PROPAGANDA SUBSTANCES in the CUCKOO ANT Leptothorax Kutteri and the SLAVE-MAKER Harpagoxenus Sublaevis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Small Number of Workers with Specific Personality Traits Perform Tool Use in Ants Istva´ N Maa´ K1,2, Garyk Roelandt3, Patrizia D’Ettorre3,4*
RESEARCH ARTICLE A small number of workers with specific personality traits perform tool use in ants Istva´ n Maa´ k1,2, Garyk Roelandt3, Patrizia d’Ettorre3,4* 1Department of Ecology, University of Szeged, Szeged, Hungary; 2Museum and Institute of Zoology, Polish Academy of Science, Warsaw, Poland; 3Laboratory of Experimental and Comparative Ethology UR 4443, University Sorbonne Paris Nord, Villetaneuse, France; 4Institut Universitaire de France (IUF), Paris, France Abstract Ants use debris as tools to collect and transport liquid food to the nest. Previous studies showed that this behaviour is flexible whereby ants learn to use artificial material that is novel to them and select tools with optimal soaking properties. However, the process of tool use has not been studied at the individual level. We investigated whether workers specialise in tool use and whether there is a link between individual personality traits and tool use in the ant Aphaenogaster senilis. Only a small number of workers performed tool use and they did it repeatedly, although they also collected solid food. Personality predicted the probability to perform tool use: ants that showed higher exploratory activity and were more attracted to a prey in the personality tests became the new tool users when previous tool users were removed from the group. This suggests that, instead of extreme task specialisation, variation in personality traits within the colony may improve division of labour. Introduction Tool use is a widespread phenomenon within the animal kingdom (Shumaker et al., 2011; Sanz et al., 2013) and new examples of animal tool use are regularly discovered, such as recently in *For correspondence: [email protected] pigs (Root-Bernstein et al., 2019) and seabirds (Fayet et al., 2020). -
3. Generalized Version of Lanchester Equations Model…………..…………………..32
國立交通大學 科技管理研究所 博士論文 由兵力耗損理論探討近代重大戰役之研究 Extending the Lanchester’s Square Law to Better Fit the Attrition in the Ardennes Campaign 研 究 生:唐文漢 指導教授:洪志洋 中華民國九十五年五月 由兵力耗損理論探討近代重大戰役之研究 Extending the Lanchester’s Square Law to Better Fit the Attrition in the Ardennes Campaign 研究生:唐文漢 Student: Wen-Han Tang 指導教授:洪志洋 Advisor: Chih-Young Hung 國立交通大學 科技管理研究所 博士論文 A Dissertation Submitted to Institute of Management of Technology College of Management National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Management of Technology May 2006 Hsinchu, Taiwan, Republic of China 中華民國九十五年五月 ii 由兵力耗損理論探討近代重大戰役之研究 學生:唐文漢 指導教授:洪志洋 教授 國立交通大學科技管理研究所 摘 要 戰爭是人類社會普遍存在的一種現象,戰爭的特質是交戰雙方意志的衝撞。戰爭 是猛烈艱難的工作,危險是其基本的特性。戰爭行為顯而易見的印象是危險,而人類 對此危險的反應是恐懼。因其改變國家之命運與國家間的秩序,對人類社會的影響既 深且鉅,故交戰雙方都希望藉由瞭解敵軍的戰術、戰略層次及作戰目標,而獲取預想 的利益。並試圖為下次作戰找出有利的戰爭條件和方法。 因此中國的孫子兵法始計篇開宗明義就闡述:兵者,國之大事,死生之地,存亡 之道,不可不察也。又云:夫未戰而廟算勝者,得算多也;未戰而廟算不勝者,得算 少也。多算勝少算不勝,而況於無算乎。謀攻篇提及知勝者有五:知可以戰與不可以 戰者勝,識眾寡之用者勝,上下同欲者勝,以虞待不虞者勝,將能而君不缷者勝。此 五者,知勝之道也。故曰:知己知彼,百戰不殆;不知彼而知,己一勝一負;不知彼 不知己,每戰必敗。 克勞塞維茨在戰爭論中曾說:任何理論的主要目的乃在澄清已然困惑不清與糾葛 難解的構想及理念;除非已對一些名詞與構想的意義加以界定,否則無人能在此方面 獲得任何進展。如有人認為上述說明不具任何意義,則其不是全然無法接受理論上的 分析,就是從未接觸到有關戰爭遂行的各種令人困惑而又相互排斥的理念。事實上, 理論固然無法提供解決問題的公式,也不能作為據以找出唯一解決方案的原則,但卻 能使人深入了解各種紛亂的現象與關係,俾將之提升為更高層次的行動範疇。所以對 理念加以釐清、探討與分析,自有其必要性。克勞塞維茨在戰爭論中又說:攻擊和防 i 禦在戰爭是相互作用的狀態和反應。在進攻和防禦之間轉換將有一段時間的間距很難 定義。 人類長久以來一直透過各種技術發展或科學計算,確切解決對戰爭結果的期盼。 不論是實兵對抗操演、賽局理論、傳統沙盤推演、新興科技電腦兵棋模擬與蘭徹斯特 方程式之解析…等均屬之。近代軍事科技最大的成就不是建造出多麼新穎的武器裝 備,而是藉由軟體與硬體的結合,綿密的管理機制,瞭解戰爭與制止戰爭的發生,此 乃科技管理運用於軍事層面最佳管理意涵寫照。 於是本研究根據以上的需求,透過第二次世界大戰著名的阿登戰役為事例,藉由 -
Nature and Science 2017;15(2)
Nature and Science 2017;15(2) http://www.sciencepub.net/nature Parasitic dependence between different species of ants on other species: phenomenon of social parasitism Irshad A. Wani1, Shabeer A. Wani2, Fayaz A. Shah3, Sajad A. Bhat4, S. Tariq Ahmed5, Mushtaq A. Najar6 1. Govt. Degree College, Anantnag Kashmir 2, 5. Deptt. of Zoology, University of Kashmir, Srinagar 3, 4. Centre of Research for Development (CORD), University of Kashmir, Srinagar 6. Govt. Degree College Boys Anantnag Kashmir [email protected] Abstract: Parasitism is the harmful co-action (disoperation) between two species. Social parasitism describes the exploitation of one species by another, for various advantages. The present paper details the social parasitism in ants. Ants are the marvels of social parasitism. There are three main types of social parasites that form mixed species ant nests: temporary social parasites, permanent inquilines and slave-makers. The paper also throws light on Emery’s rule, which states that social parasites are their host’s closest relatives. [Wani IA, Wani SA, Shah FA, Bhat SA, Ahmad TS. Najar MA. Parasitic dependence between different species of ants on other species: phenomenon of social parasitism. Nat Sci 2017;15(2):22-24]. ISSN 1545-0740 (print); ISSN 2375-7167 (online). http://www.sciencepub.net/nature. 4. doi:10.7537/marsnsj150217.04. Keywords: Ants, Social, Parasitism, Emery’s rule, Host 1. Introduction exceptions, inquilines do not produce worker Social parasitism, the parasitic dependence of a offspring, but instead invest most of their energy into social insect species on one or several free living producing eggs that eventually develop into sexual social species, is an intriguing feature found in groups forms. -
Radiation in Socially Parasitic Formicoxenine Ants
RADIATION IN SOCIALLY PARASITIC FORMICOXENINE ANTS DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER NATURWISSENSCHAFTEN (D R. R ER . N AT .) DER NATURWISSENSCHAFTLICHEN FAKULTÄT III – BIOLOGIE UND VORKLINISCHE MEDIZIN DER UNIVERSITÄT REGENSBURG vorgelegt von Jeanette Beibl aus Landshut 04/2007 General Introduction II Promotionsgesuch eingereicht am: 19.04.2007 Die Arbeit wurde angeleitet von: Prof. Dr. J. Heinze Prüfungsausschuss: Vorsitzender: Prof. Dr. S. Schneuwly 1. Prüfer: Prof. Dr. J. Heinze 2. Prüfer: Prof. Dr. S. Foitzik 3. Prüfer: Prof. Dr. P. Poschlod General Introduction I TABLE OF CONTENTS GENERAL INTRODUCTION 1 CHAPTER 1: Six origins of slavery in formicoxenine ants 13 Introduction 15 Material and Methods 17 Results 20 Discussion 23 CHAPTER 2: Phylogeny and phylogeography of the Mediterranean species of the parasitic ant genus Chalepoxenus and its Temnothorax hosts 27 Introduction 29 Material and Methods 31 Results 36 Discussion 43 CHAPTER 3: Phylogenetic analyses of the parasitic ant genus Myrmoxenus 46 Introduction 48 Material and Methods 50 Results 54 Discussion 59 CHAPTER 4: Cuticular profiles and mating preference in a slave-making ant 61 Introduction 63 Material and Methods 65 Results 69 Discussion 75 CHAPTER 5: Influence of the slaves on the cuticular profile of the slave-making ant Chalepoxenus muellerianus and vice versa 78 Introduction 80 Material and Methods 82 Results 86 Discussion 89 GENERAL DISCUSSION 91 SUMMARY 99 ZUSAMMENFASSUNG 101 REFERENCES 103 APPENDIX 119 DANKSAGUNG 120 General Introduction 1 GENERAL INTRODUCTION Parasitism is an extremely successful mode of life and is considered to be one of the most potent forces in evolution. As many degrees of symbiosis, a phenomenon in which two unrelated organisms coexist over a prolonged period of time while depending on each other, occur, it is not easy to unequivocally define parasitism (Cheng, 1991). -
The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance. -
Complexity and Behaviour in Leptothorax Ants
Complexity and behaviour in Leptothorax ants Octavio Miramontes Universidad Nacional Aut´onomade M´exico ISBN 978-0-9831172-2-3 Mexico City Boston Vi¸cosa Madrid Cuernavaca Beijing CopIt ArXives 2007 Washington, DC CopIt ArXives Mexico City Boston Vi¸cosa Madrid Cuernavaca Beijing Copyright 1993 by Octavio Miramontes Published 2007 by CopIt ArXives Washington, DC All property rights of this publications belong to the author who, however, grants his authorization to the reader to copy, print and distribute his work freely, in part or in full, with the sole conditions that (i) the author name and original title be cited at all times, (ii) the text is not modified or mixed and (iii) the final use of the contents of this publication must be non commercial Failure to meet these conditions will be a violation of the law. Electronically produced using Free Software and in accomplishment with an Open Access spirit for academic publications Social behaviour in ants of the genus Leptothorax is reviewed. Attention is paid to the existence of collective robust periodic oscillations in the activity of ants inside the nest. It is known that those oscillations are the outcome of the process of short-distance interactions among ants and that the activity of individual workers is not periodic. Isolated workers can activate spontaneously in a unpredictable fashion. A model of an artificial society of computer automata endowed with the basic behavioural traits of Leptothorax ants is presented and it is demonstrated that collective periodic oscillations in the activity domain can exist as a consequence of interactions among the automata. -
Hymenoptera: Formicidae)
THE ORIGIN OF WORKERLESS PARASITES IN LEPTOTHORAX (S.STR.) (HYMENOPTERA: FORMICIDAE) BY JORGEN HEINZE Theodor-Boveri-Institut (Biozentrum der Universitit), LS Verhaltensphysiologie und Soziobiologie, Am Hubland, D-97074 Wtirzburg, F.R.G. ABSTRACT The evolutionary origin of workerless parasitic ants parasitizing colonies of Leptothorax (s.str.) is investigated using data on mor- phology, chromosome number, and allozyme phenotype of both social parasites and their hosts. Of the three previously proposed pathways, the evolution of workerless parasites from guest ants or slave-makers is unlikely, at least according to a phenogram obtained by UPGMA clustering of Nei's similarities based on seven enzymes. Intraspecific evolution of the workerless parasites Doronomyrmex goesswaldi, D. kutteri, and D. pacis from their common host, Leptothorax acervorum cannot be excluded with the present data. The workerless parasite L. paraxenus, however, clearly differs from its host, L. cf. canadensis, in morphology and biochemistry, and most probably did not evolve from the latter species. It is proposed to synonymize Doronomyrmex under Lep- tothorax (s.str.). INTRODUCTION Eusocial insects by definition are characterized by a division of labor between non-reproductive workers and reproductive queens. Nevertheless, in a small minority of ant, bee, and wasp species, the worker caste has been secondarily lost. Instead of founding their own colonies solitarily, the queens of these workerless social para- sites invade the nests of other, often closely related host species and exploit the present worker force to rear their own young. In 1present address: Zool. Inst. I, Univ. Erlangen-Ntirnberg, Staudtstrasse 5, D-91058 Erlangen, Germany Manuscript received 19 January 1996. -
Hymenoptera: Formicidae)
THE ORIGIN OF WORKERLESS PARASITES IN LEPTOTHORAX (S.STR.) (HYMENOPTERA: FORMICIDAE) BY JORGEN HEINZE Theodor-Boveri-Institut (Biozentrum der Universitit), LS Verhaltensphysiologie und Soziobiologie, Am Hubland, D-97074 Wtirzburg, F.R.G. ABSTRACT The evolutionary origin of workerless parasitic ants parasitizing colonies of Leptothorax (s.str.) is investigated using data on mor- phology, chromosome number, and allozyme phenotype of both social parasites and their hosts. Of the three previously proposed pathways, the evolution of workerless parasites from guest ants or slave-makers is unlikely, at least according to a phenogram obtained by UPGMA clustering of Nei's similarities based on seven enzymes. Intraspecific evolution of the workerless parasites Doronomyrmex goesswaldi, D. kutteri, and D. pacis from their common host, Leptothorax acervorum cannot be excluded with the present data. The workerless parasite L. paraxenus, however, clearly differs from its host, L. cf. canadensis, in morphology and biochemistry, and most probably did not evolve from the latter species. It is proposed to synonymize Doronomyrmex under Lep- tothorax (s.str.). INTRODUCTION Eusocial insects by definition are characterized by a division of labor between non-reproductive workers and reproductive queens. Nevertheless, in a small minority of ant, bee, and wasp species, the worker caste has been secondarily lost. Instead of founding their own colonies solitarily, the queens of these workerless social para- sites invade the nests of other, often closely related host species and exploit the present worker force to rear their own young. In 1present address: Zool. Inst. I, Univ. Erlangen-Ntirnberg, Staudtstrasse 5, D-91058 Erlangen, Germany Manuscript received 19 January 1996. -
Evolution of Colony Characteristics in the Harvester Ant Genus
Evolution of Colony Characteristics in The Harvester Ant Genus Pogonomyrmex Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Christoph Strehl Nürnberg Würzburg 2005 - 2 - - 3 - Eingereicht am: ......................................................................................................... Mitglieder der Prüfungskommission: Vorsitzender: ............................................................................................................. Gutachter : ................................................................................................................. Gutachter : ................................................................................................................. Tag des Promotionskolloquiums: .............................................................................. Doktorurkunde ausgehändigt am: ............................................................................. - 4 - - 5 - 1. Index 1. Index................................................................................................................. 5 2. General Introduction and Thesis Outline....................................................... 7 1.1 The characteristics of an ant colony...................................................... 8 1.2 Relatedness as a major component driving the evolution of colony characteristics.................................................................................................10 1.3 The evolution -
Hybridization in Ants
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2020 Hybridization in Ants Ian Butler Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons HYBRIDIZATION IN ANTS A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Ian Butler June 2020 © Copyright by Ian Butler 2020 HYBRIDIZATION IN ANTS Ian Butler, Ph.D. The Rockefeller University 2020 Interspecific hybridization is a relatively common occurrence within all animal groups. Two main factors make hybridization act differently in ants than in other species: eusociality and haplodiploidy. These factors serve to reduce the costs of interspecific hybridization in ants while simultaneously allowing them to take advantage of certain benefits. Eusociality may mitigate the effects of hybridization by allowing hybrids to be shunted into the worker caste, potentially reducing the effects of hybrid sterility. In haplodiploid species, males do not have a father. They instead develop from unfertilized eggs as haploid clones of their mother. This means that interspecifically mated queens do not completely sacrifice reproductive potential even if all hybrids are sterile because they can still produce fertile males. These factors in turn suggest that hybridization should be more common among the social Hymenoptera than other animal groups. Nevertheless, current data suggest that ants hybridize at rates similar to other animal groups, although these data are limited. Furthermore, there is a large amount of overlap between cases of interspecific hybridization and cases of genetic caste determination. A majority of the cases in ants where caste is determined primarily by genotype are associated with hybridization. -
Effects of Temperature and Season on Foraging Activity of Red Imported Fire Ants (Hymenoptera: Formicidae) in Oklahoma
PHYSIOLOGICAL ECOLOGY Effects of Temperature and Season on Foraging Activity of Red Imported Fire Ants (Hymenoptera: Formicidae) in Oklahoma 1 2 JAMES T. VOGT, WAYNE A. SMITH, RICHARD A. GRANTHAM, AND RUSSELL E. WRIGHT Department of Entomology and Plant Pathology, 127 Noble Research Center, Oklahoma State University, Stillwater, Oklahoma 74078 Environ. Entomol. 32(3): 447Ð451 (2003) ABSTRACT Temperature and seasonal effects on foraging activity of Solenopsis invicta Buren (red imported Þre ant) in Oklahoma were investigated by periodically quantifying the number of ants captured in baited vials for 2 yr. All temperature parameters (soil surface, 2 cm, 15 cm, mound surface, mound 5 cm deep, and mound 10 cm deep) except ambient at1mabovesoil surface were signiÞcant predictors of foraging activity; soil temperature at 15 cm was the best individual predictor, explaining 34% of variability in foraging activity. A combined quadratic model including mound surface tem- perature and season (weeks) explained 63% of the variability in foraging activity. Comparison with a similar study conducted in Florida revealed differences in the percentage of the year favorable for maximal foraging (Ϸ25% in Oklahoma versus 42Ð59% in Florida). These data suggest that recom- mendations for timing of insecticidal bait applications against S. invicta that are appropriate in more southern portions of the Þre ant range may not be appropriate for Oklahoma. KEY WORDS Solenopsis invicta, temperature, foraging rates, bait TEMPERATURE RELATIONS AND SEASONAL activity patterns detected no difference in temperature thresholds for of Solenopsis invicta Buren, the red imported Þre ant, foraging activity between sites. have been the subject of several studies, ranging from From a management standpoint, temperature and strictly applied experiments (e.g., Lofgren et al. -
Distribution Maps of the Outdoor Myrmicid Ants (Hymenoptera, Formicidae) of Finland, with Notes on Their Taxonomy and Ecology
© Entomol. Fennica. 5 December 1995 Distribution maps of the outdoor myrmicid ants (Hymenoptera, Formicidae) of Finland, with notes on their taxonomy and ecology Michael I. Saaristo Saaristo, M. I. 1995: Distribution maps of the outdoor myrmicid ants (Hy menoptera, Formicidae) of Finland, with notes on their taxonomy and ecol ogy.- Entomol. Fennica 6:153-162. Twentytwo species of myrmicid ants maintaining outdoor populations are listed for Finland. Four of them, Myrmica hellenica Fore!, Myrmica microrubra Seifert, Leptothorax interruptus (Schenck), and Leptothorax kutteri Buschinger are new to Finland. Myrmica Zonae Finzi is considered as a good sister species of Myrmica sabuleti Meinert, under which name the species has earlier been known in Finland. Myrmica specioides Bondroit is deleted from the list as no samples of this species could be located in the collections. The distribution of each species in Finland is presented on 10 X 10 km square grid maps. The ecology of the various species is discussed. Also some taxonomic problems are dealt with. Michael I. Saaristo, Zoological Museum, University of Turku, FIN-20500 Turku, Finland This study was started during the autumn of 1983, Anergates atratulus. One of them, viz. H. sublaevis, by determing the extensive pitfall material of is a dulotic or slave keeping-species with a special ants in the collections of the Zoological Museum ized soldier-like worker caste, while others have no of the University of Turku (MZT). About the workers at all. As usual with workerless social same time the ant collections of the Finnish Mu parasites, there are quite few records of them be seum of Natural History, Helsinki (MZH) and cause they are difficult to collect except during the the Department of Applied Zoology, University relatively short time when they have alates.