalent width, available in continuum electronic flux form density at at central wavelength of the Table D1. units of time (

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 29 ] ) 39 20 24 28 17 22 36 20 46 30 37 23 48 35 42 26 33 24 25 19 35 29 1 38 20 22 32 20 24 33 21 43 27 34 23 55 26 46 24 35 24 25 21 29 29 ...... − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 acc + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − ¤ yr 푀 ( 50 93 96 30 72 15 62 35 58 22 96 65 45 57 03 91 07 20 51 99 33 91

...... 5 5 5 6 6 7 6 5 5 6 6 6 3 5 7 5 5 7 7 4 4 6 M log − − − − − − − − − − − − − − − − − − − − − − ) 21 21 . . 21 15 14 17 16 21 20 14 20 16 20 18 34 15 23 14 13 21 14 19 19 27 15 14 17 16 20 21 14 23 16 20 18 39 16 24 14 14 21 15 20 19 ...... 0 ][ 0 acc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + −

+ − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − ------퐿 ( L 17 . 99 48 46 24 64 20 05 87 02 29 78 71 33 07 62 65 43 15 32 11 66 ...... 0 1 1 1 1 0 0 1 1 2 1 0 0 4 2 0 1 2 0 2 3 0 log − ) 06 02 13 05 06 05 04 05 14 06 05 05 08 07 06 07 09 09 21 06 05 07 02 05 10 07 17 07 08 06 09 11 07 06 04 06 ...... 17 06 07 08 20 06 07 09 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ][ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 line 0 0 0 0 + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + −

+ − + − + − + − 푎 푎 푎 푎 푎 푎 푎 푎 퐿 ------( L 10 61 63 85 45 89 04 22 07 80 31 38 02 47 44 94 26 43 ...... 24 34 23 02 . . . . 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 1 2 1 2 0 0 1 log − − − − − − − − − − − − − − − − − − 16 13 13 14 14 15 14 15 13 15 13 16 13 15 15 15 15 15 15 13 14 14 15 14 14 13 16 13 16 16 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 )[ 2 ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × − ------line 06 03 13 08 11 04 16 26 04 05 12 25 09 17 02 08 03 66 73 14 06 07 09 04 24 03 33 08 14 12 ...... 퐹 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 64 33 13 94 79 74 12 54 02 36 92 43 01 47 61 02 89 64 02 01 27 37 31 35 56 54 82 83 91 08 ...... 2 1 4 4 2 9 2 6 1 2 3 7 3 4 1 2 1 6 8 3 1 1 2 1 7 3 3 2 5 6 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) (W m 1 14 16 15 16 15 16 16 14 16 16 15 17 14 16 16 17 17 17 16 15 15 16 15 17 17 16 15 17 17 15 15 15 17 17 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − Å 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 2 휆 − × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × 퐹 27 55 51 94 74 42 70 19 24 20 30 57 17 97 36 60 62 07 01 78 28 85 22 66 11 91 75 60 79 65 99 16 03 61 ...... 1 1 6 1 00 1 00 6 . . 77 3 85 1 27 2 85 5 06 6 05 1 0020 2 2 33 3 26 1 75 9 28 8 55 3 28 1 70 1 00 6 29 7 13 1 52 4 10 4 29 5 71 2 47 2 18 3 39 4 25 3 02 3 06 4 ...... 0 0 0 1 0 2 2 0 0 1 1 0 2 0 37 5 2 10 1 2 0 7 1 0 0 0 0 0 0 0 cor ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± - - - - 30 40 83 58 54 58 56 24 98 66 53 70 72 61 30 80 97 50 52 24 42 09 16 31 11 10 05 94 40 38 ...... 퐸푊 . . . . . 8 5 8 0 7 37 27 16 48 14 52 46 10 10 37 46 18 65 18 62 43 32 77 16 82 47 23 29 − − − − − 372 205 − − − − − − − − − − − − − − − − − − − − − − − − − 02 08 20 11 03 18 07 10 13 01 13 11 12 06 12 28 02 05 06 04 03 04 04 03 07 06 02 07 12 08 08 02 03 27 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 int ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 퐸푊 70 40 23 58 64 58 58 22 66 53 80 72 61 09 31 11 60 06 24 56 61 94 30 80 97 50 00 82 13 24 12 18 16 15 ...... 4 8 6 6 5 3 2 5 3 5 4 6 7 6 6 6 4 9 11 10 13 11 13 11 13 11 12 11 13 14 13 11 14 16 3 2 7 7 7 7 7 2 2 7 8 8 7 2 2 2 8 7 7 14 14 13 15 12 16 12 12 17 11 11 00 00 . . 77 85 85 05 00 25 75 55 70 00 29 13 52 10 29 65 obs 18 18 05 20 25 25 25 06 45 ...... 34 31 01 1 2 37 1 2 0 7 1 0 0 0 2 1 1 2 5 2 10 . . . 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 퐸푊 ± ± ± ± ± ± ± ± ± ± ± ± 60 00 00 00 00 00 00 00 00 00 00 00 70 00 30 00 00 00 50 60 90 00 00 90 00 20 00 ...... 52 24 61 . . . 3 3 0 4 5 4 5 1 9 25 17 37 41 40 25 35 51 57 40 25 71 10 71 43 13 8 0 3 − − − − − − − − − 370 200 − − − − − − − − − − − − − − − − − − (J2000) (J2000) (Å) Ref. (Å) (Å) (W m . continued – HD 50138 06:51:33.3 -06:57:59.4 NameHD 37490 RA 05:39:11.1 +04:07:17.2 DEC RR Tau 05:39:30.5 +26:22:26.9 HD 245906HD 37806 05:39:30.4 +26:19:55.1 05:41:02.2 -02:43:00.7 HD 38087HD 38120 05:43:00.5 -02:18:45.3 05:43:11.8 -04:59:49.8 - - V351 Ori 05:44:18.7 +00:08:40.4 HD 39014 05:44:46.3GSC 5360-1033 -65:44:07.9 HD 05:57:49.4 249879 -14:05:33.6 05:58:55.7 +16:39:57.3 PDS 123V1818 Ori 05:50:54.2 05:53:42.5 +20:14:50.0 -10:24:00.7 HD 41511 - 06:04:59.1 -16:29:03.9 - PDS 22 06:03:37.0 -14:53:03.1 GSC 1876-0892 06:07:15.3 +29:57:55.0 LkHA 208PDS 211 06:07:49.5 +18:39:26.4 06:10:17.3 +29:25:16.6 LkHA 338 06:10:47.1 -06:12:50.6 PDS 126 06:13:37.2 -06:25:01.6 MWC 137 06:18:45.5 +15:16:52.2 HD 45677 06:28:17.4 -13:03:11.1 CPM 25NSV 2968 06:23:56.3 06:26:53.9 +14:30:28.0 -10:15:34.9 HD 46060 06:30:49.8 -09:39:14.7 PDS 129LKHA 215 06:31:03.6 06:32:41.7 +10:01:13.5 +10:09:34.2 - - HD 259431 06:33:05.1 +10:19:19.9 HBC 217 06:40:42.1 +09:33:37.4 HBC 222 06:40:51.1 +09:44:46.1 HD 50083 06:51:45.7 +05:05:03.8 HD 56895BGSC 6546-3156 07:24:17.5 07:18:30.5 -26:16:05.2 -11:11:53.8 - - PDS 25 06:54:27.8 -25:02:15.8 Table D1

MNRAS 000,1–18 (2020) 30 C. Wichittanakom et al. ] ) 24 25 45 28 44 28 40 25 20 20 38 35 53 23 34 40 34 21 38 28 15 1 22 29 51 29 50 26 48 25 20 18 44 44 49 23 44 46 33 22 37 28 14 ...... − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 acc + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − ¤ yr 푀 ( 07 39 66 11 94 21 80 73 89 99 68 20 80 64 27 58 28 22 01 10 76

...... 6 5 4 6 3 7 5 7 6 5 4 4 6 5 5 6 7 7 6 8 5 M log − − − − − − − − − − − − − − − − − − − − − ) 22 23 22 22 . . . . 15 17 23 18 28 19 19 19 14 18 26 28 17 20 19 18 19 14 11 16 21 27 19 32 19 21 18 14 20 30 28 18 24 20 18 19 14 11 ...... 0 0 ][ 0 0 acc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + − + −

+ − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − ------퐿 ( L 32 60 . . 30 15 06 23 88 21 04 42 33 04 71 83 54 51 34 49 13 83 62 ...... 0 0 1 2 3 1 3 0 2 0 1 3 3 0 1 2 1 0 0 1 1 log − − ) 05 07 12 04 04 15 08 09 04 03 07 03 02 04 04 06 09 04 15 04 04 05 17 09 10 04 03 07 03 03 ...... 11 13 14 07 13 13 14 16 17 09 15 15 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ][ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 line 0 0 0 0 0 0 + − + − + − + − + − + − + − + − + − + − + − + − + − + − + −

+ − + − + − + − + − + − 푎 푎 푎 푎 푎 푎 푎 푎 푎 푎 푎 푎 푎 퐿 ------( L 79 86 88 05 41 67 76 26 55 75 60 96 26 69 47 ...... 06 97 79 95 62 42 ...... 0 0 1 0 2 1 0 1 0 0 1 1 0 2 0 0 0 1 0 1 0 log − − − − − − − − − − − − − − − 13 14 16 14 15 14 13 15 14 14 14 15 15 13 16 16 15 15 15 16 16 15 13 15 13 13 14 15 15 15 15 14 16 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 )[ 2 ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × − -- line 03 09 16 45 08 81 05 07 35 03 09 06 17 18 01 25 17 44 05 07 33 09 18 61 09 17 02 11 18 17 20 25 02 ...... 퐹 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 47 17 22 58 95 20 14 68 37 14 90 51 38 68 06 30 61 97 24 63 09 89 96 26 66 86 06 93 89 62 38 90 06 ...... 3 2 2 9 4 8 2 1 8 2 5 4 3 8 1 5 3 8 1 1 3 2 3 6 1 6 1 2 3 4 4 7 1 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) (W m 1 14 16 15 16 17 17 15 15 15 16 15 16 16 15 16 15 16 15 16 16 16 16 16 16 16 15 17 16 17 16 17 17 16 15 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − Å 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 2 휆 − × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × 퐹 37 68 67 33 26 29 05 58 12 22 09 15 06 14 01 58 24 89 05 10 09 16 95 56 48 73 91 83 89 26 75 66 75 00 ...... 1 58 1 43 4 50 4 . 50 2 . . 12 2 35 6 70 1 00 3 15 3 77 2 46 3 26 1 00 1 50 9 25 4 41 1 56 1 36 6 50 7 42 2 75 2 25 2 30 5 . 40 4 07 1 0505 5 1 09 3 16 1 0821 1 8 29 6 07 9 ...... 23 7 0 1 2 19 1 0 0 0 0 2 4 1 4 0 14 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ± ± cor ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± - 33 07 62 48 28 86 07 52 97 64 29 18 98 63 64 27 25 26 52 34 60 43 08 . . 41 55 75 03 42 82 52 52 42 36 ...... 퐸푊 ...... 5 4 1 4 3 0 3 1 8 6 14 32 57 24 11 14 22 56 42 91 30 98 18 17 55 11 20 39 21 158 − − − − − − − − − − 196 148 − − − − − − − − − − − − − − − − − − − 1097 − − − − 07 03 09 33 05 06 05 06 08 07 35 06 07 05 11 07 02 05 01 41 06 01 03 07 06 06 33 04 05 08 39 03 29 01 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 int ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 퐸푊 32 08 64 64 09 26 43 48 41 28 62 56 16 07 63 32 17 47 28 18 98 07 63 21 27 18 25 52 42 52 34 60 07 68 ...... 5 9 3 8 2 4 4 3 3 3 8 3 2 1 8 5 4 9 2 3 5 4 5 8 5 8 9 11 11 13 10 11 10 14 3 7 7 8 7 7 8 7 7 7 7 7 7 3 19 25 24 22 23 19 19 19 21 19 12 12 19 19 18 20 18 12 17 58 50 43 . 50 . . 35 70 00 25 00 50 25 40 50 75 25 30 obs . 10 05 01 15 65 45 45 15 20 35 15 ...... 02 20 02 06 07 05 7 23 1 2 19 1 0 2 4 1 4 14 2 0 1 0 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 퐸푊 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 17 00 00 00 30 00 01 00 00 00 00 00 00 00 00 40 . . 30 40 10 35 50 00 00 35 00 00 00 ...... 00 06 33 39 00 71 ...... 3 0 0 8 6 9 9 1 4 7 3 27 54 20 53 40 90 25 88 50 15 25 11 4 4 9 3 4 1 150 − − − − − − − − − − − 194 145 − − − − − − − − − − − − 1093 − − − − (J2000) (J2000) (Å) Ref. (Å) (Å) (W m . continued – HD 158643 17:31:24.9 -23:57:45.5 HD 319896 17:31:05.8 -35:08:29.2 PDS 453MWC 878 17:20:56.1 17:24:44.7 -26:03:30.5 -38:43:51.4 HD 155448 17:12:58.7 -32:14:33.5 V921 Sco 16:59:06.7 -42:42:08.4 Hen 3-1191 16:27:15.1 -48:39:26.8 HD 149914 16:38:28.6 -18:13:13.7 WRAY 15-1435 16:13:06.7 -50:23:20.0 Hen 3-1121CPD-53 6867HD 143006 15:58:09.6 15:58:09.6 -53:51:18.3 -53:51:35.0 15:58:36.9 -22:57:15.2 HD 135344 15:15:48.9 -37:08:55.7 PDS 389 15:14:47.0 -62:16:59.7 HD 130437 14:50:50.2 -60:17:10.3 PDS 371 13:47:31.4 -36:39:49.6 Hen 3-938 13:52:42.8 -63:32:49.1 Hen 2-80Hen 3-823 12:22:23.1 12:48:42.3 -63:17:16.8 -59:54:34.9 DK ChaGSC 8994-3902 13:19:03.9 -62:34:10.1 12:53:17.2 -77:07:10.7 GSC 8645-1401 12:17:47.5 -59:43:59.0 PDS 138 11:53:13.2 -62:05:20.9 HD 87643PDS 322PDS 324 10:04:30.2 -58:39:52.1 10:52:08.6 -56:12:06.8 10:57:24.2 -62:53:13.2 V388 VelPDS 290 08:42:16.5 -40:44:09.9 09:26:11.0 -52:42:26.9 - - PDS 34 08:49:58.5 -45:53:05.6 PDS 277 08:23:11.8 -39:07:01.6 GSC 5988-2257 07:41:41.0 -20:00:13.4 GSC 8143-1225 07:59:11.5 -50:22:46.8 NameGSC 6542-2339 07:24:36.9 -24:34:47.4 RA DEC HD 58647 07:25:56.0 -14:10:43.5 Table D1

MNRAS 000,1–18 (2020) The accretion rates and mechanisms of Herbig Ae/Be stars 31 ] ) 15 37 42 57 41 66 19 27 48 46 39 26 29 28 1 15 32 39 52 45 68 21 27 48 41 37 32 26 30 ...... − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 acc + − + − + − + − + − + − + − + − + − + − + − + − + − + − ¤ yr - 푀 ( 85 09 86 49 65 21 43 19 36 51 08 57 89 08

...... 5 7 5 3 3 2 6 7 4 5 5 4 7 5 M log − − − − − − − − − − − − − − ) 37 22 31 22 . . . . 20 18 12 16 35 31 36 15 16 23 22 20 15 12 18 35 35 40 15 16 28 22 26 25 15 18 ...... 0 0 ][ 0 0 acc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + − + −

+ − + − + − + − + − + − + − + − + − + − + − + − + − ------퐿 ( L 33 13 . . 91 42 28 15 79 95 53 98 66 45 63 59 79 ...... 0 0 2 0 1 1 2 4 4 4 0 0 2 1 2 log − − ) 18 05 05 03 02 13 01 10 13 05 05 03 02 15 01 11 ...... 09 19 16 17 13 13 12 10 17 18 20 16 18 15 ...... 0 0 0 0 0 0 0 0 ][ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 line 0 0 0 0 0 0 0 + − + + − + − − + − + − + − + −

+ − + − + − + − + − + − + − 푎 푎 푎 푎 푎 푎 푎 푎 푎 푎 푎 푎 푎 퐿 ------( L 30 42 22 18 14 56 43 50 ...... 33 19 06 70 89 36 54 ...... 2 2 0 1 1 0 1 0 0 0 2 2 2 0 0 log − − − − − − − − 14 15 14 15 14 15 12 13 15 14 12 15 15 14 14 14 14 15 14 15 16 14 14 15 14 14 − − − − − − − − − − − − − − − − − − − − − − − − − − 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 )[ 2 ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × ) × − ------line 48 06 07 14 07 15 42 36 07 41 21 16 11 12 03 09 38 22 17 05 15 10 05 16 27 06 ...... 퐹 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 14 41 54 63 88 61 59 75 52 40 02 42 84 11 63 87 46 71 39 83 78 47 18 09 83 89 ...... 1 1 2 3 1 6 1 3 3 8 9 1 4 2 3 4 8 9 3 1 3 7 2 3 6 1 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) (W m 1 14 17 16 16 14 16 14 16 15 18 16 15 16 16 16 14 16 16 16 15 15 15 15 16 17 18 15 16 17 17 13 15 16 15 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − Å 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 2 휆 − × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × 퐹 01 54 92 41 61 13 74 03 20 10 45 56 07 10 67 43 03 97 87 68 48 35 00 73 44 02 82 68 93 42 50 54 32 87 ...... 3 4 2 5 1 7 1 1 00 5 00 2 00 4 00 1 00 1 . . . . 50 2 98 6 96 1 35 5 48 3 68 1 58 2 54 2 28 2 1337 2 2 60 2 70 9 42 3 50 6 18 2 67 9 75 1 70 2 . 48 1 20 6 ...... 6 1 1 1 0 1 1 2 2 0 0 1 0 80 14 0 10 0 15 0 4 0 0 2 0 0 ± cor ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ------13 33 59 56 11 26 58 85 29 16 16 62 77 93 66 89 96 87 71 87 73 32 81 83 . 52 64 ...... 퐸푊 . . 1 1 64 41 25 31 22 28 34 22 99 35 12 18 38 42 52 27 41 39 60 124 − − 292 132 205 128 − − − − − − − − − − − − − − − − − − − − − − − − 39 05 09 05 10 05 12 04 22 10 02 03 13 02 06 06 01 04 03 07 04 23 32 05 12 04 06 05 28 06 09 06 03 04 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 int ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 퐸푊 71 76 96 43 76 43 06 43 73 14 87 89 56 87 21 58 56 85 59 16 62 23 37 66 87 64 87 22 32 13 76 81 83 42 ...... 3 4 8 4 8 4 6 4 2 8 6 2 4 2 5 3 5 5 3 9 8 3 2 8 10 14 12 14 15 14 12 13 14 13 3 2 2 2 3 7 3 3 4 7 7 7 7 7 15 31 30 29 28 27 19 15 19 21 26 19 00 00 00 00 00 . . . . 70 50 98 95 35 68 57 43 28 60 70 40 15 50 65 75 obs . 48 05 37 ...... 27 20 6 2 0 0 1 80 14 0 10 0 15 0 4 1 1 1 0 2 1 1 2 . . 0 0 0 0 0 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 퐸푊 ± ± ± ± ± 00 70 00 00 00 00 00 00 00 90 90 00 00 70 00 10 00 40 50 97 00 . 50 17 82 ...... 44 00 . . 9 0 5 49 32 19 26 22 19 14 85 32 34 28 13 50 33 35 54 9 2 120 − − − 290 129 200 125 − − − − − − − − − − − − − − − − − − − − − (J2000) (J2000) (Å) Ref. (Å) (Å) (W m . continued – HD 199603 20:58:41.8 -14:28:59.2 PV Cep 20:45:53.9 +67:57:38.6 V1478 Cyg 20:32:45.6V1977 Cyg +40:39:36.1 20:47:37.4 +43:47:24.9 HBC 717 - 20:52:06.0 +44:17:16.0 - MWC 1021 20:29:26.9 +41:40:43.8HBC 705 - 20:51:02.7 +43:49:31.9 - V1493 Cyg 20:52:04.6 +44:37:30.4 HBC 694 20:24:29.5 +42:14:02 - - MWC 342BD+41 3731 20:23:03.6 20:24:15.7 +39:29:49.9 +42:18:01.3 - - MWC 623V1686 Cyg 19:56:31.5 20:20:29.3 +31:06:20.1 +41:21:28.4 PDS 581 19:36:18.8 +29:32:50.8 WW Vul 19:25:58.7 +21:12:31.3 MWC 314HD 344261 19:21:33.9 19:21:53.5 +14:52:56.9 PX Vul +21:31:50.5 19:26:40.2 - +23:53:50.7 - R CrA 19:01:53.6 -36:57:08.1 MWC 953 18:43:28.4 -03:46:17.0 HD 176386TY CrA 19:01:38.9 -36:53:26.5 19:01:40.8 -36:52:33.8 HD 313571 18:01:07.1 -22:15:04.0 PDS 530 18:41:34.3 +08:08:20.7 HD 169142 18:24:29.7 -29:46:49.3 HD 174571PDS 551 18:50:47.1 +08:42:10.0 18:55:22.9 +04:04:35.2 LkHA 260 18:19:09.3 -13:50:41.2PDS 520 18:30:06.1 - +00:42:33.5 - PDS 477 18:00:30.3 -16:47:25.8 MWC 930 18:26:25.2 -07:13:17.8 - - MWC 593 17:49:10.1 -24:14:21.2 SAO 185668 17:43:55.6 -22:05:44.6 - - NameHD 323771 RA 17:34:04.6 -39:23:41.3 DEC Table D1

MNRAS 000,1–18 (2020) 32 C. Wichittanakom et al. ] ) 38 26 25 22 38 71 23 1 44 25 23 23 43 94 21 ...... − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 acc + − + − + − + − + − + − + − ¤ yr 푀 ( 37 55 34 69 40 41 54

...... 4 6 7 7 5 3 6 M log − − − − − − − ) 20 20 . . 22 17 19 16 27 18 26 17 19 19 30 17 ...... 0 ][ 0 acc 0 0 0 0 0 0 0 0 0 0 0 0 + −

+ − + − + − + − + − + − -- -- 퐿 ( L 22 . 77 87 03 35 09 81 ...... 0 2 0 0 2 4 0 log − ) 02 02 04 05 05 02 02 05 ...... 14 09 11 16 11 13 ...... 0 0 0 0 ][ 0 0 0 0 0 0 0 line 0 0 0 + − + − + − + −

+ − + − + − 푎 푎 퐿 - - ( L 22 06 31 28 . . . . 68 26 00 . . . 1 2 2 1 0 0 2 log − − − − 15 15 15 15 14 14 13 15 15 − − − − − − − − − 10 10 10 10 10 10 10 10 10 )[ 2 ) × ) × ) × ) × ) × ) × ) × ) × ) × − ------line 74 04 09 03 05 05 22 10 09 ...... 퐹 0 0 0 0 0 2 0 0 0 ± ± ± ± ± ± ± ± ± 48 16 50 11 25 56 26 98 68 ...... 9 2 2 1 1 4 3 2 2 ( ( ( ( ( ( ( ( ( ) (W m 1 15 16 16 17 16 17 16 16 15 17 16 − − − − − − − − − − − − Å 10 10 10 10 10 10 10 10 10 10 10 2 휆 − × × × × × × × × × × × 퐹 84 04 53 95 80 33 05 41 73 27 64 ...... 3 2 00 3 00 1 . . 00 1 40 9 48 1 47 7 72 7 21 8 58 1 ...... 4 0 0 0 0 60 13 1 0 cor ± ± ± ± ± ± ± ± ± - - 44 73 90 21 77 60 55 03 32 ...... 퐸푊 51 21 13 15 17 36 16 133 188 − − − − − − − − − 04 09 21 18 08 44 41 07 02 03 45 ...... 0 0 0 0 0 0 0 0 0 0 0 int ± ± ± ± ± ± ± ± ± ± ± 퐸푊 44 00 83 03 39 70 71 47 60 20 15 ...... 6 7 7 3 6 3 3 11 14 14 12 3 3 2 32 13 26 33 34 35 00 00 . . 00 72 20 35 obs 35 19 23 ...... 60 0 4 0 13 1 0 0 0 ± ± ± ± ± ± 퐸푊 ± ± ± DR2 Catalogue (see the text for discussion). References: (1) Herbig & Bell ( 1988 ); (2) Hernández et al. ( 2004 ); (3) Mendigutía et al. ( 2011a ); (4) 00 30 00 35 00 17 90 20 50 ...... 6 6 7 40 14 24 13 − − − 127 185 Gaia − − − − − − (J2000) (J2000) (Å) Ref. (Å) (Å) (W m . continued Stars which have low quality parallaxes in the – ) 푎 ( HD 235495AS 470 21:21:27.4 +50:59:47.6 21:36:14.2 +57:21:30.8 - - NameV594 Cyg RA 21:20:23.3 +43:18:10.2 DEC - - GSC 3975-0579 21:38:08.4 +57:26:47.6 BH Cep 22:01:42.8 +69:44:36.4 BO Cep 22:16:54.0 +70:03:44.9 V669 CepMWC 655 22:26:38.7 22:38:31.8 +61:13:31.5 +55:50:05.3 MWC 657 22:42:41.8 +60:24:00.6 LkHA 259 23:58:41.6 +66:26:12.7 BP Psc 23:22:24.6 -02:13:41.3 Pogodin et al. ( 2012 ); (5) ESO Programme(11) 082.A-9011(A);Wheelwright (6) et ESO al. ( 2010 ); Programme (12) 076.B-0055(A);ProgrammeVieira (7) et 084.A-9016(A);Sartori (18) al. ( 2011 ); ESO (13) et ProgrammeHernández al. ( 2010 ); 083.A-9013(A);60.A-9022(C); (8) et (19) (24) Baines al. ( 2005 );CarmonaBorges et (14) Fernandes et al. ( 2006 );Oudmaijer et al. ( 2010 ); (9) & al. ( 2007 ); (20) ( 1999 );etMiroshnichenko Drew (25) etSpezzi (15) al. ( 2013 ); ESO al. ( 1999 ); et ESO (31) Programme (10) al. ( 2008 ); ProgrammeAcke et 073.D-0609(A);Boehm (21) 085.A-9027(B); al. ( 2005 ); (26) & (16)Dunkin (32) Ababakr Catala ( 1995 ); ESO et etNakano Programme al. ( 1997 ); et al. ( 2017 ); 082.D-0061(A); (22) al. ( 2012 ); (27) (17) ESO (33) Manoj ESO ProgrammeMiroshnichenko et 075.D-0177(A); et al. ( 2006 ); (23) al. ( 2002 ); (28) ESO (34) Frasca Programme Miroshnichenko et et al. ( 2016 ); al. ( 2000 ); (29) (35) PolsterZuckerman et et al. ( 2012 ); al. ( 2008 ). (30) Kučerová Table D1 Notes.

MNRAS 000,1–18 (2020)