The 2019 Visualization Career Award Thomas Ertl
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2008 Visualization Career Award
The 2008 Visualization Career Award Lawrence J. Rosenblum The 2008 Visualization Career Award goes to Lawrence (Larry) Rosenblum, in recognition of early technical contributions and unselfish work to nurture and sustain the field of visuali- zation. In the 1980s and early 1990s Larry developed visualization techniques that produced scientific advances in physical oceanography, ocean acoustics, ocean geophysics, and ocean engineering. He also initiated numerous activities to develop visualization as a recognized research field. Subsequent research by his group has advanced VR/AR, graphics, and visual analytics while he has continued to perform significant service to organizations and confer- ences in visualization and VR/AR. As a Program Officer at NSF and ONR, Larry devel- oped new visualization research programs. For his outstanding contributions in research and in governmental program development, and for his pioneering work to nurture and sustain Lawrence Rosenblum the field of visualization, the IEEE VGTC is pleased to award Larry Rosenblum the 2008 Visualization Career Award. Award Recipient 2008 Biography Larry Rosenblum is Director of the Virtual Reality and was used in many of the early visualization courses in Laboratory at the U.S. Naval Research Laboratory (NRL). academia. He is currently detailed to the U.S. National Science Returning to NRL, Larry focused primarily on virtual Foundation (NSF), where he is Program Director for reality research, including seminal work in U.S. Responsive Graphics and Visualization. Majoring in Mathematics, Workbench technology with encouragement from Wolfgang he received his BA from Queens College (CUNY) and his Krueger, and on augmented reality (AR) systems research. MS and PhD (in Number Theory) from The Ohio State His group’s research into uncertainty visualization produced University. -
Technology-Report Visual Computing
Visual Computing Technology Report Vienna, January 2017 Introduction Dear Readers, Vienna is among the top 5 ICT metropolises in Europe. Around 5,800 ICT enterprises generate sales here of around 20 billion euros annually. The approximately 8,900 national and international ICT companies in the "Vienna Region" (Vienna, Lower Austria and Burgenland) are responsible for roughly two thirds of the total turnover of the ICT sector in Austria. According to various studies, Vienna scores especially strongly in innovative power, comprehensive support for start- ups, and a strong focus on sustainability. Vienna also occupies the top positions in multiple "Smart City" rankings. This location is also appealing due to its research- and technology-friendly climate, its geographical and cultural vicinity to the growth markets in the East, the high quality of its infrastructure and education system, and last but not least the best quality of life worldwide. In order to make optimal use of this location's potential, the Vienna Business Agency functions as an information and cooperation platform for Viennese technology developers. It networks enterprises with development partners and leading economic, scientific and municipal administrative customers, and supports the Viennese enterprises with targeted monetary funding and a variety of consulting and service offerings. Support in this area is also provided by the technology platform of the Vienna Business Agency. At technologieplattform.wirtschaftsagentur.at, Vienna businesses and institutions from the field of technology can present their innovative products, services and prototypes as well as their research expertise, and find development partners and pilot customers. The following technology report offers an overview of the many trends and developments in the field of Entertainment Computing. -
Arxiv:2009.03390V1 [Cs.DL] 7 Sep 2020 Meta-Analytical Work Around Geospatial Analytics and Geovisualiza- Tion That May Shed Light on Opportunities for Innovation
A Review of Geospatial Content in IEEE Visualization Publications Alexander Yoshizumi* Megan M. Coffer† Elyssa L. Collins† Mollie D. Gaines† Xiaojie Gao† Kate Jones† Ian R. McGregor† Katie A. McQuillan† Vinicius Perin† Laura M. Tomkins† Thom Worm† Laura Tateosian* Center for Geospatial Analytics, North Carolina State University Figure 1: Attributes of 94 IEEE VIS papers from years 2017-2019 found to have geospatial content. From top to bottom: data domain, geospatial nature of the paper (GEO), and VIS Conference paper type and track (TRK) are shown for each paper. Percentages on the top band (lightest gray bars) correspond to data domain types. The GEO band marks papers as either containing both geospatial data and a geospatial analysis (dark gray) or geospatial data only (light gray). The TRK band is colored by the VIS Conference paper types and tracks listed on Open Access VIS [15]. ABSTRACT gies such as GPS-equipped mobile devices, remote sensing satellites, Geospatial analysis is crucial for addressing many of the world’s and drones have proliferated, the centrality of georeferenced data most pressing challenges. Given this, there is immense value in has only continued to grow. The complexity and volume of the data improving and expanding the visualization techniques used to com- and the importance of the issues at stake drive a need for innovative municate geospatial data. In this work, we explore this important visualization tools to support exploration and communication of intersection – between geospatial analytics and visualization – by geospatial information. examining a set of recent IEEE VIS Conference papers (a selec- As a focal event for the visualization community, the IEEE Vi- tion from 2017-2019) to assess the inclusion of geospatial data and sualization (VIS) Conference profoundly influences the agenda for geospatial analyses within these papers. -
The Lumigraph
The Lumigraph The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gortler, Steven J., Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. 1996. The Lumigraph. Proceedings of the 23rd annual conference on computer graphics and interactive techniques (SIGGRAPH 1996), August 4-9, 1996, New Orleans, Louisiana, ed. SIGGRAPH, Holly Rushmeier, and Theresa Marie Rhyne, 43-54. Computer graphics annual conference series. New York, N.Y.: Association for Computing Machinery. Published Version http://dx.doi.org/10.1145/237170.237200 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2634291 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA e umigra !"#$#% &' ()*"+#* ,-.#/ (*0#10203/ ,425-*. !0#+41/4 6425-#+ 7' 8)5#% 642*)1)9" ,#1#-*25 strat 1#*4#1 )9 2-;"3*#. #%$4*)%=#%" =-;1 -++)< - 31#* ") look around - 12#%# 9*)= "K#. ;)4%"1 4% 1;-2#' U%# 2-% -+1) !4; "5*)3>5 .499#*? :541 ;-;#* .412311#1 - %#< =#"5). 9)* 2-;"3*4%> "5# 2)=;+#"# -;? #%" $4#<1 )9 -% )@B#2" ") 2*#-"# "5# 4++314)% )9 - MG =).#+' 85#% -%. ;#-*-%2#)9 @)"5 1A%"5#"42 -%. *#-+ <)*+. )@B#2"1 -%. 12#%#1C *#;*#1? I4++4-=1 QVS -%. I#*%#* #" -+ QMWS 5-$# 4%$#1"4>-"#. 1=))"5 4%"#*? #%"4%> "541 4%9)*=-"4)%C -%. "5#% 314%> "541 *#;*#1#%"-"4)% ") *#%.#* ;)+-"4)% @#"<##% 4=->#1 @A =).#+4%> "5# =)"4)% )9 ;4K#+1 X4'#'C "5# 4=->#1 )9 "5# )@B#2" 9*)= %#< 2-=#*- ;)14"4)%1' D%+4/# "5# 15-;# optical !owY -1 )%# =)$#1 9*)= )%# 2-=#*- ;)14"4)% ") -%)"5#*' E% 2-;"3*# ;*)2#11 "*-.4"4)%-++A 31#. -
Investigating Swirl and Tumble Flow with a Comparison of Visualization Techniques
Investigating Swirl and Tumble Flow with a Comparison of Visualization Techniques Robert S. Laramee∗ Daniel Weiskopf§ Jurgen¨ Schneider¶ Helwig Hauser∗ VRVis Research Center, VIS, University of Stuttgart AVL, Graz VRVis Research Center, Vienna Vienna Figure 1: Visualization of swirl and tumble flow using a combination of direct color-mapping, streamlines, isosurfaces, texture-based flow vi- sualization and slicing. (Left) visualizing swirl flow using 3D streamlines and texture-based flow visualization on an isosurface, (middle-left) a clipping plane is applied to reveal occluded flow structures, (middle-right) an isosurface and 3D streamlines visualize tumble motion, and (right) the addition of texture-based flow visualization on a color-mapped slice. ABSTRACT simulation results. AVL’s own engineers as well as engineers at We investigate two important, common fluid flow patterns from industry affiliates use visualization software to analyze and evaluate computational fluid dynamics (CFD) simulations, namely, swirl the results of their automotive design and simulation. and tumble motion typical of automotive engines. We study and Previously, AVL engineers used a series of several color-mapped visualize swirl and tumble flow using three different flow visual- slices to assess and visualize the results of their CFD simulations. ization techniques: direct, geometric, and texture-based. When Isosurfaces were used less commonly to assess certain 3D features illustrating these methods side-by-side, we describe the relative that could not be investigated sufficiently with 2D slices. Recently, strengths and weaknesses of each approach within a specific spatial new solutions for the visualization of CFD simulation data have dimension and across multiple spatial dimensions typical of an en- been introduced. -
Revolutionizing the Way We Capture, Image and Display the Visual World
Center for Visual Computing Revolutionizing the way we capture, image and display the visual world. At the UC San Diego Center for Visual Computing, we are researching and developing a future in which we can render photograph-quality images instantly on mobile devices. A future in which computers and wearable devices have the ability to see and understand the physical world just as humans do. A future in which real and virtual content merge seamlessly across different platforms. The opportunities in communication, health and medicine, city planning, entertainment, 3-D printing and more are vast… and emerging quickly. To pursue these kinds of research projects at the Center for Visual Computing, we draw together computer graphics, augmented and virtual reality, computational imaging and computer vision. Unique Capabilities and Facilities Our immersive virtual and augmented-reality test beds in UC San Diego’s Qualcomm Institute are an ideal laboratory for our software-intensive work which extends from the theoretical and computational to 3-D immersion. Join us in building this future. Unbuilt Courtyard House by Ludwig Mies van der Rohe. This rendering demon- strates how photon mapping can simulate all types of light scattering. MOBILE VISUAL COMPUTING INTERACTIVE DIGITAL UNDERSTANDING PEOPLE AND AND DIGITAL IMAGING (AUGMENTED) REALITY THEIR SURROUNDINGS • New techniques to capture the visual • Achieving photograph-quality images • Computer vision systems with human- environment via mobile devices at interactive frame rates to enable level -
Pro3d Viewer an Interactive 3D Visualization Tool
PRo3D PRo3D Viewer An interactive 3D visualization tool. An interactive 3D visualization tool. PRo3D, short for Planetary Robotics 3D Viewer, is an interactive 3D visualization tool to allow planetary scientists to work with high-resolution 3D reconstructions of the Martian surface. For the past 5 years, our team geared the development of PRo3D towards providing planetary geologists with interactive tools to digitize geological features on digital outcrop models (DOMs) of the Martian surface. During the fruitful cooperation with geologists from the Imperial College of London, PRo3D has emerged as their main tool to conduct remote geologi- cal analysis, which lead to many publications and talks in the geological science community. Planetary geology is the most elaborately supported use-case of PRo3D; however, we strive to expand our user groups by addressing other use-cases, so we have also developed features for supporting science goals in landing site selection and mission planning. We developed PRo3D within the Aardvark.Media framework as part of the Aardvark Platform for scientific rendering and visualization established and used for many other projects at VRVis. A 3D view of the rock formation “Garden City” on Mars, including dip-and-strike annotations for evaluating layer orientations. PRo3D Features of PRo3D Geological Annotation PRo3D lets users pick points on the 3D surface at the full resolution of the data present. The tools encompass point, line, and polyline annotations, while line segments are projected onto the surface. PRo3D computes various measurements at the highest possible accuracy, such as the distance along a 3D surface or dip-and-strike orientations of sediment structures. -
Tamara Munzner
The 2015 Visualization Technical Achievement Award Tamara Munzner The 2015 Visualization Technical Achievement Award goes to Tamara Munzner in recognition of foundational research that has produced a scientific basis for principles and design choices for visualization. The IEEE Visualization & Graphics Technical Community (VGTC) is pleased to award Tamara Munzner the 2015 Visualization Technical Achievement Award. Biography Tamara Munzner Tamara Munzner is a full professor at the University of University of British British Columbia Department of Computer Science, where Columbia she has been since 2002. She was a research scientist from Award Recipient 2015 2000 to 2002 at the Compaq Systems Research Center (the former DEC SRC). She earned her PhD from Stanford between 1995 and 2000, working with Pat Hanrahan. She and prescribe models and methods for visualization design holds a BS from Stanford from 1991, the year she first and the research process itself, including a nested model of attended VIS. design and validation and methodology for design studies. From 1991 to 1995, Tamara was a technical staff Her 2014 book Visualization Analysis and Design provides member at The Geometry Center, based at the University a systematic, comprehensive framework for thinking about of Minnesota. She was one of the architects and imple- visualization in terms of principles and design choices. It mentors of Geomview, the Center’s public domain interac- features a unified approach encompassing information visu- tive 3D visualization system that supported hyperbolic and alization techniques for the abstract data of tables and net- spherical geometry in addition to Euclidean geometry. She works, scientific visualization techniques for spatial data, was co-director and one of the animators of two videos and visual analytics techniques for interweaving data trans- that brought concepts from the cutting edge of geomet- formation and analysis with interactive visual exploration. -
From Surface Rendering to Volume
What is Computer Graphics? • Computational process of generating images from models and/or datasets using computers • This is called rendering (computer graphics was traditionally considered as a rendering method) • A rendering algorithm converts a geometric model and/or dataset into a picture Department of Computer Science CSE564 Lectures STNY BRK Center for Visual Computing STATE UNIVERSITY OF NEW YORK What is Computer Graphics? This process is also called scan conversion or rasterization How does Visualization fit in here? Department of Computer Science CSE564 Lectures STNY BRK Center for Visual Computing STATE UNIVERSITY OF NEW YORK Computer Graphics • Computer graphics consists of : 1. Modeling (representations) 2. Rendering (display) 3. Interaction (user interfaces) 4. Animation (combination of 1-3) • Usually “computer graphics” refers to rendering Department of Computer Science CSE564 Lectures STNY BRK Center for Visual Computing STATE UNIVERSITY OF NEW YORK Computer Graphics Components Department of Computer Science CSE364 Lectures STNY BRK Center for Visual Computing STATE UNIVERSITY OF NEW YORK Surface Rendering • Surface representations are good and sufficient for objects that have homogeneous material distributions and/or are not translucent or transparent • Such representations are good only when object boundaries are important (in fact, only boundary geometric information is available) • Examples: furniture, mechanical objects, plant life • Applications: video games, virtual reality, computer- aided design Department of -
Simulating Vision Impairments in Virtual and Augmented Reality
Simulating Vision Impairments in Virtual and Augmented Reality DISSERTATION zur Erlangung des akademischen Grades Doktorin der Technischen Wissenschaften eingereicht von Dipl.-Ing. Katharina Krösl, BSc. Matrikelnummer 0325089 an der Fakultät für Informatik der Technischen Universität Wien Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer Zweitbetreuung: Ao.Univ.Prof. Dipl.-Arch. Dr.phil. Georg Suter Diese Dissertation haben begutachtet: Mark Billinghurst Tobias Langlotz Wien, 6. November 2020 Katharina Krösl Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at Simulating Vision Impairments in Virtual and Augmented Reality DISSERTATION submitted in partial fulfillment of the requirements for the degree of Doktorin der Technischen Wissenschaften by Dipl.-Ing. Katharina Krösl, BSc. Registration Number 0325089 to the Faculty of Informatics at the TU Wien Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer Second advisor: Ao.Univ.Prof. Dipl.-Arch. Dr.phil. Georg Suter The dissertation has been reviewed by: Mark Billinghurst Tobias Langlotz Vienna, 6th November, 2020 Katharina Krösl Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at Erklärung zur Verfassung der Arbeit Dipl.-Ing. Katharina Krösl, BSc. Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen- deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. Wien, 6. November 2020 Katharina Krösl v Acknowledgements First of all, I would like to thank my supervisor Michael Wimmer for giving me the chance to follow my research where ever it led me and supporting me on my journey to becoming an independent researcher. -
A Bounded Measure for Estimating the Benefit of Visualization
arXiv Report 2021 Volume 0 (1981), Number 0 A Bounded Measure for Estimating the Benefit of Visualization: Theoretical Discourse and Conceptual Evaluation Min Chen1 and Mateu Sbert2 1University of Oxford, UK and 2 University of Girona, Spain Visual Mapping with Topological Abstraction Visual Mapping with a Volume Rendering Integral Color Pixel Color Opacity Color Pixel Color Opacity ...... Color Pixel Color Opacity (a) mapping from different sets of voxel values to the same pixel color (b) mapping from different geographical paths to the same line segment Figure 1: Visual encoding typically features many-to-one mapping from data to visual representations, hence information loss. The significant amount of information loss in volume visualization and metro maps suggests that viewers not only can abide the information loss but also benefit from it. Measuring such benefits can lead to new advancements of visualization, in theory and practice. Abstract Information theory can be used to analyze the cost-benefit of visualization processes. However, the current measure of benefit contains an unbounded term that is neither easy to estimate nor intuitive to interpret. In this work, we propose to revise the existing cost-benefit measure by replacing the unbounded term with a bounded one. We examine a number of bounded measures that include the Jenson-Shannon divergence and a new divergence measure formulated as part of this work. We describe the rationale for proposing a new divergence measure. As the first part of comparative evaluation, we use visual analysis to support the multi-criteria comparison, narrowing the search down to several options with better mathematical properties. -
Visual Computing in Medicine
9/7/17 Visual Computing in Medicine Hans-Christian Hege Int. Summer School 2017 on Deep Learning and Visual Data Analysis, Ostrava, 07.Sept.2017 Acknowledgements Hans Lamecker Stefan Zachow Dagmar Kainmüller Heiko Ramm Britta Weber Daniel Baum ’ 1 9/7/17 Visual Computing Image-Related Disciplines Data Processing Non-Visual Data Image/Video Analysis Data Acquisition Computer Graphics Computer Vision Computer Animation Imaging VR, AR Data Visualization Visual Data Image/Video Processing 2 9/7/17 Visual Computing source: Wikipedia Visual computing = all computer science disciplines handling images and 3D models, i.e. computer graphics, image processing, visualization, computer vision, virtual and augmented reality, video processing, but also includes aspects of pattern recognition, human computer interaction, machine learning and digital libraries. Core challenges are the acquisition, processing, analysis and rendering of visual information (mainly images and video). Application areas include industrial quality control, medical image processing and visualization, surveying, robotics, multimedia systems, virtual heritage, special effects in movies and television, and computer games. Images (mathematically) Image: • Domain : compact; 2D, 3D; or 2D+t, 3D+t ⇒ video often: • Range : grey values, color values, “hyperspectral” values often: • Practical computing: domain and range are discretized • Domain “sampled” (pixels, voxels) • Range “quantized”, e.g., • Function piecewise constant or smooth interpolant 3 9/7/17 Image Examples (I) Grey value