Global Proteomics of Ubqln2-Based Murine Models of ALS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												
												Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug
cancers Article Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug Response Genes in Pediatric Acute Myeloid Leukemia David G.J. Cucchi 1 , Costa Bachas 1 , Marry M. van den Heuvel-Eibrink 2,3, Susan T.C.J.M. Arentsen-Peters 3, Zinia J. Kwidama 1, Gerrit J. Schuurhuis 1, Yehuda G. Assaraf 4, Valérie de Haas 3 , Gertjan J.L. Kaspers 3,5 and Jacqueline Cloos 1,* 1 Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; [email protected] (D.G.J.C.); [email protected] (C.B.); [email protected] (Z.J.K.); [email protected] (G.J.S.) 2 Department of Pediatric Oncology/Hematology, Erasmus MC–Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands; [email protected] 3 Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; [email protected] (S.T.C.J.M.A.-P.); [email protected] (V.d.H.); [email protected] (G.J.L.K.) 4 The Fred Wyszkowski Cancer Research, Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel; [email protected] 5 Emma’s Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, 1081 HV Amsterdam, The Netherlands * Correspondence: [email protected] Received: 21 April 2020; Accepted: 12 May 2020; Published: 15 May 2020 Abstract: Novel treatment strategies are of paramount importance to improve clinical outcomes in pediatric AML. Since chemotherapy is likely to remain the cornerstone of curative treatment of AML, insights in the molecular mechanisms that determine its cytotoxic effects could aid further treatment optimization. - 
												
												A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. - 
												
												Downloaded from [266]
Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes. - 
												
												Tesislzingaretti13junio2016 (1).Pdf (10.14Mb)
UNIVERSIDAD NACIONAL DE CORDOBA´ MAESTR´IA EN ESTAD´ISTICA APLICADA INTEGRACION´ DE DATOS DE EXPRESION´ GENICA´ ASOCIADOS A L´INEAS CELULARES DE CANCERES:´ UN ENFOQUE UTILIZANDO LA METODOLOG´IA STATIS-ACT, METODOS´ BIPLOT Y MINER´IA DE TEXTO Prof. Mar´ıaLaura Zingaretti Junio-2016 Director: Prof. Dr. Jhonny Rafael Demey Co-Director: Prof. Dr. Julio Alejandro Di Rienzo INTEGRACiON DE DATOS DE EXPRESION GENICA ASOCIADOS A LINEAS CELULARES DE CANCERES: UN ENFOQUE UTILIZANDO LA METODOLOGIA STATIS-ACT, METODOS BIPLOT Y MINERIA DE TEXTO por Zingaretti, María Laura se distribuye bajo una Licencia Creative Commons Atribución – No Comercial – Sin Obra Derivada 4.0 Internacional. Agradecimientos Al director de este trabajo, el Prof. Dr. Jhonny Demey por su confianza y gu´ıaconstantes, por su paciencia y su infinita generosidad para ense~narme y especialmente, por transmitirme la pasi´onpor esta disciplina. Al Dr. Julio Di Rienzo por su confianza y por sus orientaciones, tanto en la realizaci´onde este trabajo como en los cursos de la maestr´ıa. Al Dr. Crist´obalFresno porque siempre ha estado para ayudarme. A todo el cuerpo de profesores y trabajadores no docentes de la Maestr´ıaen Estad´ısticaAplicada por su dedicaci´onconstante. A la Universidad Nacional de Villa Mar´ıa,por haber financiado parte de mis estudios y por la formaci´onque he recibido durante a~nosen esta instituci´on, tanto como estudiante como en mi tarea docente. A las amigas que encontr´een la maestr´ıa:Jime, Vale y Belu. Sin duda, ha sido una de las cosas m´aslindas de este camino. - 
												
												Literature Mining Sustains and Enhances Knowledge Discovery from Omic Studies
LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES by Rick Matthew Jordan B.S. Biology, University of Pittsburgh, 1996 M.S. Molecular Biology/Biotechnology, East Carolina University, 2001 M.S. Biomedical Informatics, University of Pittsburgh, 2005 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Rick Matthew Jordan It was defended on December 2, 2015 and approved by Shyam Visweswaran, M.D., Ph.D., Associate Professor Rebecca Jacobson, M.D., M.S., Professor Songjian Lu, Ph.D., Assistant Professor Dissertation Advisor: Vanathi Gopalakrishnan, Ph.D., Associate Professor ii Copyright © by Rick Matthew Jordan 2016 iii LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES Rick Matthew Jordan, M.S. University of Pittsburgh, 2016 Genomic, proteomic and other experimentally generated data from studies of biological systems aiming to discover disease biomarkers are currently analyzed without sufficient supporting evidence from the literature due to complexities associated with automated processing. Extracting prior knowledge about markers associated with biological sample types and disease states from the literature is tedious, and little research has been performed to understand how to use this knowledge to inform the generation of classification models from ‘omic’ data. Using pathway analysis methods to better understand the underlying biology of complex diseases such as breast and lung cancers is state-of-the-art. However, the problem of how to combine literature- mining evidence with pathway analysis evidence is an open problem in biomedical informatics research. - 
												
												Structural Studies of C9orf72-SMCR8-WDR41 Protein Complex
Structural Studies of C9orf72-SMCR8-WDR41 Protein Complex Valeria Shkuratova Department of Biochemistry McGill University, Montreal A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science © Valeria Shkuratova, 2020 Table of Contents Abstract ............................................................................................................................................ 3 Résumé ............................................................................................................................................ 4 Acknowledgment ............................................................................................................................. 5 Author Contribution ........................................................................................................................ 6 List of Abbreviations ....................................................................................................................... 7 List of Figures .................................................................................................................................. 9 List of Tables ................................................................................................................................... 9 Introduction ................................................................................................................................... 10 1. Amyotrophic Lateral Sclerosis (ALS) .............................................................................. - 
												
												The Proline/Arginine Dipeptide from Hexanucleotide Repeat Expanded C9ORF72 Inhibits the Proteasome
New Research Disorders of the Nervous System The Proline/Arginine Dipeptide from Hexanucleotide Repeat Expanded C9ORF72 Inhibits the Proteasome Jelena Mojsilovic-Petrovic,4 Won Hoon Choi,5 Nathaniel Safren,6 ء,Matthews Lan,3 ء,Rahul Gupta,1,2 Sami Barmada,6 Min Jae Lee,5 and Robert Kalb4,7 DOI:http://dx.doi.org/10.1523/ENEURO.0249-16.2017 1Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, 2Department of Biology, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, 3Department of Biochemistry, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, 4Division of Neurology, Department of Pediatrics, Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, 5Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea, 6Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, and 7Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 Abstract An intronic hexanucleotide repeat expansion (HRE) mutation in the C9ORF72 gene is the most common cause of familial ALS and frontotemporal dementia (FTD) and is found in ϳ7% of individuals with apparently sporadic disease. Several different diamino acid peptides can be generated from the HRE by noncanonical translation (repeat-associated non-ATG translation, or RAN translation), and some of these peptides can be toxic. Here, we studied the effects of two arginine containing RAN translation products [proline/arginine repeated 20 times (PR20) and glycine/arginine repeated 20 times (GR20)] in primary rat spinal cord neuron cultures grown on an astrocyte  feeder layer. - 
												
												Machine Learning Models for Predicting Protein Condensate Formation from Sequence Determinants and Embeddings
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.26.354753; this version posted October 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Machine learning models for predicting protein condensate formation from sequence determinants and embeddings Kadi L. Saar,1;2;† Alexey S. Morgunov,1;3;† Runzhang Qi,1 William E. Arter,1 Georg Krainer,1 Alpha A. Lee2 & Tuomas P. J. Knowles1;2;∗ 1 Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK 2 Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge CB3 0HE, UK 3 Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Rd, Cambridge CB1 8DH, UK † These authors contributed equally ∗ To whom correspondence should be addressed: [email protected] Abstract Intracellular phase separation of proteins into biomolecular condensates is increasingly recognised as an important phenomenon for cellular compartmentalisation and regulation of biological function. Different hypotheses about the parameters that determine the ten- dency of proteins to form condensates have been proposed with some of them probed ex- perimentally through the use of constructs generated by sequence alterations. To broaden the scope of these observations, here, we established an in silico strategy for understanding on a global level the associations between protein sequence and condensate formation, and used this information to construct machine learning classifiers for predicting liquid–liquid phase separation (LLPS) from protein sequence. - 
												
												Locating Gene Conversions on the X-Chromosome
Sexy Gene Conversions: Locating Gene Conversions on the X-Chromosome Mark J. Lawson1, Liqing Zhang1;2∗ Department of Computer Science, Virginia Tech 2Program in Genetics, Bioinformatics, and Computational Biology ∗To whom correspondence should be addressed; E-mail: [email protected] April 3, 2009 Abstract Gene conversion can have a profound impact on both the short-term and long-term evolution of genes and genomes. Here we examined the gene families that are located on the X-chromosomes of human, chimp, mouse, and rat for evidence of gene conversion. We identified seven gene families (WD repeat protein family, Ferritin Heavy Chain family, RAS-related Protein RAB-40 family, Diphosphoinositol polyphosphate phosphohydrolase family, Transcription Elongation Factor A family, LDOC1 Related family, Zinc Finger Protein ZIC, and GLI family) that show evidence of gene conversion. Through phylogenetic analyses and synteny evidence, we show that gene conversion has played an important role in the evolution of these gene families and that gene conversion has occured independently in both primates and rodents. Comparing the results with those of two gene conversion prediction programs (GENECONV and Partimatrix), we found that both GENECONV and Partimatrix have very high false negative rates (i.e. failed to predict gene conversions), leading to many undetected gene conversions. The combination of phylogenetic analyses with physical synteny evidence exhibits high power in the detection of gene conversions. 1 1 Introduction Gene conversions are the exchange of genetic information between two genes, initiated by a double-strand break in one gene (acceptor) followed by the repair of this gene through the copying of the sequence of a similar gene (donor). - 
												
												C9orf72 Testing in a Diagnostic Laboratory Using the Asuragen Amplidex® PCR/CE C9orf72 Kit
C9orf72 testing in a diagnostic laboratory using the Asuragen AmplideX® PCR/CE C9orf72 kit Rick van Minkelen1, Patricia Reichgelt1, Saskia Theunisse2, Jody Salomon2, Kristen Culp3, Dept. Clinical Genetics Janne M. Papma4, Laura Donker Kaat4,5, John C. van Swieten4,6, Raoul van de Graaf1, Lies H. Hoefsloot1, Martina Wilke1 1 Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands 2 Sanbio B.V., Uden, the Netherlands 3 Asuragen, Inc., Austin, TX, USA 4 Department of Neurology, Erasmus MC, Rotterdam, the Netherlands 5 Department of Clinical Genetics, LUMC, Leiden, the Netherlands 6 Department of Clinical Genetics, VUMC, Amsterdam, the Netherlands [email protected] Introduction The pathogenic expanded hexanucleotide repeat element (G4C2) in intron 1 of the Chromosome 9 open reading frame 72 gene (C9orf72; Results NM_001256054.2) is the most prevalent genetic cause of the All samples previously scored as pathogenic using the home-made tests neurodegenerative disorders frontotemporal dementia (FTD) and also showed a pathogenic repeat expansion of at least 145 repeats using amyotrophic lateral sclerosis (ALS). Here we describe our experiences in the new Asuragen test (for examples see Figure 1). No repeats were sized using the newly introduced Asuragen AmplideX® PCR/CE C9orf72 assay in the range 60-145. Repeats in the normal range were sized exactly the compared to our home-made long range and repeat-primed PCR tests for same. DNA concentrations of 50ng/µl (our standard lab dilution) and the detection of C9orf72 repeats. Our home-made tests are limited to 25ng/µl showed similar results. A dilution (including a second 30s injection detection of up to ~60 C9orf72 repeats. - 
												
												Genetic Testing and Genetic Counseling for Amyotrophic Lateral Sclerosis: an Update for Clinicians
© American College of Medical Genetics and Genomics REVIEW Genetic testing and genetic counseling for amyotrophic lateral sclerosis: an update for clinicians Jennifer Roggenbuck, MS1, Adam Quick, MD1 and Stephen J. Kolb, MD, PhD1 Patients with amyotrophic lateral sclerosis (ALS) often have questions SOD1 antisense oligonucleotide trials. In the span of a few years, ALS about why they developed the disease and the likelihood that family genetic testing options have progressed from testing of a single gene members will also be affected. In recent years, providing answers to to multigene next-generation sequencing panels and whole-exome these questions has become more complex with the identification of sequencing. This article provides suggestions for genetic counseling multiple novel genes, the newly recognized etiologic link between ALS and genetic testing for ALS in this new environment. and frontotemporal dementia (FTD), and the increased availability of Genet Med advance online publication 18 August 2016 commercial genetic testing. A genetic diagnosis is particularly impor- tant to establish in the era of emerging gene-based therapies, such as Key Words: motor neuron disease; C9orf72 INTRODUCTION of novel genes, including C9orf72, the recognition of the link Amyotrophic lateral sclerosis (ALS) is an adult-onset neuro- between ALS and frontotemporal dementia (FTD), and the advent degenerative disorder characterized by loss of upper and lower of next-generation sequencing technology. The genetic basis of motor neurons, progressive paralysis, and death within an aver- two-thirds of fALS and 10% of sALS case has now been estab- age of 2–5 years after symptom onset. Diagnosis is based on lished. - 
												
												A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9P21-Linked ALS- FTD, Neuron (2011), Doi:10.1016/J.Neuron.2011.09.010 Neuron Article
Please cite this article in press as: Renton et al., A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS- FTD, Neuron (2011), doi:10.1016/j.neuron.2011.09.010 Neuron Article AHexanucleotideRepeatExpansioninC9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD Alan E. Renton,1,38 Elisa Majounie,2,38 Adrian Waite,3,38 Javier Simo´ n-Sa´ nchez,4,5,38 Sara Rollinson,6,38 J. Raphael Gibbs,7,8,38 Jennifer C. Schymick,1,38 Hannu Laaksovirta,9,38 John C. van Swieten,4,5,38 Liisa Myllykangas,10 Hannu Kalimo,10 Anders Paetau,10 Yevgeniya Abramzon,1 Anne M. Remes,11 Alice Kaganovich,12 Sonja W. Scholz,2,13,14 Jamie Duckworth,7 Jinhui Ding,7 Daniel W. Harmer,15 Dena G. Hernandez,2,8 Janel O. Johnson,1,8 Kin Mok,8 Mina Ryten,8 Danyah Trabzuni,8 Rita J. Guerreiro,8 Richard W. Orrell,16 James Neal,17 Alex Murray,18 Justin Pearson,3 Iris E. Jansen,4 David Sondervan,4 Harro Seelaar,5 Derek Blake,3 Kate Young,6 Nicola Halliwell,6 Janis Bennion Callister,6 Greg Toulson,6 Anna Richardson,19 Alex Gerhard,19 Julie Snowden,19 David Mann,19 David Neary,19 Michael A. Nalls,2 Terhi Peuralinna,9 Lilja Jansson,9 Veli-Matti Isoviita,9 Anna-Lotta Kaivorinne,11 Maarit Ho¨ ltta¨ -Vuori,20 Elina Ikonen,20 Raimo Sulkava,21 Michael Benatar,22 Joanne Wuu,23 Adriano Chio` ,24 Gabriella Restagno,25 Giuseppe Borghero,26 Mario Sabatelli,27 The ITALSGEN Consortium,28 David Heckerman,29 Ekaterina Rogaeva,30 Lorne Zinman,31 Jeffrey D.