Terrestrial Ecology Issues Identified
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Freshwater Fishes
WESTERN CAPE PROVINCE state oF BIODIVERSITY 2007 TABLE OF CONTENTS Chapter 1 Introduction 2 Chapter 2 Methods 17 Chapter 3 Freshwater fishes 18 Chapter 4 Amphibians 36 Chapter 5 Reptiles 55 Chapter 6 Mammals 75 Chapter 7 Avifauna 89 Chapter 8 Flora & Vegetation 112 Chapter 9 Land and Protected Areas 139 Chapter 10 Status of River Health 159 Cover page photographs by Andrew Turner (CapeNature), Roger Bills (SAIAB) & Wicus Leeuwner. ISBN 978-0-620-39289-1 SCIENTIFIC SERVICES 2 Western Cape Province State of Biodiversity 2007 CHAPTER 1 INTRODUCTION Andrew Turner [email protected] 1 “We live at a historic moment, a time in which the world’s biological diversity is being rapidly destroyed. The present geological period has more species than any other, yet the current rate of extinction of species is greater now than at any time in the past. Ecosystems and communities are being degraded and destroyed, and species are being driven to extinction. The species that persist are losing genetic variation as the number of individuals in populations shrinks, unique populations and subspecies are destroyed, and remaining populations become increasingly isolated from one another. The cause of this loss of biological diversity at all levels is the range of human activity that alters and destroys natural habitats to suit human needs.” (Primack, 2002). CapeNature launched its State of Biodiversity Programme (SoBP) to assess and monitor the state of biodiversity in the Western Cape in 1999. This programme delivered its first report in 2002 and these reports are updated every five years. The current report (2007) reports on the changes to the state of vertebrate biodiversity and land under conservation usage. -
Supplemental Information Biological Conservation No Safe Haven: Protection Levels Show Imperilled South African Reptiles Not
Supplemental Information Biological Conservation No safe haven: protection levels show imperilled South African reptiles not sufficiently safe- guarded despite low average extinction risk Krystal A. Tolley, Joshua Weeber, Bryan Maritz, Luke Verburgt, Michael F. Bates, Werner Conradie, Margaretha D. Hofmeyr, Andrew A. Turner, Jessica M. da Silva, Graham J. Alexander Supplemental Figures S1-S3 Figure S1. Species richness of threatened and Near Threatened reptiles in South Africa. 1 Figure S2. Reptile species richness in South Africa (darker shades indicate higher richness), with the current protected area network indicated by the black outlines. 2 Figure S3. Reptile species richness in South Africa (darker shades indicate higher richness), with the current protected area network indicated by the grey shaded polygons and the protected area expansion network indicated by black polygon outlines. 3 Appendix S1. Protocol for Measuring Protection Level for South African Reptiles The following process was applied to measure the level of protection for each species, using the interpreted distributions for the species (see main text). We evaluated the effectiveness of South Africa’s protected area network in ensuring that minimum viable populations of reptiles are protected. We set a conservation target for protection of at least 10 fragments of protected habitat, each with areas greater than 10 km2 (1000 ha) for a total of 100 km2 for each species. The fragment size was considered to be the minimum area that would support viable populations, with the total area considered to be the total area needed to safeguard the species survival into the future. The interpreted distributions for each species were then intersected with South Africa’s protected area network (Government of South Africa, 2010). -
Phylogenetic Perspectives on Viviparity, Gene-Tree Discordance, and Introgression in Lizards (Squamata)
Phylogenetic Perspectives on Viviparity, Gene-Tree Discordance, and Introgression in Lizards (Squamata) Item Type text; Electronic Dissertation Authors Lambert, Shea Maddock Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 08:50:17 Link to Item http://hdl.handle.net/10150/630229 1 PHYLOGENETIC PERSPECTIVES ON VIVIPARITY, GENE-TREE DISCORDANCE, AND INTROGRESSION IN LIZARDS (SQUAMATA). by Shea Maddock Lambert ____________________________ Copyright © Shea Maddock Lambert 2018 A Dissertation Submitted to the Faculty of the DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2 THEUNIVERSITY OF ARIZONA GRADUATE COLLEGE Asmembers of the Dissertation Committee, we certify that we have read the dissertation prepared by Shea M. Lambert, titled "Phylogenetic perspectives on viviparity,gene-tree discordance, and introgressionin lizards {Squamata)" and recomme11dthat it be accepted as fulfillingthe dissertation requirem�t for the Degree of Doctor of Philosophy. _.c.---� ---------Date: May 21, 2018 _wJohn__ . �e� --�_:-_:-__:_ W_ -----�----'-------------------Date: May 21, 2018 Michael Barker M ichael ( s��t=t ��A". =----.�+o/-�i � -\.\----�--------._______ Date: May 21, 2018 Noa�man Final approval and acceptance· of this dissertation is contingent uporithe candidate's submission of the final copies of the· dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my ditettion and recommend that it be accepted as fulfillin_;the �issertation requirement. -
Squamata: Lacertidae)
UNIVERSITY OF CALIFORNIA SANTA CRUZ EVOLUTIONARY CONSEQUENCES OF CENOZOIC CLIMATE CHANGE ON AFRICAN LACERTID LIZARDS (SQUAMATA: LACERTIDAE) A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ECOLOGY AND EVOLUTIONARY BIOLOGY by Christy A. Hipsley September 2012 The Dissertation of Christy Hipsley is approved: _________________________________ Professor Barry Sinervo, Chair _________________________________ Professor Giacomo Bernardi _________________________________ Professor Johannes Müller _________________________________ Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Christy A. Hipsley 2012 TABLE OF CONTENTS LIST OF TABLES AND FIGURES …………………………………………………………. v ABSTRACT ……………………………………………………………………………… vii ACKNOWLEDGEMENTS ………………………………………………………………… ix INTRODUCTION ……………………………………………………………………..……. 1 CHAPTER 1. INTEGRATION OF BAYESIAN MOLECULAR CLOCK METHODS AND FOSSIL-BASED SOFT BOUNDS REVEALS EARLY CENOZOIC ORIGIN OF AFRICAN LACERTIDS LIZARDS…………………………………………………………………… 9 Abstract ………………………………………………………………………… 9 Background …………………………………………………………………….. 10 Methods ………………………………………………………………………… 11 Results ……………………………………………………….…………………. 13 Discussion………………………………………………………….………………16 CHAPTER 2. MORPHOLOGICAL CONVERGENCE IN ARID-DWELLING AFRICAN LACERTID LIZARDS DRIVEN BY ECOLOGICAL AND CLIMATIC FACTORS………………. 22 Abstract ………………………………………………………………………... 22 Introduction ……………………………………………………………………. 23 Materials and Methods ………………………………………………………… 26 Results ……………………………………………………………………..…… -
(Lepidoptera : Satyridae) from Vietnam
Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist., Ser. A, 2 : 17-45, March 31, 2004 A Revisional Catalogue of the genus Ypthima Hubner (Lepidoptera : Satyridae) from Vietnam Yoshinobu U£mura' & Alexander L. Monastyrskii2 xToyosato Museum of Entomology, Tohigashi 676, Tsukuba, Ibaraki, 300-2633, Japan 2Vietnam-Russia Tropical Centre, Nghia Do-Cau Giay, Hanoi, Vietnam (Received December 26,2003 ; accepted February 19,2004) ABSTRACT — The 24 Ypthima species known to occur in Vietnam are considered, of which 12 are new national records. One new species is described (in the pandocus-group), one new name proposed, and the status of three taxa revised. KEY WORDS: Taxonomy, Lepidoptera, Satyridae, Ypthima, Vietnam. Ypthima are contained in a few more recent papers (Anony INTRODUCTION mous, 1976, 1981), published in Vietnamese and confined The genus Ypthima Hubner comprising more than 100 to North Vietnam. Amongst six species reported in these species is mostly distributed in Palaeotropical regions and works, Y. lycus and Y. conjuncta were mentioned for the in the eastern Palaearctic region. The highest Ypthima di first time. versity is known from western China, including Yunnan The numerous descriptions and revisions of Fruhstor and Sichuan provinces and from other adjacent countries fer (1911), Evans (1932), Talbot (1947), Forster (1948), such as N.E. India, Nepal, Sikkim, Assam, Bhutan, Burma, Eliot (1967), and Cantlie and Norman (1959) were consid Thailand including regions of the Indo-Chinese Peninsula, ered in the fundamental work by Shirozu and Shima (1979) in particularly Laos and Vietnam. on systematic study of the genus Ypthima. The authors ex However, until recently the data on the Ypthima fauna amined the morphological structure, such as male foreleg, from Indo-China were rather poor and controversial. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Reptiles and Amphibians of the Goegap Nature Reserve
their time underground in burrows. These amphibians often leave their burrows after heavy rains that are seldom. Reptiles And Amphibians Of The There are reptiles included in this report, which don’t occur here in Goegap but at the Augrabies Falls NP. So you can find here also the Nile monitor and the flat liz- Goegap Nature Reserve ard. Measuring reptiles By Tanja Mahnkopf In tortoises and terrapins the length is measured at the shell. Straight along the mid- line of the carapace. The SV-Length is the length of head and body (Snout to Vent). In lizards it easier to look for this length because their tail may be a regenerated one Introduction and these are often shorter than the original one. The length that is mentioned for the The reptiles are an ancient class on earth. The earliest reptile fossils are about 315 species in this report is the average to the maximum length. For the snakes I tried to million years old. During the aeons of time they evolved a great diversity of extinct give the total length because it is often impossible to say where the tail begins and and living reptiles. The dinosaurs and their relatives dominated the earth 150 million the body ends without holding the snake. But there was not for every snake a total years ago. Our living reptiles are remnants of that period or from a period after the length available. dinosaurs were extinct. Except of the chameleons (there are only two) you can find all reptiles in the appen- Obviously it looks like reptiles are not as successful as mammals. -
Early German Herpetological Observations and Explorations in Southern Africa, with Special Reference to the Zoological Museum of Berlin
Bonner zoologische Beiträge Band 52 (2003) Heft 3/4 Seiten 193–214 Bonn, November 2004 Early German Herpetological Observations and Explorations in Southern Africa, With Special Reference to the Zoological Museum of Berlin Aaron M. BAUER Department of Biology, Villanova University, Villanova, Pennsylvania, USA Abstract. The earliest herpetological records made by Germans in southern Africa were casual observations of common species around Cape Town made by employees of the Dutch East India Company (VOC) during the mid- to late Seven- teenth Century. Most of these records were merely brief descriptions or lists of common names, but detailed illustrations of many reptiles were executed by two German illustrators in the employ of the VOC, Heinrich CLAUDIUS and Johannes SCHUMACHER. CLAUDIUS, who accompanied Simon VAN DER STEL to Namaqualand in 1685, left an especially impor- tant body of herpetological illustrations which are here listed and identified to species. One of the last Germans to work for the Dutch in South Africa was Martin Hinrich Carl LICHTENSTEIN who served as a physician and tutor to the last Dutch governor of the Cape from 1802 to 1806. Although he did not collect any herpetological specimens himself, LICHTENSTEIN, who became the director of the Zoological Museum in Berlin in 1813, influenced many subsequent workers to undertake employment and/or expeditions in southern Africa. Among the early collectors were Karl BERGIUS and Ludwig KREBS. Both collected material that is still extant in the Berlin collection today, including a small number of reptile types. Because of LICHTENSTEIN’S emphasis on specimens as items for sale to other museums rather than as subjects for study, many species first collected by KREBS were only described much later on the basis of material ob- tained by other, mostly British, collectors. -
Zoologia Caboverdiana 1 (1): 45-58 ISSN 2074-5737 © 2010 Sociedade Caboverdiana De Zoologia
Zoologia Caboverdiana 1 (1): 45-58 ISSN 2074-5737 © 2010 Sociedade Caboverdiana de Zoologia New data on Hesperioidea and Papilionoidea (Lepidoptera) from the Cape Verde Islands, with a review of previous records Luis F. Mendes 1 & A. Bivar de Sousa 2 Keywords: Lepidoptera, Cape Verde Islands, distribution, new data ABSTRACT Butterflies of the superfamilies Hesperioidea and Papilionoidea collected in the Cape Verde Islands and deposited in the Instituto de Investigação Científica Tropical, Lisbon, Portugal, were studied. Some novelties are reported at the insular level and one Palearctic species of Nymphalidae is reported for the first time in the islands. The identification of the only species of Colias (Pieridae) present in the Cape Verde Islands and its biogeographical affinities are discussed. RESUMO Este artigo apresenta resultados de um estudo de amostras de lepidópteros das superfamílias Hesperioidea e Papilionoidea, provenientes de ilhas de Cabo Verde e em depósito no Instituto de Investigação Científica Tropical, Lisboa, Portugal. Referem-se algumas novidades faunísticas a nível insular e uma espécie de Nymphalidae de distribuição paleárctica é assinalada pela primeira vez no país. Corrige-se a determinação da única espécie do género Colias (Pieridae) conhecida de Cabo Verde e discutem-se as suas afinidades biogeográficas. 1 Instituto de Investigação Científica Tropical / Jardim Botânico Tropical, Zoologia, Rua da Junqueira 14, 1300-343 Lisboa, Portugal; email: [email protected] 2 Sociedade Portuguesa de Entomologia, Apartado 8221, 1803-001 Lisboa, Portugal; email: [email protected] L.F. Mendes & A.B. de Sousa 46 Butterflies of Cape Verde INTRODUCTION The butterflies of the Cape Verde Islands (an only Portuguese publication on Lepidoptera oceanic archipelago, situated off West Africa from the Cape Verde Islands. -
Phylogenetic Placement and Generic Re-Circumscriptions of The
TAXON 65 (2) • April 2016: 249–261 Powell & al. • Generic recircumscription in Schlechteranthus Phylogenetic placement and generic re-circumscriptions of the multilocular genera Arenifera, Octopoma and Schlechteranthus (Aizoaceae: Ruschieae): Evidence from anatomical, morphological and plastid DNA data Robyn F. Powell,1,2 James S. Boatwright,1 Cornelia Klak3 & Anthony R. Magee2,4 1 Department of Biodiversity & Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, South Africa 2 Compton Herbarium, South African National Biodiversity Institute, Private Bag X7, Claremont 7735, Cape Town, South Africa 3 Bolus Herbarium, Department of Biological Sciences, University of Cape Town, 7701, Rondebosch, South Africa 4 Department of Botany & Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa Author for correspondence: Robyn Powell, [email protected] ORCID RFP, http://orcid.org/0000-0001-7361-3164 DOI http://dx.doi.org/10.12705/652.3 Abstract Ruschieae is the largest tribe in the highly speciose subfamily Ruschioideae (Aizoaceae). A generic-level phylogeny for the tribe was recently produced, providing new insights into relationships between the taxa. Octopoma and Arenifera are woody shrubs with multilocular capsules and are distributed across the Succulent Karoo. Octopoma was shown to be polyphyletic in the tribal phylogeny, but comprehensive sampling is required to confirm its polyphyly. Arenifera has not previously been sampled and therefore its phylogenetic placement in the tribe is uncertain. In this study, phylogenetic sampling for nine plastid regions (atpB-rbcL, matK, psbJ-petA, rpl16, rps16, trnD-trnT, trnL-F, trnQUUG-rps16, trnS-trnG) was expanded to include all species of Octopoma and Arenifera, to assess phylogenetic placement and relationships of these genera. -
February 2019 ---International Rock Gardener--- February 2019
International Rock Gardener ISSN 2053-7557 Number 110 The Scottish Rock Garden Club February 2019 ---International Rock Gardener--- February 2019 A new viola species, described by John and Anita Watson; enjoying Orchids and winter-flowering species of Gran Canaria by Iep & Gerrit Eijkelenboom; and an overview of Aloinopsis/Nananthus Hybrids in Utah by John Stireman are our main articles this month. Also included is a review of a new book on galanthus, the ever-popular snowdrop. This book is a second edition of Freda Cox’ book, reviewed by the successful galanthus and narcissus breeder and grower, Anne Wright. Cover photo: Aloinopsis hot pink hybrid, photo John Stireman. ---Species Description--- The expanding kingdom of an Incredible Shrinking Violet (give or take a mm): a new diminutive-flowered rosulate Viola (section Andinium) from the Andes of Argentina John and Ana R. Flores (Anita Watson) Casilla 161, Los Andes, Aconcagua Provincia, Valparaiso Región, Chile. Email: [email protected] Published in IRG 110 February 2019 Pages 2 – 41. A sneak preview The room was small and crowded, people were moving around and chatting all the time: it was very distracting. The 'main event' was a home-video showing the two day ascent of the 4114 m Tromen volcano in Neuquén province, northern Argentinian Patagonia [Figs.1, 2], which gives its name to the provincial nature reserve park there (Parque Provincial El Tromen). The protagonists had been the resident park rangers, and the 'theatre' was their office. It was put on for our benefit, as they'd discovered our interest in the flora as a whole, and violas in particular. -
The Butterflies of Taita Hills
FLUTTERING BEAUTY WITH BENEFITS THE BUTTERFLIES OF TAITA HILLS A FIELD GUIDE Esther N. Kioko, Alex M. Musyoki, Augustine E. Luanga, Oliver C. Genga & Duncan K. Mwinzi FLUTTERING BEAUTY WITH BENEFITS: THE BUTTERFLIES OF TAITA HILLS A FIELD GUIDE TO THE BUTTERFLIES OF TAITA HILLS Esther N. Kioko, Alex M. Musyoki, Augustine E. Luanga, Oliver C. Genga & Duncan K. Mwinzi Supported by the National Museums of Kenya and the JRS Biodiversity Foundation ii FLUTTERING BEAUTY WITH BENEFITS: THE BUTTERFLIES OF TAITA HILLS Dedication In fond memory of Prof. Thomas R. Odhiambo and Torben B. Larsen Prof. T. R. Odhiambo’s contribution to insect studies in Africa laid a concrete footing for many of today’s and future entomologists. Torben Larsen’s contribution to the study of butterflies in Kenya and their natural history laid a firm foundation for the current and future butterfly researchers, enthusiasts and rearers. National Museums of Kenya’s mission is to collect, preserve, study, document and present Kenya’s past and present cultural and natural heritage. This is for the purposes of enhancing knowledge, appreciation, respect and sustainable utilization of these resources for the benefit of Kenya and the world, for now and posterity. Copyright © 2021 National Museums of Kenya. Citation Kioko, E. N., Musyoki, A. M., Luanga, A. E., Genga, O. C. & Mwinzi, D. K. (2021). Fluttering beauty with benefits: The butterflies of Taita Hills. A field guide. National Museums of Kenya, Nairobi, Kenya. ISBN 9966-955-38-0 iii FLUTTERING BEAUTY WITH BENEFITS: THE BUTTERFLIES OF TAITA HILLS FOREWORD The Taita Hills are particularly diverse but equally endangered.