Phylum CNIDARIA Anemones, Corals, Jellyfish, Hydroids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zootaxa, a New Genus of Soft Coral (Octocorallia: Alcyonacea: Clavulariidae)
Zootaxa 1219: 47–57 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1219 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) A new genus of soft coral (Octocorallia: Alcyonacea: Clavulariidae) from Chile L.P. VAN OFWEGEN1, V. HÄUSSERMANN2 & G. FÖRSTERRA2 1Nationaal Natuurhistorisch Museum, P.O. Box 9517, 2300 RA Leiden, The Netherlands. E-mail: [email protected] 2Universidad Austral de Chile, Departamento de Biología Marina, Campus Isla Teja, Casilla 567, Valdivia, Chile. E-mail: [email protected], [email protected] Abstract Incrustatus comauensis n. gen. & n. sp. (Octocorallia: Clavulariidae) is described from Chile. It occurs in shallow water from Concepción to the southern fjord region. The genus forms stolons on mytilid shells and rocks, or encrusting sheets on Crepidula shells (Gastropoda), polychaete tubes, gorgonians, and other substrata. The sclerites of the new taxon are 8-radiates and derivatives of these. The polyps are unarmed or posses a few irregularly arranged spindles. The new genus is compared with another taxon that forms encrusting sheets or stolons. Key words: Coelenterata, Cnidaria, Octocorallia, Alcyonacea, Clavulariidae, benthos, Incrustatus, new genus, new species, Chile Introduction The shallow water soft coral fauna of the Chilean coast is still almost completely unknown. To date one stoloniferous species has been described from Chile, Clavularia magelhaenica Studer, 1878, from the Straits of Magellan. From 1997 onwards, Verena Häussermann and Günter Försterra investigated the anthozoan fauna of Chile, with a focus on the South Chilean fjord region, and collected many specimens. This soft coral collection includes several undescribed species of Alcyonium, a species of Renilla, and some possible clavulariids, among which was an as yet undescribed new genus that is the subject of this paper. -
Biological Results of the Chatham Islands 1954 Expedition
ISSN 2538-1016; 29 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH BULLETIN 139 (6) Biological Results of The Chatham Islands 1954 Expedition PART 6 Scleractinia BY DONALD F. SQUIRES New Zealand Oceanographic Institute Memoir No. 29 1964 This publication is the sixth part of the Department of Scientificand Industrial Research Bulletin 139, which records the Biological Results of the Chatham Islands 1954 Expedition. Parts already published are: Part 1. Crustacea, by R. K. Dell, N. S. Jones, and J. C. Yaldwyn. Part 2. Archibenthal and Littoral Echinoderms, by H. Barraclough Fell. Part 3. Polychaeta Errantia, by G. A. Knox. Part 4. Marine Mollusca, by R. K. Dell; Sipunculoidea, by S. J. Edmonds. Part 5. Porifera: Demospongiae, by Patricia R. Bergquist; Porifera: Keratosa, by Patricia R. Bergquist; Crustacea Isopoda: Bopyridae, by R. B. Pike; Crustacea Isopoda: Serolidae, by D. E. Hurley; Hydroida, by Patricia M. Ralph. Additional parts are in preparation. A "General Account" of the Expedition was published as N.Z. Department of Scientific and Industrial Research Bulletin No. 122 (1957). BIOLOGICAL RESULTS OF THE CHATHAM ISLANDS 1954 EXPEDITION PART 6-SCLERACTINIA This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Photograph: G. A. Knox. The Sero/is bromleyana - Spatangus multispinus community on the sorting screen. Aberrant growth form of Flabellum knoxi is in the lower left(see also plate 1, figs. 4-6). The abundant tubes are those of Hya!inoecia tubicola, the large starfish is Zoroaster spinu!osus, the echinoids Parameretia multituberculata. -
Coelenterata: Anthozoa), with Diagnoses of New Taxa
PROC. BIOL. SOC. WASH. 94(3), 1981, pp. 902-947 KEY TO THE GENERA OF OCTOCORALLIA EXCLUSIVE OF PENNATULACEA (COELENTERATA: ANTHOZOA), WITH DIAGNOSES OF NEW TAXA Frederick M. Bayer Abstract.—A serial key to the genera of Octocorallia exclusive of the Pennatulacea is presented. New taxa introduced are Olindagorgia, new genus for Pseudopterogorgia marcgravii Bayer; Nicaule, new genus for N. crucifera, new species; and Lytreia, new genus for Thesea plana Deich- mann. Ideogorgia is proposed as a replacement ñame for Dendrogorgia Simpson, 1910, not Duchassaing, 1870, and Helicogorgia for Hicksonella Simpson, December 1910, not Nutting, May 1910. A revised classification is provided. Introduction The key presented here was an essential outgrowth of work on a general revisión of the octocoral fauna of the western part of the Atlantic Ocean. The far-reaching zoogeographical affinities of this fauna made it impossible in the course of this study to ignore genera from any part of the world, and it soon became clear that many of them require redefinition according to modern taxonomic standards. Therefore, the type-species of as many genera as possible have been examined, often on the basis of original type material, and a fully illustrated generic revisión is in course of preparation as an essential first stage in the redescription of western Atlantic species. The key prepared to accompany this generic review has now reached a stage that would benefit from a broader and more objective testing under practical conditions than is possible in one laboratory. For this reason, and in order to make the results of this long-term study available, even in provisional form, not only to specialists but also to the growing number of ecologists, biochemists, and physiologists interested in octocorals, the key is now pre- sented in condensed form with minimal illustration. -
Information Review for Protected Deep-Sea Coral Species in the New Zealand Region
INFORMATION REVIEW FOR PROTECTED DEEP-SEA CORAL SPECIES IN THE NEW ZEALAND REGION NIWA Client Report: WLG2006-85 November 2006 NIWA Project: DOC06307 INFORMATION REVIEW FOR PROTECTED DEEP-SEA CORAL SPECIES IN THE NEW ZEALAND REGION Authors Mireille Consalvey Kevin MacKay Di Tracey Prepared for Department of Conservation NIWA Client Report: WLG2006-85 November 2006 NIWA Project: DOC06307 National Institute of Water & Atmospheric Research Ltd 301 Evans Bay Parade, Greta Point, Wellington Private Bag 14901, Kilbirnie, Wellington, New Zealand Phone +64-4-386 0300, Fax +64-4-386 0574 www.niwa.co.nz © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the client. Such permission is to be given only in accordance with the terms of the client's contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Contents Executive Summary iv 1. Introduction 1 2. Corals 1 3. Habitat 3 4. Corals as a habitat 3 5. Major taxonomic groups of deep-sea corals in New Zealand 5 6. Distribution of deep-sea corals in the New Zealand region 9 7. Systematics of deep-sea corals in New Zealand 18 8. Reproduction and recruitment of deep-sea corals 20 9. Growth rates and deep-sea coral ageing 22 10. Fishing effects on deep-sea corals 24 11. Other threats to deep-sea corals 29 12. Ongoing research into deep-sea corals in New Zealand 29 13. Future science and challenges to deep-sea coral research in New Zealand 30 14. -
Coastal and Marine Ecological Classification Standard (2012)
FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ...................................................... -
Checklist of Fish and Invertebrates Listed in the CITES Appendices
JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No. -
Biodiversity of the Kermadec Islands and Offshore Waters of the Kermadec Ridge: Report of a Coastal, Marine Mammal and Deep-Sea Survey (TAN1612)
Biodiversity of the Kermadec Islands and offshore waters of the Kermadec Ridge: report of a coastal, marine mammal and deep-sea survey (TAN1612) New Zealand Aquatic Environment and Biodiversity Report No. 179 Clark, M.R.; Trnski, T.; Constantine, R.; Aguirre, J.D.; Barker, J.; Betty, E.; Bowden, D.A.; Connell, A.; Duffy, C.; George, S.; Hannam, S.; Liggins, L..; Middleton, C.; Mills, S.; Pallentin, A.; Riekkola, L.; Sampey, A.; Sewell, M.; Spong, K.; Stewart, A.; Stewart, R.; Struthers, C.; van Oosterom, L. ISSN 1179-6480 (online) ISSN 1176-9440 (print) ISBN 978-1-77665-481-9 (online) ISBN 978-1-77665-482-6 (print) January 2017 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries TABLE OF CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 1.1 Objectives: 3 1.2 Objective 1: Benthic offshore biodiversity 3 1.3 Objective 2: Marine mammal research 4 1.4 Objective 3: Coastal biodiversity and connectivity 5 2. METHODS 5 2.1 Survey area 5 2.2 Survey design 6 Offshore Biodiversity 6 Marine mammal sampling 8 Coastal survey 8 Station recording 8 2.3 Sampling operations 8 Multibeam mapping 8 Photographic transect survey 9 Fish and Invertebrate sampling 9 Plankton sampling 11 Catch processing 11 Environmental sampling 12 Marine mammal sampling 12 Dive sampling operations 12 Outreach 13 3. -
Symbionts and Environmental Factors Related to Deep-Sea Coral Size and Health
Symbionts and environmental factors related to deep-sea coral size and health Erin Malsbury, University of Georgia Mentor: Linda Kuhnz Summer 2018 Keywords: deep-sea coral, epibionts, symbionts, ecology, Sur Ridge, white polyps ABSTRACT We analyzed video footage from a remotely operated vehicle to estimate the size, environmental variation, and epibiont community of three types of deep-sea corals (class Anthozoa) at Sur Ridge off the coast of central California. For all three of the corals, Keratoisis, Isidella tentaculum, and Paragorgia arborea, species type was correlated with the number of epibionts on the coral. Paragorgia arborea had the highest average number of symbionts, followed by Keratoisis. Epibionts were identified to the lowest possible taxonomic level and categorized as predators or commensalists. Around twice as many Keratoisis were found with predators as Isidella tentaculum, while no predators were found on Paragorgia arborea. Corals were also measured from photos and divided into size classes for each type based on natural breaks. The northern sites of the mound supported larger Keratoisis and Isidella tentaculum than the southern portion, but there was no relationship between size and location for Paragorgia arborea. The northern sites of Sur Ridge were also the only place white polyps were found. These polyps were seen mostly on Keratoisis, but were occasionally found on the skeletons of Isidella tentaculum and even Lillipathes, an entirely separate subclass of corals from Keratoisis. Overall, although coral size appears to be impacted by 1 environmental variables and location for Keratoisis and Isidella tentaculum, the presence of symbionts did not appear to correlate with coral size for any of the coral types. -
Deep-Sea Origin and In-Situ Diversification of Chrysogorgiid Octocorals
Deep-Sea Origin and In-Situ Diversification of Chrysogorgiid Octocorals Eric Pante1*¤, Scott C. France1, Arnaud Couloux2, Corinne Cruaud2, Catherine S. McFadden3, Sarah Samadi4, Les Watling5,6 1 Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America, 2 GENOSCOPE, Centre National de Se´quenc¸age, Evry, France, 3 Department of Biology, Harvey Mudd College, Claremont, California, United States of America, 4 De´partement Syste´matique et Evolution, UMR 7138 UPMC-IRD-MNHN- CNRS (UR IRD 148), Muse´um national d’Histoire naturelle, Paris, France, 5 Department of Biology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America, 6 Darling Marine Center, University of Maine, Walpole, Maine, United States of America Abstract The diversity, ubiquity and prevalence in deep waters of the octocoral family Chrysogorgiidae Verrill, 1883 make it noteworthy as a model system to study radiation and diversification in the deep sea. Here we provide the first comprehensive phylogenetic analysis of the Chrysogorgiidae, and compare phylogeny and depth distribution. Phylogenetic relationships among 10 of 14 currently-described Chrysogorgiidae genera were inferred based on mitochondrial (mtMutS, cox1) and nuclear (18S) markers. Bathymetric distribution was estimated from multiple sources, including museum records, a literature review, and our own sampling records (985 stations, 2345 specimens). Genetic analyses suggest that the Chrysogorgiidae as currently described is a polyphyletic family. Shallow-water genera, and two of eight deep-water genera, appear more closely related to other octocoral families than to the remainder of the monophyletic, deep-water chrysogorgiid genera. Monophyletic chrysogorgiids are composed of strictly (Iridogorgia Verrill, 1883, Metallogorgia Versluys, 1902, Radicipes Stearns, 1883, Pseudochrysogorgia Pante & France, 2010) and predominantly (Chrysogorgia Duchassaing & Michelotti, 1864) deep-sea genera that diversified in situ. -
OCS Study BOEM 2017-024
OCS Study BOEM 2017-024 Deepwater Reconnaissance of Potentially Sensitive Biological Features Surrounding Shelf-Edge Topographical Banks in the Northern Gulf of Mexico U.S. Department of the Interior Bureau of Ocean Energy Management Gulf of Mexico OCS Region OCS Study BOEM 2017-024 Deepwater Reconnaissance of Potentially Sensitive Biological Features Surrounding Shelf-Edge Topographical Banks in the Northern Gulf of Mexico Author Paul Sammarco Prepared under BOEM Contract M11AC00005 by Louisiana Universities Marine Consortium 8124 Highway 56 Baton Rouge, LA 70344-2110 Published by U.S. Department of the Interior New Orleans, LA Bureau of Ocean Energy Management February 2017 Gulf of Mexico OCS Region DISCLAIMER This report was prepared under contract between the Bureau of Ocean Energy Management (BOEM) and Louisiana Universities Marine Consortium (LUMCON). This report has been technically reviewed by BOEM, and it has been approved for publication. Approval does not necessarily signify that the contents reflect the views and policies of BOEM, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this Gulf of Mexico OCS Region report, go to the U.S. Department of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program Information System website and search on OCS Study BOEM 2017-024. This report can be viewed at select Federal Depository Libraries. It can also be obtained from the National Technical Information Service; the contact information is below. U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd. Springfield, Virginia 22312 Phone: (703) 605-6000, 1(800)553-6847 Fax: (703) 605-6900 Website: http://www.ntis.gov/ CITATION Sammarco, Paul W. -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
New Species of Leiopathes from Great Meteor Seamount (North Atlantic)
University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Biological and Marine Sciences Trissopathes (Anthozoa: Antipatharia) in the north-east Atlantic, with a description of T. grasshoffi sp. nov. MOLODTSOVA, TN http://hdl.handle.net/10026.1/15458 10.11646/zootaxa.4700.4.2 Zootaxa Magnolia Press All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. This is the author's accepted manuscript. The final published version of this work (the version of record) is published by mapress in Zootaxa. The manuscript was made available online on the 20 December 2019 at: https://www.biotaxa.org/Zootaxa/article/view/zootaxa.4700.4.2 This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher. Trissopathes (Anthozoa: Antipatharia) in the north-east Atlantic, with a description of T. grasshoffi . sp. nov. TINA N. MOLODTSOVA1, ÁLVARO ALTUNA2, JASON M. HALL-SPENCER3, 4 1 P.P. Shirshov Institute of Oceanology RAS, 36 Nakhimovsky prospect, Moscow 117997 Russia ([email protected]) 2 INSUB, Museo de Okendo, Zemoria 12, Apdo. 3223, 20013, Donostia-San Sebastián, Spain ([email protected]) 3 School of Biological and Marine Sciences, University of Plymouth, PL4 8AA, UK (jhall- [email protected]) 4 Shimoda Marine Research Centre, University of Tsukuba, Japan http://www.zoobank.org/ urn:lsid:zoobank.org:pub:C926AD01-9CC9-4A34-B509- E3D704DBCF0E Abstract A new species of antipatharian (black coral) in the genus Trissopathes is described.