A Search for Spectroscopic Binaries Among Herbig Ae/Be Stars?,??

Total Page:16

File Type:pdf, Size:1020Kb

A Search for Spectroscopic Binaries Among Herbig Ae/Be Stars?,?? ASTRONOMY & ASTROPHYSICS MAY I 1999, PAGE 429 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 136, 429–444 (1999) A search for spectroscopic binaries among Herbig Ae/Be stars?,?? P. Corporon and A.-M. Lagrange Laboratoire d’Astrophysique de l’Observatoire de Grenoble, BP. 53, F–38 041 Grenoble Cedex, France Received March 4; accepted November 17, 1998 Abstract. We present the results of a spectroscopic sur- binaries (see a detailed review in Clarke 1996), but obser- vey of binaries among 42 bright (mV < 11) Herbig vations are needed to constrain further these models. Ae/Be stars in both hemispheres. Radial velocity vari- Secondly, a fundamental role of binary studies is to ations were found in 7 targets, 4 are new spectroscopic allow the direct determination of physical parameters. binaries. The Li i 6 708 A˚ absorption line (absent feature Noticeably, the stellar mass is only accessible through in simple HAeBe stars spectra) indicates the presence of the observation of gravitationally bound pairs of stars, by a cooler companion in 6 HAeBe spectrum binaries, 4 of straight application of gravitational law. which are new detections. Few stars classified as possible Main-Sequence (MS) binary stars are overall quite well Herbig Ae/Be stars are not confirmed as such. studied. However, as orbits of binary systems evolve with While for short-period (P<100 days) spectroscopic time, it is mandatory to derive the properties of the sys- binaries, the observed binary frequency is 10%, the true tems during the pre-Main Sequence (PMS) phase. A major spectroscopic binary frequency for Herbig Ae/Be stars issue is to quantify the binary frequency fb (the probabil- maybeashighas35%. ity that a given object is multiple, Reipurth & Zinnecker 1993) for young multiple objects, their separation distri- Key words: binaries: spectroscopic — stars: early-type — bution as well as their mass ratio. stars: pre-Main Sequence — stars: statistics Recent studies have shown that more than half of T Tauri stars, young stars having a mass M<1.5M , are members of a binary or multiple system (Mathieu 1992; Leinert et al. 1993; Reipurth & Zinnecker 1993; Prosser et al. 1994; Simon et al. 1995; Ghez et al. 1993, 1. Introduction 1997; Brandner et al. 1996; Padgett et al. 1997). Whether there is an overabundance of low-mass PMS binaries ver- 1.1. Multiplicity and evolution sus MS binaries is still a matter of debate, due to the difficulties to compare both statistics obtained with differ- Multiplicity is a major issue in stellar astrophysics. Firstly, ent approaches. Not only the employed techniques are dif- binary stars are very common among Main Sequence (MS) ferent, (MS stars were mainly spectroscopically searched stars: half of the MS field stars are known to belong to for, while PMS binaries were searched with high angular multiple systems (see Garmany et al 1980 for O type resolution imaging), but also the wavelength domains are stars; Abt et al. 1990 for B; Nordstr¨om et al. 1997 for different (optical observations predominate for MS stars, F; Duquennoy & Mayor 1991 for G; Mayor et al. 1992 for while infrared (IR) surveys of the young objects, mostly K; Leinert et al. 1997 for M). Thus, any stellar forma- embedded in dark regions, were used ipso facto). The only tion theory must explain this large abundance of multiple systematic effort aimed at finding new low-mass pre-Main systems. Various mechanisms have been proposed to form Sequence binaries with visible spectroscopy dates back from Mathieu (1992). Send offprint requests to:P.Corporon ? Based on observations collected at the European Southern The question is then whether the stellar density may Observatory (ESO), La Silla, Chile and at the Observatoire de have an effect on the formation of multiple systems. MS Haute–Provence (OHP), Saint–Michel l’Observatoire, France. stars are thought to have been formed in OB associa- ?? Table 1 only available in electronic form at CDS via tions or in dense clusters (Miller & Scalo 1978; Lada anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via et al. 1991), while PMS stars in T associations are formed http://cdsweb.u-strasbg.fr/Abstract.html in lower density environments which might enhance the 430 P. Corporon and A.-M. Lagrange: A search for HAeBe spectroscopic binaries production of binaries. However, Brandner et al. (1996) 1.3. Aim of the present paper observed T Tauri stars in OB and T associations and concluded that the binary frequency is the same for In this paper, we report the first results of a systematic MS and PMS low mass stars in the range of separation high resolution spectroscopic search for HAeBe binaries. 120 − 1 800 AU (except for the Taurus–Auriga star form- It is part of an extensive survey made on Herbig Ae/Be ing region). Moreover, Padgett et al. (1997) using HST stars, the other facet being high angular resolution imag- observations of PMS stars in dense clusters recently found ing of IR companions of HAeBe stars using Adaptative a comparable binary frequency for dense clusters and low- Optics systems (Bouvier et al. 1998; Corporon 1998). The density star-forming regions. They thus claim that multi- two approaches are complementary: while the former gives plicity is not influenced by the local stellar density (at least access to the study of short orbital periods (P = few hours in regions with densities ranging between 40 and 5 000 to few months) of double stars, the latter covers the do- stars pc−3). main of longer periods (P = many years). Since the pioneering work of Mathieu (1992), selec- The present paper is structured as follows: in Sect. 2, tive mass determinations for some low-mass PMS binaries we describe our sample, the instruments used as well as have been obtained (Padgett & Stapelfeldt 1994; Welty our observing strategy. We present in Sect. 3 the spectra 1995; Figueiredo 1997), but the sample of young multiple of some known and new spectroscopic HAeBe binaries. systems with orbital and physical parameters determined Notes on individual sources are given in Sect. 4 and in must be enlarged in order to test the early stages of stellar Sect. 5 we discuss our results. evolutionary models. 2. Observations of the HAeBe binaries 1.2. Multiplicity of intermediate-mass PMS stars 2.1. The sample As pointed out by Hillebrand (1994), the intermediate- mass PMS stars, namely Herbig Ae/Be (HAeBe) stars The observed Herbig Ae/Be stars were extracted from are found in various environments: in dense star form- Table 1 of Th´e et al. (1994) catalogue. We obtained high ing regions (containing few tens of HAeBe plus a myriad resolution spectra for 42 objects with mV < 11, consist- of T Tauri stars), in lower density groups of young stel- ing of our principal HAeBe sample. This sample represents lar objects (2 to 5 HAeBe stars sharing the same birth about 70% of the HAeBe candidates with mV < 11 from place) and in isolated molecular cores (where a central Table 1 of Th´e et al. (1994) catalogue. Most of the remain- HAeBe star and embedded young lower mass stars are ing stars were not observed either because they were al- found). Studying the binary frequency among HAeBe ob- ready well studied or because they are strong photometric jects may help to better understand the relation between variables and out of our limit of our observing capabilities the direct environment and the multiplicity status of the at their minimum brightness. stars during their earlier formation stages. A sub-group of other HAeBe candidates listed in Besides reinforcing the binary frequency estimate, Tables 2 to 5 from the catalogue of Th´e et al. (1994) were HAeBe binaries study is of great interest because direct also studied (sample T2–T5). They were included in our mass determination are fervently required to test the survey because they could be observed in parallel to our stellar evolution models for young intermediate-mass main program. Those stars were observed not only to test stars. the presence of a companion, but also to precise, when To date, however, the binarity status of Ae/Be Herbig possible, their spectral type or to test their belonging to stars has been far less surveyed, probably because these the Herbig Ae/Be stellar class. stars form a class less homogeneous than T Tauri stars We address in this paragraph the possible bias by the (Th´e et al. 1994). Few recent studies using infrared imag- so-called Branch effect. Branch (1976) pointed out that a ing (Li et al. 1994; Leinert et al. 1997b; Pirzkal et al. 1997) magnitude-limited sample favors the detection of double- have found a binary frequency (although based on limited lined spectroscopic binary (SB2). In other words, some samples) in excess by a factor 2 versus A/B type MS stars, binary stars could have been selected because their total (by considering G type MS stars degree of multiplicity fb, magnitude is below the magnitude limit, whereas indi- spectroscopically determined by Duquennoy and Mayor vidual stars are fainter than the mV limit. Such systems 1991 identical through the Main Sequence, as explained should be removed when establishing the binary frequency by Leinert et al. 1993). of the sample. However, in our case with high mass pri- Up to now, the pilot study made on the eclipsing and maries, unless the mass ratio is close to unity, the sec- spectroscopic triple system TY CrA (Lagrange et al. 1993; ondary component of a spectroscopic binary system con- Corporon et al. 1994, 1996; Beust et al. 1997, see also tribute to few percents of the combined flux.
Recommended publications
  • Spectroscopic Analysis of Accretion/Ejection Signatures in the Herbig Ae/Be Stars HD 261941 and V590 Mon T Moura, S
    Spectroscopic analysis of accretion/ejection signatures in the Herbig Ae/Be stars HD 261941 and V590 Mon T Moura, S. Alencar, A. Sousa, E. Alecian, Y. Lebreton To cite this version: T Moura, S. Alencar, A. Sousa, E. Alecian, Y. Lebreton. Spectroscopic analysis of accretion/ejection signatures in the Herbig Ae/Be stars HD 261941 and V590 Mon. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2020, 494 (3), pp.3512-3535. 10.1093/mnras/staa695. hal-02523038 HAL Id: hal-02523038 https://hal.archives-ouvertes.fr/hal-02523038 Submitted on 16 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MNRAS 000,1–24 (2019) Preprint 27 February 2020 Compiled using MNRAS LATEX style file v3.0 Spectroscopic analysis of accretion/ejection signatures in the Herbig Ae/Be stars HD 261941 and V590 Mon T. Moura1?, S. H. P. Alencar1, A. P. Sousa1;2, E. Alecian2, Y. Lebreton3;4 1Universidade Federal de Minas Gerais, Departamento de Física, Av. Antônio Carlos 6627, 31270-901, Brazil 2Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France 3LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ.
    [Show full text]
  • XIII Publications, Presentations
    XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys.
    [Show full text]
  • New Herbig±Haro Objects and Giant Outflows in Orion
    Mon. Not. R. Astron. Soc. 310, 331±354 (1999) New Herbig±Haro objects and giant outflows in Orion S. L. Mader,1 W. J. Zealey,1 Q. A. Parker2 and M. R. W. Masheder3,4 1Department of Engineering Physics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia 2Anglo-Australian Observatory, Coonabarabran, NSW 2357, Australia 3Department of Physics, University of Bristol, Bristol BS8 1TL 4Netherlands Foundation for Research in Astronomy, PO Box 2, 7990 AA Dwingeloo, the Netherlands Accepted 1999 June 29. Received 1999 May 11; in original form 1998 June 25 ABSTRACT We present the results of a photographic and CCD imaging survey for Herbig±Haro (HH) objects in the L1630 and L1641 giant molecular clouds in Orion. The new HH flows were initially identified from a deep Ha film from the recently commissioned AAO/UKST Ha Survey of the southern sky. Our scanned Ha and broad-band R images highlight both the improved resolution of the Ha survey and the excellent contrast of the Ha flux with respect to the broad-band R. Comparative IVN survey images allow us to distinguish between emission and reflection nebulosity. Our CCD Ha,[Sii], continuum and I-band images confirm the presence of a parsec-scale HH flow associated with the Ori I-2 cometary globule, and several parsec-scale strings of HH emission centred on the L1641-N infrared cluster. Several smaller outflows display one-sided jets. Our results indicate that, for declinations south of 268 in L1641, parsec-scale flows appear to be the major force in the large-scale movement of optical dust and molecular gas.
    [Show full text]
  • A Photometric Study of Be Stars Located in the Seismology fields of COROT
    A&A 476, 927–933 (2007) Astronomy DOI: 10.1051/0004-6361:20078252 & c ESO 2007 Astrophysics A photometric study of Be stars located in the seismology fields of COROT J. Gutiérrez-Soto1,2,J.Fabregat1,2,J.Suso3, M. Lanzara3, R. Garrido4, A.-M. Hubert2, and M. Floquet2 1 Observatorio Astronómico, Universidad de Valencia, edificio Institutos de Investigación, polígono la Coma, 46980 Paterna, Valencia, Spain e-mail: [email protected] 2 GEPI, Observatoire de Paris, CNRS, Université Paris Diderot; place Jules Janssen 92195 Meudon Cedex, France 3 GACE-ICMUV, edificio Institutos de Investigación, polígono la Coma, 46980 Paterna, Valencia, Spain 4 Instituto de Astrofísica de Andalucía (CSIC), calle Camino Bajo de Huétor, 24. 18008, Granada, Spain Received 10 July 2007 / Accepted 28 September 2007 ABSTRACT Context. In preparation for the COROT mission, an exhaustive photometric study of Be stars located in the seismology fields of the mission has been performed. The very precise and long-time-spanned photometric observations gathered by the COROT satellite will give important clues on the origin of the Be phenomenon. Aims. The aim of this work is to find short-period variable Be stars located in the seismology fields of COROT, and to study and characterise their pulsational properties. Methods. Light curves obtained at the Observatorio de Sierra Nevada, together with data from Hipparcos and ASAS-3 for a total of 84 Be stars, were analysed in order to search for short-term variations. We applied standard Fourier techniques and non-linear least-square fitting to the time series. Results. We found 7 multiperiodic, 21 mono-periodic and 26 non-variable Be stars.
    [Show full text]
  • Measuring the Stellar Accretion Rates of Herbig Ae/Be Stars Brian Donehew Clemson University
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Clemson University: TigerPrints Clemson University TigerPrints Publications Physics and Astronomy 1-1-2012 Measuring the Stellar Accretion Rates of Herbig Ae/Be Stars Brian Donehew Clemson University Sean D. Brittain Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/physastro_pubs Part of the Astrophysics and Astronomy Commons Recommended Citation Please use publisher's recommended citation. This Article is brought to you for free and open access by the Physics and Astronomy at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. The Astronomical Journal, 141:46 (10pp), 2011 February doi:10.1088/0004-6256/141/2/46 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. MEASURING THE STELLAR ACCRETION RATES OF HERBIG Ae/Be STARS Brian Donehew1 and Sean Brittain1 Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978, USA; [email protected], [email protected] Received 2010 April 10; accepted 2010 November 10; published 2011 January 12 ABSTRACT The accretion rate of young stars is a fundamental characteristic of these systems. While accretion onto T Tauri stars has been studied extensively, little work has been done on measuring the accretion rate of their intermediate-mass analogs, the Herbig Ae/Be stars. Measuring the stellar accretion rate of Herbig Ae/Bes is not straightforward both because of the dearth of metal absorption lines available for veiling measurements and the intrinsic brightness of Herbig Ae/Be stars at ultraviolet wavelengths where the brightness of the accretion shock peaks.
    [Show full text]
  • Radio Constraints on Activity in Young Brown Dwarfs
    in prep. Radio Constraints on Activity in Young Brown Dwarfs Rachel A. Osten1 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, U.S.A. Electronic Mail: [email protected] Ray Jayawardhana Department of Astronomy & Astrophysics, University of Toronto, Toronto, ON M5S 3H8, CANADA Electronic Mail: [email protected] ABSTRACT We report on searches for radio emission from three of the nearest known young brown dwarfs using the Very Large Array. We have obtained sensitive upper limits on 3.6cm emission from 2MASSW J1207334-393254, TWA 5B and SSSPM J1102-3431, all of which are likely members of the ∼8-Myr-old TW Hy- drae association. We derive constraints on the magnetic field strength and the number density of accelerated electrons, under the assumption that young brown dwarf atmospheres are able to produce gyrosynchrotron emission, as seems to be indicated in older brown dwarfs. For the young brown dwarf TWA 5B, the ratio of its detected X-ray luminosity to the upper limit on radio luminosity places arXiv:astro-ph/0604521v2 27 Apr 2006 it within the expected range for young stars and older, active stars. Thus, its behavior is anomalous compared to older brown dwarfs, in which radio luminos- ity is substantially enhanced over the expected relationship. Our observations deepen the conundrum of magnetic activity in brown dwarfs, and suggest that a factor other than age is more important for determining radio emission in cool substellar objects. Subject headings: stars: activity – stars: coronae – stars: low mass, brown dwarfs – stars: pre-main-sequence – radio continuum 1Hubble Fellow –2– 1.
    [Show full text]
  • Structure of Herbig Aebe Disks at the Milliarcsecond Scale a Statistical Survey in the H Band Using PIONIER-VLTI? B
    A&A 599, A85 (2017) Astronomy DOI: 10.1051/0004-6361/201629305 & c ESO 2017 Astrophysics Structure of Herbig AeBe disks at the milliarcsecond scale A statistical survey in the H band using PIONIER-VLTI? B. Lazareff1, J.-P. Berger2,1, J. Kluska3, J.-B. Le Bouquin1, M. Benisty1, F. Malbet1, C. Koen4, C. Pinte6,20, W.-F. Thi7, O. Absil5,??, F. Baron8, A. Delboulbé1, G. Duvert1, A. Isella10, L. Jocou1, A. Juhasz9, S. Kraus3, R. Lachaume11,12, F. Ménard1, R. Millan-Gabet14,15, J. D. Monnier13, T. Moulin1, K. Perraut1, S. Rochat1, F. Soulez16,17, M. Tallon16, E. Thiébaut16, W. Traub18, and G. Zins19 1 Univ. Grenoble Alpes, IPAG; CNRS, IPAG, 38000 Grenoble, France e-mail: [email protected] 2 ESO, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany 3 University of Exeter, Department of Physics and Astronomy, Stocker Road, Exeter, Devon EX4 4QL, UK 4 Department of Statistics, University of the Western Cape, Private Bag X17, 7535 Bellville, South Africa 5 STAR, Université de Liège, 19c allée du Six Août, 4000 Liège, Belgium 6 UMI-FCA, CNRS/INSU, France 7 Max-Planck-Institut für Extraterrestrische Physik, 85748 Garching, Germany 8 Center for High Angular Resolution Astronomy, Georgia State University, PO Box 3969, Atlanta, GA 30302, USA 9 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK 10 Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, TX 77005, USA 11 Centro de Astroingeniería, Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile 12 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany 13 Department of Astronomy, University of Michigan, 1085 S.
    [Show full text]
  • Arxiv:1808.00476V1 [Astro-Ph.SR] 1 Aug 2018 Big Ae Stars but Not for Several Herbig Be Stars (Fairlamb Et Al
    Astronomy & Astrophysics manuscript no. Vioque_et_al_2018 c ESO 2018 August 3, 2018 Gaia DR2 study of Herbig Ae/Be stars M. Vioque1; 2?, R. D. Oudmaijer1, D. Baines3, I. Mendigutía4, and R. Pérez-Martínez2 1 School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. 2 Ingeniería de Sistemas para la Defensa de España (Isdefe), XMM/Newton Science Operations Centre, ESA-ESAC Campus, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain. 3 Quasar Science Resources for ESA-ESAC, ESAC Science Data Center, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain. 4 Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, ESA-ESAC Campus, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain. Accepted for publication in Astronomy & Astrophysics. ABSTRACT Aims. We use Gaia Data Release 2 (DR2) to place 252 Herbig Ae/Be stars in the HR diagram and investigate their characteristics and properties. Methods. For all known Herbig Ae/Be stars with parallaxes in Gaia DR2, we collected their atmospheric parameters and photometric and extinction values from the literature. To these data we added near- and mid-infrared photometry, collected Hα emission line properties such as equivalent widths and line profiles, and their binarity status. In addition, we developed a photometric variability indicator from Gaia’s DR2 information. Results. We provide masses, ages, luminosities, distances, photometric variabilities and infrared excesses homogeneously derived for the most complete sample of Herbig Ae/Be stars to date. We find that high mass stars have a much smaller infrared excess and have much lower optical variabilities compared to lower mass stars, with the break at around 7M .Hα emission is generally correlated with infrared excess, with the correlation being stronger for infrared emission at wavelengths tracing the hot dust closest to the star.
    [Show full text]
  • Where Are the Hot Ion Lines in Classical T Tauri Stars Formed?
    Accretion, winds and jets: High-energy emission from young stellar objects Dissertation zur Erlangung des Doktorgrades des Departments Physik der Universit¨at Hamburg vorgelegt von Hans Moritz G¨unther aus Hamburg Hamburg 2009 ii Gutachter der Dissertation: Prof. Dr. J. H. M. M. Schmitt Prof. Dr. E. Feigelson Gutachter der Disputation: Prof. Dr. P. H. Hauschildt Prof. Dr. G. Wiedemann Datum der Disputation: 13.03.2009 Vorsitzender des Pr¨ufungsausschusses: Dr. R. Baade Vorsitzender des Promotionsausschusses: Prof. Dr. R. Klanner Dekan der MIN Fakult¨at: Prof. Dr. A. Fr¨uhwald (bis 28.02.2009) Prof. Dr. H. Graener (ab 01.03.2009) iii Zusammenfassung Sterne entstehen durch Gravitationsinstabilit¨aten in molekularen Wolken. Wegen der Erhaltung des Drehimpulses geschieht der Kollaps nicht sph¨arisch, sondern das Material f¨allt zun¨achst auf eine Akkretionsscheibe zusammen. In dieser Doktorarbeit wird hochenergetische Strahlung von Sternen untersucht, die noch aktiv Material von ihrer Scheibe akkretieren, aber nicht mehr von einer Staub- und Gash¨ulle verdeckt sind. In dieser Phase nennt man Sterne der Spektraltypen A und B Herbig Ae/Be (HAeBe) Sterne, alle sp¨ateren Sterne heißen klassische T Tauri Sterne (CTTS); eigentlich werden beide Typen ¨uber spektroskopische Merkmale definiert, aber diese fallen mit den hier genannten Entwicklungsstadien zusammen. In dieser Arbeit werden CTTS und HAeBes mit hochaufl¨osender Spektroskopie im R¨ontgen- und UV-Bereich untersucht und Simulationen f¨ur diese Stadien gezeigt. F¨ur zwei Sterne werden R¨ontgenspektren reduziert und vorgestellt: Der CTTS V4046 Sgr wurde mit Chandra f¨ur 100 ks beobachtet. Die Lichtkurve dieser Beobachtung zeigt einen Flare und die Triplets der He Isosequenz (Si xiii, Ne ix und O vii) deuten auf hohe Dichten im emittierenden Plasma hin.
    [Show full text]
  • Stellar Evolution
    AccessScience from McGraw-Hill Education Page 1 of 19 www.accessscience.com Stellar evolution Contributed by: James B. Kaler Publication year: 2014 The large-scale, systematic, and irreversible changes over time of the structure and composition of a star. Types of stars Dozens of different types of stars populate the Milky Way Galaxy. The most common are main-sequence dwarfs like the Sun that fuse hydrogen into helium within their cores (the core of the Sun occupies about half its mass). Dwarfs run the full gamut of stellar masses, from perhaps as much as 200 solar masses (200 M,⊙) down to the minimum of 0.075 solar mass (beneath which the full proton-proton chain does not operate). They occupy the spectral sequence from class O (maximum effective temperature nearly 50,000 K or 90,000◦F, maximum luminosity 5 × 10,6 solar), through classes B, A, F, G, K, and M, to the new class L (2400 K or 3860◦F and under, typical luminosity below 10,−4 solar). Within the main sequence, they break into two broad groups, those under 1.3 solar masses (class F5), whose luminosities derive from the proton-proton chain, and higher-mass stars that are supported principally by the carbon cycle. Below the end of the main sequence (masses less than 0.075 M,⊙) lie the brown dwarfs that occupy half of class L and all of class T (the latter under 1400 K or 2060◦F). These shine both from gravitational energy and from fusion of their natural deuterium. Their low-mass limit is unknown.
    [Show full text]
  • The UV Perspective of Low-Mass Star Formation
    galaxies Review The UV Perspective of Low-Mass Star Formation P. Christian Schneider 1,* , H. Moritz Günther 2 and Kevin France 3 1 Hamburger Sternwarte, University of Hamburg, 21029 Hamburg, Germany 2 Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research; Cambridge, MA 02109, USA; [email protected] 3 Department of Astrophysical and Planetary Sciences Laboratory for Atmospheric and Space Physics, University of Colorado, Denver, CO 80203, USA; [email protected] * Correspondence: [email protected] Received: 16 January 2020; Accepted: 29 February 2020; Published: 21 March 2020 Abstract: The formation of low-mass (M? . 2 M ) stars in molecular clouds involves accretion disks and jets, which are of broad astrophysical interest. Accreting stars represent the closest examples of these phenomena. Star and planet formation are also intimately connected, setting the starting point for planetary systems like our own. The ultraviolet (UV) spectral range is particularly suited for studying star formation, because virtually all relevant processes radiate at temperatures associated with UV emission processes or have strong observational signatures in the UV range. In this review, we describe how UV observations provide unique diagnostics for the accretion process, the physical properties of the protoplanetary disk, and jets and outflows. Keywords: star formation; ultraviolet; low-mass stars 1. Introduction Stars form in molecular clouds. When these clouds fragment, localized cloud regions collapse into groups of protostars. Stars with final masses between 0.08 M and 2 M , broadly the progenitors of Sun-like stars, start as cores deeply embedded in a dusty envelope, where they can be seen only in the sub-mm and far-IR spectral windows (so-called class 0 sources).
    [Show full text]
  • GEORGE HERBIG and Early Stellar Evolution
    GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study.
    [Show full text]