Layered Depth Images
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Lumigraph
The Lumigraph The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gortler, Steven J., Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. 1996. The Lumigraph. Proceedings of the 23rd annual conference on computer graphics and interactive techniques (SIGGRAPH 1996), August 4-9, 1996, New Orleans, Louisiana, ed. SIGGRAPH, Holly Rushmeier, and Theresa Marie Rhyne, 43-54. Computer graphics annual conference series. New York, N.Y.: Association for Computing Machinery. Published Version http://dx.doi.org/10.1145/237170.237200 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2634291 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA e umigra !"#$#% &' ()*"+#* ,-.#/ (*0#10203/ ,425-*. !0#+41/4 6425-#+ 7' 8)5#% 642*)1)9" ,#1#-*25 strat 1#*4#1 )9 2-;"3*#. #%$4*)%=#%" =-;1 -++)< - 31#* ") look around - 12#%# 9*)= "K#. ;)4%"1 4% 1;-2#' U%# 2-% -+1) !4; "5*)3>5 .499#*? :541 ;-;#* .412311#1 - %#< =#"5). 9)* 2-;"3*4%> "5# 2)=;+#"# -;? #%" $4#<1 )9 -% )@B#2" ") 2*#-"# "5# 4++314)% )9 - MG =).#+' 85#% -%. ;#-*-%2#)9 @)"5 1A%"5#"42 -%. *#-+ <)*+. )@B#2"1 -%. 12#%#1C *#;*#1? I4++4-=1 QVS -%. I#*%#* #" -+ QMWS 5-$# 4%$#1"4>-"#. 1=))"5 4%"#*? #%"4%> "541 4%9)*=-"4)%C -%. "5#% 314%> "541 *#;*#1#%"-"4)% ") *#%.#* ;)+-"4)% @#"<##% 4=->#1 @A =).#+4%> "5# =)"4)% )9 ;4K#+1 X4'#'C "5# 4=->#1 )9 "5# )@B#2" 9*)= %#< 2-=#*- ;)14"4)%1' D%+4/# "5# 15-;# optical !owY -1 )%# =)$#1 9*)= )%# 2-=#*- ;)14"4)% ") -%)"5#*' E% 2-;"3*# ;*)2#11 "*-.4"4)%-++A 31#. -
F I N a L P R O G R a M 1998
1998 FINAL PROGRAM October 18 • October 23, 1998 Sheraton Imperial Hotel Research Triangle Park, NC THE INSTITUTE OF ELECTRICAL IEEE IEEE VISUALIZATION 1998 & ELECTRONICS ENGINEERS, INC. COMPUTER IEEE SOCIETY Sponsored by IEEE Computer Society Technical Committee on Computer Graphics In Cooperation with ACM/SIGGRAPH Sessions include Real-time Volume Rendering, Terrain Visualization, Flow Visualization, Surfaces & Level-of-Detail Techniques, Feature Detection & Visualization, Medical Visualization, Multi-Dimensional Visualization, Flow & Streamlines, Isosurface Extraction, Information Visualization, 3D Modeling & Visualization, Multi-Source Data Analysis Challenges, Interactive Visualization/VR/Animation, Terrain & Large Data Visualization, Isosurface & Volume Rendering, Simplification, Marine Data Visualization, Tensor/Flow, Key Problems & Thorny Issues, Image-based Techniques and Volume Analysis, Engineering & Design, Texturing and Rendering, Art & Visualization Get complete, up-to-date listings of program information from URL: http://www.erc.msstate.edu/vis98 http://davinci.informatik.uni-kl.de/Vis98 Volvis URL: http://www.erc.msstate.edu/volvis98 InfoVis URL: http://www.erc.msstate.edu/infovis98 or contact: Theresa-Marie Rhyne, Lockheed Martin/U.S. EPA Sci Vis Center, 919-541-0207, [email protected] Robert Moorhead, Mississippi State University, 601-325-2850, [email protected] Direct Vehicle Loading Access S Dock Salon Salon Sheraton Imperial VII VI Imperial Convention Center HOTEL & CONVENTION CENTER Convention Center Phones -
Scope and Issues in Alpha Compositing Technology
International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: 2349-2763 Issue 12, Volume 2 (December 2015) www.ijirae.com Scope and Issues in Alpha Compositing Technology Sudipta Maji Asoke Nath M.Sc. Computer Science Department Of Computer Science Department Of Computer Science St. Xavier's College St. Xavier's College Abstract— Alpha compositing is the process of combining an image with a background to create the appearance of partial transparency. The combining operation takes advantage of an alpha channel, which basically determines how much of a source pixel's color information covers a destination pixel's color information. In this documentation, the authors discuss different types of alpha blending modes which are used to achieve this partial transparency. Alpha compositing is a process which is used to combine two images and there are the ranges of alpha value which is multiplied with the source pixel to generate target pixel.). Alpha values also range from 0 to 255, with 0 being completely transparent (i.e., 0% opaque) and 255 completely opaque (i.e., 100% opaque. Alpha blending is a way of mixing the colors of two images together to form a final image. In the preset paper the authors tried to give a comprehensive review on different issues and scope in Alpha Compositing technology. A good example of naturally occurring alpha blending is a rainbow over a waterfall. The rainbow as one image, and the background waterfall is another, then the final image can be formed by alpha blending the two together. Keywords— Alpha Compositing; pixel; RGB; Android; Blending Equation I. -
COURSE NOTES 8 CASE STUDY: Scanning Michelangelo's Florentine Pieta`
SIGGRAPH 99 26th International Conference on Computer Graphics and Interactive Techniques COURSE NOTES 8 CASE STUDY: Scanning Michelangelo's Florentine Pieta` Sunday, August 9, 1999 Two Hour Tutorial ORGANIZER Holly Rushmeier IBM TJ Watson Research Center LECTURERS Fausto Bernardini Joshua Mittleman Holly Rushmeier IBM TJ Watson Research Center 1-1 ABSTRACT We describe a recent project to create a 3D digital model of Michelangelo's Florentine Pieta`. The emphasis is on the practical issues such as equipment selection and modi®cation, the planning of data acquisition, dealing with the constraints of the museum environment, overcoming problems encountered with "real" rather than idealized data, and presenting the model in a form that is suitable for the art historian who is the end user. Art historian Jack Wasserman, working with IBM, initiated a project to create a digital model of Michelangelo's Florentine Pieta` to assist in a scholarly study. In the course of the project, we encountered many practical problems related to the size and topology of the work, and with completing the project within constraints of time, budget and the access allowed by the museum. While we have and will continue to publish papers on the individual new methods we have developed in the in course of solving various problems, a typical technical paper or presentation does not allow for the discussion of many important practical issues. We expect this course to be of interest to practitioners interested in acquiring digital models for computer graphics applications, end users who are interested in understanding what quality can be expected from acquired models, and researchers interested in ®nding research opportunities in the "gaps" in current acquisition methods. -
Freeimage Documentation Here
FreeImage a free, open source graphics library Documentation Library version 3.13.1 Contents Introduction 1 Foreword ............................................................................................................................... 1 Purpose of FreeImage ........................................................................................................... 1 Library reference .................................................................................................................. 2 Bitmap function reference 3 General functions .................................................................................................................. 3 FreeImage_Initialise ............................................................................................... 3 FreeImage_DeInitialise .......................................................................................... 3 FreeImage_GetVersion .......................................................................................... 4 FreeImage_GetCopyrightMessage ......................................................................... 4 FreeImage_SetOutputMessage ............................................................................... 4 Bitmap management functions ............................................................................................. 5 FreeImage_Allocate ............................................................................................... 6 FreeImage_AllocateT ............................................................................................ -
IBM Research Report Reverse Engineering Methods for Digital
RC23991 (W0606-132) June 28, 2006 Computer Science IBM Research Report Reverse Engineering Methods for Digital Restoration Applications Ioana Boier-Martin IBM Research Division Thomas J. Watson Research Center P.O. Box 704 Yorktown Heights, NY 10598 Holly Rushmeier Yale University New Haven, CT Research Division Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. I thas been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g ,. payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218, Yorktown Heights, NY 10598 USA (email: [email protected]). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home . Reverse Engineering Methods for Digital Restoration Applications Ioana Boier-Martin Holly Rushmeier IBM T. J. Watson Research Center Yale University Hawthorne, New York, USA New Haven, Connecticut, USA [email protected] [email protected] Abstract In this paper we focus on the demands of restoring dig- ital objects for cultural heritage applications. However, the In this paper we discuss the challenges of processing methods we present are relevant to many other areas. and converting 3D scanned data to representations suit- This is a revised and extended version of our previous pa- able for interactive manipulation in the context of virtual per [12]. -
Alpha Compositing Alpha Compositing the Alpha Channel
Alpha Compositing • alpha compositing is the process of combining an image with a background to create the appearance of partial transparency. • In order to correctly combine these image elements, it is Alpha Compositing necessary to keep an associated matte for each element. • This matte contains the coverage information - the shape of the geometry being drawn • This allows us to distinguish between parts of the image where the geometry was actually drawn and other parts of the image which are empty. The Alpha Channel The Alpha Channel “A separate component is needed to retain the matte information, the extent of coverage of an element at a pixel. • To store this matte information, the concept of an alpha In a full colour rendering of an element, the RGB components retain only the channel was introduced by A. R. Smith (1970s) colour. In order to place the element over an arbitrary background, a mixing factor is required at every pixel to control the linear interpolation of foreground and • Porter and Duff then expanded this to give us the basic background colours. algebra of Compositing in the paper "Compositing Digital In general, there is no way to encode this component as part of the colour Images" in 1984. information. For anti-aliasing purposes, this mixing factor needs to be of comparable resolution to the colour channels. Let us call this an alpha channel, and let us treat an alpha of 0 to indicate no coverage, 1 to mean full coverage, with fractions corresponding to partial coverage.” Porter & Duff 84 Alpha Channel Pre multiplied alpha • In a 2D image element which stores a colour for each pixel, an additional value is “What is the meaning of the quadruple (r,g,b,a) at a pixel? stored in the alpha channel containing a value ranging from 0 to 1. -
CS6640 Computational Photography 15. Matting and Compositing
CS6640 Computational Photography 15. Matting and compositing © 2012 Steve Marschner 1 Final projects • Flexible group size • This weekend: group yourselves and send me: a one-paragraph description of your idea if you are fixed on one one-sentence descriptions of 3 ideas if you are looking for one • Next week: project proposal one-page description plan for mid-project milestone • Before thanksgiving: milestone report • December 5 (day of scheduled final exam): final presentations Cornell CS6640 Fall 2012 2 Compositing ; DigitalDomain; vfxhq.com] DigitalDomain; ; Titanic [ Cornell CS4620 Spring 2008 • Lecture 17 © 2008 Steve Marschner • Foreground and background • How we compute new image varies with position use background use foreground [Chuang et al. / Corel] / et al. [Chuang • Therefore, need to store some kind of tag to say what parts of the image are of interest Cornell CS4620 Spring 2008 • Lecture 17 © 2008 Steve Marschner • Binary image mask • First idea: store one bit per pixel – answers question “is this pixel part of the foreground?” [Chuang et al. / Corel] / et al. [Chuang – causes jaggies similar to point-sampled rasterization – same problem, same solution: intermediate values Cornell CS4620 Spring 2008 • Lecture 17 © 2008 Steve Marschner • Partial pixel coverage • The problem: pixels near boundary are not strictly foreground or background – how to represent this simply? – interpolate boundary pixels between the fg. and bg. colors Cornell CS4620 Spring 2008 • Lecture 17 © 2008 Steve Marschner • Alpha compositing • Formalized in 1984 by Porter & Duff • Store fraction of pixel covered, called α A covers area α B shows through area (1 − α) – this exactly like a spatially varying crossfade • Convenient implementation – 8 more bits makes 32 – 2 multiplies + 1 add per pixel for compositing Cornell CS4620 Spring 2008 • Lecture 17 © 2008 Steve Marschner • Alpha compositing—example [Chuang et al. -
Textalive: Integrated Design Environment for Kinetic Typography
TextAlive: Integrated Design Environment for Kinetic Typography Jun Kato Tomoyasu Nakano Masataka Goto National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan {jun.kato, t.nakano. m.goto}@aist.go.jp ABSTRACT After Effects [1]). While such tools provide a fine granularity This paper presents TextAlive, a graphical tool that allows of control over the animations, producing the final result interactive editing of kinetic typography videos in which takes long time even for the experienced user because lyrics or transcripts are animated in synchrony with the manual synchronization of the text animation and audio is corresponding music or speech. While existing systems have tedious. In addition, general tools do not provide any allowed the designer and casual user to create animations, guidelines to help novice users produce convincing effects. most of them do not take into account synchronization with Tools specifically designed for making kinetic typography audio signals. They allow predefined motions to be applied videos (e.g., ActiveText [18] or Kinedit [7]) provide to objects and parameters to be tweaked, but it is usually predefined templates of effective animations, from which the impossible to extend the predefined set of motion algorithms user can choose. Such domain-specific tools, though, have within these systems. We therefore propose an integrated had a certain limitation in their flexibility. That is, the design environment featuring (1) GUIs that designers can use programming needed to create new animation templates has to create and edit animations synchronized with audio signals, to be done in separate development environments. (2) integrated tools that programmers can use to implement animation algorithms, and (3) a framework for bridging the With the goal of pushing forward the state of the art in kinetic interfaces for designers and programmers. -
The 2019 Visualization Career Award Thomas Ertl
The 2019 Visualization Career Award Thomas Ertl The 2019 Visualization Career Award goes to Thomas Ertl. Thomas Ertl is a Professor of Computer Science at the University of Stuttgart where he founded the Institute for Visualization and Interactive Systems (VIS) and the Visualization Research Center (VISUS). He received a MSc Thomas Ertl in Computer Science from the University of Colorado at University of Stuttgart Boulder and a PhD in Theoretical Astrophysics from the Award Recipient 2019 University of Tuebingen. After a few years as postdoc and cofounder of a Tuebingen based IT company, he moved to the University of Erlangen as a Professor of Computer Graphics and Visualization. He served the University of Thomas Ertl has had the privilege to collaborate with Stuttgart in various administrative roles including Dean excellent students, doctoral and postdoctoral researchers, of Computer Science and Electrical Engineering and Vice and with many colleagues around the world and he has President for Research and Advanced Graduate Education. always attributed the success of his group to working with Currently, he is the Spokesperson of the Cluster of them. He has advised more than fifty PhD researchers and Excellence Data-Integrated Simulation Science and Director hosted numerous postdoctoral researchers. More than ten of the Stuttgart Center for Simulation Science. of them are now holding professorships, others moved to His research interests include visualization, computer prestigious academic or industrial positions. He also has graphics, and human computer interaction in general with numerous ties to industry and he actively pursues research a focus on volume rendering, flow and particle visualization, on innovative visualization applications for the physical and hierarchical and adaptive algorithms for large datasets, par- life sciences and various engineering domains as well as in allel and hardware accelerated visual computing systems, the digital humanities. -
Yale University Department of Computer Science
Yale University Department of Computer Science A Psychophysical Study of Dominant Texture Detection Jianye Lu Alexandra Garr-Schultz Julie Dorsey Holly Rushmeier YALEU/DCS/TR-1417 June 2009 Contents 1 Introduction 4 2 Psychophysical Studies and Computer Graphics 5 2.1 Diffusion Distance Manifolds . 5 2.2 PsychophysicalExperiments. 5 2.3 Psychophysics Applications in Graphics . 7 3 Experimental Method 8 4 Subject Response Analysis 12 4.1 AnalysiswithANOVA . 12 4.2 AnalysiswithMDS........................ 12 4.3 AnalysiswithScaling. 17 5 Texture Features 20 6 Conclusion 24 A Collection of Psychophysical Studies in Graphics 25 1 List of Figures 1 Dominant texture and texture synthesis . 4 2 Decision tree for psychophysical experiment selection . ... 7 3 Textures for psychophysical experiment . 9 4 User interface for psychophysical experiment . 10 5 Technique preferences based on ANOVA . 13 6 Technique significance with respect to individual texture . 14 7 Technique significance with respect to individual participant . 15 8 Participants on a 2-D MDS configuration . 16 9 Texture samples on 2-D MDS configuration . 18 10 Pairedcomparisonscaling . 19 11 PC-scalesfortestingtextures . 20 12 Textures on PC-scale-based 2-D MDS configuration . 21 13 Spearman’s correlation between texture descriptors and PC- scales ............................... 23 List of Tables 1 Linear correlation between paired comparison scales . 20 2 Qualitative correlation between texture descriptors and PC- scales ............................... 24 2 A Psychophysical Study of Dominant Texture Detection∗ Jianye Lu, Alexandra Garr-Schultz, Julie Dorsey, and Holly Rushmeier Abstract Images of everyday scenes are frequently used as input for texturing 3D models in computer graphics. Such images include both the texture desired and other extraneous information. -
Tone Reproduction for Interactive Walkthroughs
EUROGRAPHICS ’2000 / M. Gross and F.R.A. Hopgood Volume 19, (2000), Number 3 (Guest Editors) Tone Reproduction for Interactive Walkthroughs A. Scheel, M. Stamminger, H.-P. Seidel Max-Planck-Institute for Computer Science, Saarbrücken, Germany Abstract When a rendering algorithm has created a pixel array of radiance values the task of producing an image is not yet completed. In fact, to visualize the result the radiance values still have to be mapped to luminances, which can be reproduced by the used display. This step is performed with the help of tone reproduction operators. These tools have mainly been applied to still images, but of course they are just as necessary for walkthrough applications, in which several images are created per second. In this paper we illuminate the physiological aspects of tone reproduction for interactive applications. It is shown how tone reproduction can also be introduced into interactive radiosity viewers, where the tone reproduction continuously adjusts to the current view of the user. The overall performance is decreased only moderately, still allowing walkthroughs of large scenes. 1. Introduction of real world luminances visible by the human eye (about 6 ¤ 8 2 5 ¥ 10 £ 10 cd m ) by far exceeds the dynamic range of Physically based rendering can be split into three phases. ¤ 2 the monitor (about 1 120 cd ¥ m ). First a model of the virtual world has to be created. This includes the geometry of the scene, the surface reflectance To achieve their goal, most tone reproduction operators behavior, and the emission characteristics of light sources. mimic the functioning of the visual system (or at least some Second, a simulation of light exchange is performed within aspects of it).