Embryonic Development of Concave-Eared Torrent Frog (Amolops Tormotus)

Total Page:16

File Type:pdf, Size:1020Kb

Embryonic Development of Concave-Eared Torrent Frog (Amolops Tormotus) 动 物 学 研 究 2010,Oct. 31(5):490−498 CN 53-1040/Q ISSN 0254-5853 Zoological Research DOI:10.3724/SP.J.1141.2010.05490 Embryonic development of the concave-eared torrent frog with its significance on taxonomy XIONG Rong-Chuan1,2, JIANG Jian-Ping1,* , FEI Liang1, WANG Bin1,2, YE Chang-Yuan1 (1. Chengdu Institute of Biology, the Chinese Academy of Sciences, Chengdu 610041, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China) Abstract: We investigated the early embryonic and larval development of the concave-eared torrent frogs, Odorrana tormota (Amphibia, Anura, Ranidae). Embryos were derived from artificial fertilization of frogs’ eggs, and the staging of development was based on morphological and physiological characteristics. Two major periods of development were designated: i) early embryonic period, from fertilization to operculum completion stage, lasted for 324 h at water temperature (WT) 18 −23℃; ii) larval period, from operculum completion stage to tail absorbed stage, took 1207 h at WT 20 − 24℃. Tadpoles of the concave-eared torrent frogs showed no evidence of abdominal sucker. Absence of this key characteristic supports the view from molecular systematics that concave-eared torrent frog does not belong to the genus Amolops. Two cleavage patterns were observed in embryos at 8-cell and 16-cell stages, with Pattern I - 2 (latitudinal cleavage at the 8-cell stage, and meridional cleavage at the 16-cell stage with two perpendicular meridional furrows) being the predominant pattern and only 1.5% belonging to Pattern II (meridional cleavage at the 8-cell stage and latitudinal cleavage at the 16-cell stage). The factors affecting cleavage and hatching ratios, developmental speed, and ecological adaptation were discussed. Key words: Odorrana tormota; Embryonic development; Artificial fertilization; Abdominal sucker; Embryonic cleavage 凹耳臭蛙胚胎发育及其分类学意义 熊荣川1, 2,江建平1,*,费 梁1,王 斌1, 2,叶昌媛1 (1. 中国科学院成都生物研究所,四川 成都 610041; 2. 中国科学院研究生院,北京 100049) 摘要:通过人工受精的方法获得的凹耳臭蛙(Odorrana tormota)的早期胚胎及胚后幼体的发育过程,根据胚 胎发育过程中的形态及生理特征变化规律进行分期。把凹耳臭蛙的发育过程分成两个阶段:1)早期胚胎发育阶段, 即从蛙卵受精到鳃盖完成期,在18~23℃水温下,凹耳臭蛙早期胚胎发育阶段历时324 h;2)蝌蚪发育阶段,即 从鳃盖完成期结束到尾部被完全吸收,本阶段在20~24℃水温条件下历时1 207 h。凹耳臭蛙蝌蚪未发现腹吸盘特 征,从形态特征上支持了分子系统分类学将之从湍蛙属划出的观点。实验中发现,多数胚胎在8细胞期为纬裂,16 细胞期为经裂,同时有小部分胚胎(1.5%)在8细胞期为经裂,16细胞期为纬裂。该文进一步讨论了影响卵裂率、 孵化率、发育速度,以及生态适应的因素。 关键词:凹耳臭蛙;胚胎发育;人工受精;腹吸盘;卵裂 中图分类号:Q959.53; Q133;Q954.4 文献标志码:A 文章编号:0254-5853-(2010)05-0490-09 The concave-eared torrent frog, found in two characteristics shared by other species in this group. isolated locations in China, was initially known as Rana There was no key identifying data from its tadpoles, i.e., tormotus (Wu , 1977). Fei et al (1990) classified this the presence of abdominal sucker. Li et al (2008) species as a member of genus Amolops and changed its subsequently reported that the tadpoles of R. tormotus do name to Amolops tormotus based on morphological not possess abdominal sucker (a key character for Received date: 2010-03-01; Accepted date: 2010-06-05 Foundation item: This study was supported by the National Natural Science Fundation of China (30730029) 收稿日期:2010-03-01;接受日期:2010-06-05 *通讯作者(Corresponding author),E-mail:[email protected] No. 5 XIONG Rong-Chuan et al: Embryonic development of the concave-eared torrent frog 491 Amolops), and proposed a new genus Wurana, using R. two males), collected in May of 2008, were used in tormotus as its type species. Most recently, results of Experiment-I, and six (two females and four males), molecular systematics (Tang et al, 2007; Cai et al, 2007) collected in April of 2009, were used in Experiment-II showed that this species actually belongs to the genus and -III. Males and females were kept in separate plastic Odorrana, and renamed it as O. tormota — a aquaria in the laboratory. classification that is widely accepted to date (Stuart, 1.2 Artificial fertilization 2007; Frost, 2009; Fei et al, 2009b). Experiment-I: At 2:00 on May 10, 2008, one egg The concave-eared torrent frog is unique because clutch was found in the plastic aquarium housing the the tympanic membranes in adult males are highly female. The egg clutch was extracted and placed inside a unusual — they are recessed from the body surface, and glass Petri dish (12 cm dia); the egg clutch was then located at the far end of external auditory canals (Feng et artificially fertilized using a special testis liquid. The al, 2006). There are only two anuran species with this liquid was prepared fresh by first taking out the testis unique character in the family Ranidae: O. tormota that from two males — these were cut into pieces and mixed is distributed in eastern China, and Huia cavitympanum with 15 mL of de-chlorinated tap water. For fertilization, (Boulenger, 1893) that is distributed in Borneo. Both we poured the liquid onto the egg clutch. After 1 hour of species have been shown to use ultrasound to fertilization, at 8:45, we poured the liquid from the Petri communicate, to avoid being masked by the intense, dish and replaced with 100 mL of fresh water (21˚C) to predominantly low frequency ambient noise from local prevent dehydration. The Petri dish was placed in a streams in their breeding habitats (Feng et al, 2006; Arch constant-temperature room (maintained at −21˚C); the et al, 2009). water was changed daily to maintain adequate supply of Li et al (2006, 2008) were the first to study the oxygen. The development of the egg clutch was observed tadpoles of O. tormota. They collected tadpoles of every four hours. several species from Huangshan Hot Springs (Anhui Experiment-II: At 15:54 on April 21, 2009, we Province; one of the two habitats for O. tormota in China) injected gonadotropin-releasing hormone (GnRH-A6; and reared the tadpoles in the laboratory. Tadpoles of O. usage: 5 µg/kg BW) subcutaneously into the abdomen of tormota were identified retrogradely after they have two males and a female. Afterward, the frogs were metamorphosed into froglets. There is a caveat with the housed together in a plastic aquarium. At 18:50, we retrograde approach for identification of the species of found one egg clutch in the aquarium – this was retrieved tadpoles. Namely, at least four Odorrana species (O. and transferred into a glass Petri dish. The eggs were tormota, O. livida, O. schmackeri, O. exiliversabilis) are artificially fertilized in the same manner as in known to inhabit Huangshan Hot Springs. The Experiment-I. morphological appearances of tadpoles and froglets of Experiment-III: At 10:15 on April 24, 2009, one two of these species (O. tormota and O. exiliversabilis) female and two males received the same GnRH-A6 are so alike that they are essentially indistinguishable treatment as described for Experiment-II, and were (personal observation which will be reported in detail in housed in a plastic aquarium afterward. At 6:40 on April another paper). As such, the tenet that tadpoles of O. 25, 2009, we found one egg clutch in the aquarium — it tormota do not possess abdominal suckers is tenuous. So was retrieved and transferred into a Petri dish. The eggs it is critical to understand the tadpole of O. tormota from were artificially fertilized as described above for its embryonic development. Because obtaining fertilized Experiment-I. eggs of O. tormota in the frog’s natural habitat has All tadpoles developed from a single egg clutch proven to be very difficult (zero yield over the last were transferred into a plastic aquarium. Tadpoles were several years), we artificially fertilized frogs’ eggs in fed on chicken yolk. order to investigate the development of O. tormota 1.3 Observation of development embryos and tadpoles. The number of eggs in each egg clutch was counted. We used a vernier caliper to measure the diameter of 1 Materials and Methods individual eggs, and an optical microscope (Zeiss stemi 1.1 Specimens 2000-C) to observe the course of development. We collected a total of nine adult O. tormota from Developmental stages were determined using the staging Huangshan Hot Springs. Three of them (one female and criteria of Gosner (1960). The embryos were 492 Zoological Research Vol. 31 photographed using a camera (Canon PowerShot SD950 hatching, 91 hatchlings died, and 88 hatchlings stayed IS) attached to the microscope. From each stage, one to alive. The hatching rate was 24.87% (excluded the dead four specimens were taken out and fixed in glutaral- hatchlings). In Experiment-III, 18 embryos were fixed dehyde for further analysis. before hatching, 86 hatchlings died, and 43 hatchlings 1.4 Data analysis stayed alive. The hatching rate was 24.60% (excluded the We carried out the following analysis to depict the dead hatchlings). developmental pattern of O. tormota tadpoles: 1) 2.4 Metamorphosis ratio “Cleavage ratio” (defined as the ratio of the number of In Experiment-II, 16 tadpoles died before the eggs exhibiting the first cleavage to the total number metamorphosis. Thus, the metamorphism ratio was of eggs laid in one clutch); 2) “Hatching ratio” (defined 81.82%. In Experiment-III, 6 tadpoles died before as the ratio of the number of hatchlings to the number of metamorphosis. Thus, the metamorphism rate was eggs successfully fertilized). The eggs going through the 86.05%. first cleavage were treated as successfully fertilized; 3) 2.5 Developmental stages and their characteristics “Metamorphism ratio” (defined as the ratio of the For describing the developmental stages, we used number of froglets to the number of hatched tadpoles). data on development observations in Experiment-II (Tab. For Experiment-I, the fertilized eggs were divided 1). Stages in Experiment-I and III are similar to that in into two batches in the laboratory in Chengdu: i) A small Experiment-II except for a slight difference in the batch (~20 fertilized eggs) that was observed development time course.
Recommended publications
  • A New Species of Amolops from Thailand (Amphibia, Anura, Ranidae)
    ZOOLOGICAL SCIENCE 23: 727–732 (2006) 2006 Zoological Society of Japan A New Species of Amolops from Thailand (Amphibia, Anura, Ranidae) Masafumi Matsui1* and Jarujin Nabhitabhata2 1Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan 2National Science Museum, Technopolis, Klong 5, Klongluang District, Pathun thani 12120, Thailand We describe a new species of torrent-dwelling ranid frog of the genus Amolops from western to peninsular Thailand. Amolops panhai, new species, differs from its congeners by the combination of: small body, males 31–34 mm, females 48–58 mm in snout-vent length; head narrower than long; tympanum distinct; vomerine teeth in short, oblique patches; first finger subequal to second; disc of first finger smaller than that of second, with circummarginal groove; no wide fringe of skin on third finger; toes fully webbed; outer metatarsal tubercle present; supratympanic fold present; dor- solateral fold indistinct; axillary gland present; horny spines on back, side of head and body, and chest absent; large tubercles on side of anus absent; glandular fold on ventral surface of tarsus absent; nuptial pad and paired gular pouches present in male; white band along the upper jaw extending to shoulder absent; larval dental formula 7(4-7)/3(1). This new species is the second anu- ran discovered which has a disjunct distribution around the Isthmus of Kra. Key words: Amolops, new species, Southeast Asia, tadpole, taxonomy, zoogeography Ranong), which we describe below as a new species. INTRODUCTION Oriental ranid frogs related to Amolops Cope, 1865 MATERIALS AND METHODS (sensu lato) are characterized by their peculiar larvae, which A field survey was conducted in western and peninsular Thai- inhabit mountain torrents using an abdominal, suctorial disk land between December 1995 and January 1997.
    [Show full text]
  • A New Cascade Frog of the Subgenus Odorrana from Peninsular Malaysia
    ZOOLOGICAL SCIENCE 23: 647–651 (2006) 2006 Zoological Society of Japan A New Cascade Frog of the Subgenus Odorrana from Peninsular Malaysia Masafumi Matsui1* and Ibrahim Jaafar 2 1Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan 2Biological Sciences Program, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia We describe a new species of cascade frog of the genus Rana, from west Malaysia. Rana monjerai, new species is a medium-sized frog of the subgenus Odorrana (SVL of males, 38–43 mm; of one female, 75 mm), and is distinguished from all other members of this subgenus by the combination of: white lip stripe, dorsolateral fold, full web on the fourth toe, vomerine teeth, gular vocal pouch and relatively large tympanum in males, no dorsal marking, no clear light spots on rear of thigh, first finger subequal to second, finely tuberculated dorsum, and unpigmented ova. The significance of finding this species from peninsular Malaysia is discussed. Key words: cryptic species, Rana, new species, Southeast Asia, taxonomy, zoogeography ficially resembling R. hosii, which the senior author (Matsui, INTRODUCTION unpublished data) had obtained at higher elevations on the Along mountain streams in subtropical and tropical same mountain. Later examination of these specimens, regions of East to Southeast Asia, there are small to however, revealed that they are clearly different from R. medium-sized, long-legged ranid frogs represented by spe- hosii in the presence of gular pouches in males. Further cies like R. narina Stejneger, 1901 from the Ryukyu Archi- study of the specimens by consulting with a recent review of pelago of Japan; R.
    [Show full text]
  • Nansei Islands Biological Diversity Evaluation Project Report 1 Chapter 1
    Introduction WWF Japan’s involvement with the Nansei Islands can be traced back to a request in 1982 by Prince Phillip, Duke of Edinburgh. The “World Conservation Strategy”, which was drafted at the time through a collaborative effort by the WWF’s network, the International Union for Conservation of Nature (IUCN), and the United Nations Environment Programme (UNEP), posed the notion that the problems affecting environments were problems that had global implications. Furthermore, the findings presented offered information on precious environments extant throughout the globe and where they were distributed, thereby providing an impetus for people to think about issues relevant to humankind’s harmonious existence with the rest of nature. One of the precious natural environments for Japan given in the “World Conservation Strategy” was the Nansei Islands. The Duke of Edinburgh, who was the President of the WWF at the time (now President Emeritus), naturally sought to promote acts of conservation by those who could see them through most effectively, i.e. pertinent conservation parties in the area, a mandate which naturally fell on the shoulders of WWF Japan with regard to nature conservation activities concerning the Nansei Islands. This marked the beginning of the Nansei Islands initiative of WWF Japan, and ever since, WWF Japan has not only consistently performed globally-relevant environmental studies of particular areas within the Nansei Islands during the 1980’s and 1990’s, but has put pressure on the national and local governments to use the findings of those studies in public policy. Unfortunately, like many other places throughout the world, the deterioration of the natural environments in the Nansei Islands has yet to stop.
    [Show full text]
  • Zootaxa,Paraphyly of Chinese Amolops (Anura, Ranidae) and Phylogenetic Position of The
    Zootaxa 1531: 49–55 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Paraphyly of Chinese Amolops (Anura, Ranidae) and phylogenetic position of the rare Chinese frog, Amolops tormotus HONG-XIA CAI1, 2, JING CHE2, JUN-FENG PANG2, ER-MI ZHAO1,4& YA-PING ZHANG2, 3,4 1Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China, 610064 2Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China, 650223 3Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China, 650091 4Corresponding authors. E-mail: [email protected]; [email protected] Abstract In order to evaluate the five species groups of Chinese Amolops based on morphological characteristics, and to clarify the phylogenetic position of the concave-eared torrent frog Amolops tormotus, we investigated the phylogeny of Amolops by maximum parsimony, Bayesian Inference, and maximum likelihood methods using two mitochondrial DNA fragments (12S rRNA, 16S rRNA). Our results supported a sister group relationship of Amolops ricketti and Amolops hainanensis. However, the grouping of Amolops mantzorum and Amolops monticola needs to be resolved with more data. Amolops tormotus was nested in genus Odorrana. Thus, recognition of the A. tormotus group is unwarranted and A. tormotus should be referred to genus Odorrana as O. tormota. This species is the sister group of O. nasica plus O. versabilis. The new classification implies that the genus Wurana is to be considered as junior subjective synonym of Odorrana.
    [Show full text]
  • Identification and Functional Analyses of Novel Antioxidant Peptides and Antimicrobial Peptides from Skin Secretions of Four East Asian Frog Species
    Acta Biochim Biophys Sin, 2017, 49(6), 550–559 doi: 10.1093/abbs/gmx032 Advance Access Publication Date: 10 April 2017 Short Communication Short Communication Identification and functional analyses of novel antioxidant peptides and antimicrobial peptides from skin secretions of four East Asian frog Downloaded from https://academic.oup.com/abbs/article/49/6/550/3573451 by guest on 23 September 2021 species Xiao Wang1,†, Shuguang Ren1,2,†, Chao Guo1, Weiqi Zhang1, Xiaoli Zhang1, Baowen Zhang1, Sihan Li1, Jian Ren3, Yuhong Hu4,*, and Hui Wang1,* 1Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China, 2The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China, 3College of Basic, Tianjin Agricultural University, Tianjin 300384, China, and 4Instrumental Analysis Center, Hebei Normal University, Shijiazhuang 050024, China †These authors contributed equally to this work. *Correspondence address. Tel/Fax: +86-311-8078-7551; E-mail: [email protected] (H.W.) / Tel/Fax: +86-311-8078-6450; E-mail: [email protected] (Y.H.) Received 24 January 2017; Editorial Decision 21 February 2017 Abstract In the present study, we identified 50 peptides that are classified into 21 peptide families with anti- oxidant and/or antimicrobial activity from Amolops daiyunensis, Pelophylax hubeiensis, Hylarana maosuoensis and Nanorana pleskei, which belong to four different genera in the Ranidae and Dicroglossidae families. These four frog species were found for the first time to express antioxidant peptides (AOPs) and antimicrobial peptides (AMPs). These peptides include seven newly discovered families daiyunin-1, daiyunin-2, daiyunin-3, maosonensis-1MS1, pleskein-1, pleskein-2, and pleskein- 3.
    [Show full text]
  • Auditory Sexual Difference in the Large Odorous Frog Odorrana Graminea
    J Comp Physiol A (2014) 200:311–316 DOI 10.1007/s00359-014-0885-3 ORIGINAL PAPER Auditory sexual difference in the large odorous frog Odorrana graminea Wei-Rong Liu · Jun-Xian Shen · Yu-Jiao Zhang · Zhi-Min Xu · Zhi Qi · Mao-Qiang Xue Received: 8 August 2013 / Revised: 15 January 2014 / Accepted: 22 January 2014 / Published online: 9 February 2014 © Springer-Verlag Berlin Heidelberg 2014 Abstract Acoustic communication is an important Abbreviations behavior in frog courtship. Male and female frogs of most AENFP Auditory evoked near-field potential species, except the concave-eared torrent frog Odorrana BEF Best excitatory frequency tormota, have largely similar audiograms. The large odorous CF Characteristic frequency frogs (Odorrana graminea) are sympatric with O. tormota, RMS Root mean square but have no ear canals. The difference in hearing between SPL Sound pressure level two sexes of the frog is unknown. We recorded auditory TS Torus semicircularis evoked near-field potentials and single-unit responses from the auditory midbrain (the torus semicircularis) to deter- mine auditory frequency sensitivity and threshold. The Introduction results show that males have the upper frequency limit at 24 kHz and females have the upper limit at 16 kHz. The Acoustic communication is often associated with the more sensitive frequency range is 3–15 kHz for males and behaviors of frogs, including territorial behavior, mate 1–8 kHz for females. Males have the minimum threshold at finding, courtship and aggression (Zelick et al. 1999). Dur- 11 kHz (58 dB SPL), higher about 5 dB than that at 3 kHz ing the breeding season, an adult male usually produces for females.
    [Show full text]
  • The First Record of Amolops Himalayanus (Anura: Ranidae) from Bhutan
    RESEARCH ARTICLE The Herpetological Bulletin 136, 2016: 13-18 The first record ofAmolops himalayanus (Anura: Ranidae) from Bhutan. TSHERING NIDUP1, DAWA GYELTSHEN1, PENJOR1, SONAM DORJI1 & MALCOLM J. PEARCH2* 1School of Life Sciences, Sherubtse College, Royal University of Bhutan, Kanglung, Trashigang District, Bhutan. 2Harrison Institute, Centre for Systematics and Biodiversity Research, Bowerwood House, 15 St. Botolph’s Road, Sevenoaks, Kent, TN13 3AQ, U.K. *Corresponding author Email: [email protected] ABSTRACT - During a series of surveys carried out in areas of broadleaf forest in the eastern Himalayas in early spring, Amolops himalayanus was identified for the first time in Bhutan. Information is provided on the ecology, habitat, reproduction, and geographical distribution of the species together with notes on the water chemistry of the collection site. A brief synopsis is given of the morphological differences between A. himalayanus and A. formosus, with which latter species A. himalayanus is often confused. A. himalayanus has been reported from seven localities in northern India and Nepal but, of these, only the original description of the taxon from Darjeeling was based on incontrovertible data. INTRODUCTION The 49 species of Cascade frogs belonging to the genus Amolops occur from Nepal and northern India to western and southern China and south to Malaysia (Frost, 2015). In Bhutan, A. mantzorum has been recorded at Choetenkora in Trashiyangtse District (Wangyal, 2013), A. marmoratus at Sershong in Sarpang District (Das & Palden, 2000), and A. cf. monticola at Ririchu in Wangdue Phodrang District (Wangyal & Gurung, 2012). Wangyal (2014) predicted the occurrence of A. himalayanus (and A. formosus) in Bhutan on the basis that the country was suitable for these two species both geographically and climatically.
    [Show full text]
  • Larval Description and Developmental Staging of Amolops Tadpoles from Nepal, Including Ultrastructure of the Oral Disc and Sucker
    SALAMANDRA 56(4): 317–328 Larval description and developmental staging of Amolops tadpoles from NepalSALAMANDRA 30 October 2020 ISSN 0036–3375 German Journal of Herpetology Larval description and developmental staging of Amolops tadpoles from Nepal, including ultrastructure of the oral disc and sucker Mohsen Nokhbatolfoghahai1, Kevin W. Conway2, Liam Atherton1, Prem B. Budha3, Michael J. Jowers4 & J. Roger Downie1 1) School of Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow, UK 2) Department of Ecology and Conservation Biology, Biodiversity Research and Teaching Collections, Texas A & M University, College Station, Texas 77843, USA 3) Central Department of Zoology, Tribhuvan University, Kirtipur, Kathmandu, Nepal 4) CIBIO/InBIO, Research Centre in Biodiversity and Genetic Resources, Porto University, Campo de Vairão, Vairão, Portugal Corresponding author: Michael J. Jowers, e-mail: [email protected] Manuscript received: 23 December 2019 Accepted: 21 July 2020 by Jörn Köhler Abstract. Tadpoles of the Asiatic torrent frog genus Amolops possess large abdominal suckers and a complex oral appa- ratus which allow them to adhere tightly to and also to move over wet rock surfaces, a morphology termed gastromyzo- phorous. Accounts of larval development, and overall sucker morphology and microstructure are patchy in this genus. Here, from a large sample (n = 90) of Amolops tadpoles collected from two sites in Nepal, we give a detailed description of the tadpoles’ external morphology, including pigment pattern variation, and their development from soon after hatch- ing to the approach of metamorphosis, including new features of their oral apparatus (tooth rows and labia). Using SEM, we describe ultrastructural details of the sucker’s surface, especially microvillated cells of the friction areas.
    [Show full text]
  • 01 Hadijah Norhaslind.Pmd
    Malays. Appl.AMPHIBIAN Biol. (2011) ASEMBLAGE 40(1): 1-6 OF BUBU PERMANENT FOREST RESERVE, PERAK, PENINSULAR MALAYSIA 1 AMPHIBIAN ASEMBLAGE OF BUBU PERMANENT FOREST RESERVE, PERAK, PENINSULAR MALAYSIA IBRAHIM, J.*, WONG, J., MOHD FAZLIN, M.S., FATAN, H.Y., SITI HADIJAH, Y. and NORHASLINDA, S. Biological Sciences Program, School of Distance Education, Universiti Sains Malaysia, 11800, Penang, Malaysia *E-mail: [email protected] ABSTRACT A brief study of the amphibian fauna of Bubu Permanent Forest Reserve, Perak, which constitutes the southernmost part of the Bintang Hijau Forest Reserve, was carried out from 18 to 21 December 2006 to determine the diversity and density estimate of amphibian species in the area. Field parties comprising seven persons searched and collected amphibians from a small stream, the Dal River, in Compartments 6 and 7 of the Bubu Permanent Forest Reserve, from 2000 hrs to 2300 hrs for three consecutive nights. A total of 79 individual frogs from 13 species in five families were recorded. The five most abundant species were Hyalarana nicobariensis, H. labialis, Pedostibes hosii, Phrynoides aspera and Amolops larutensis. Six other species were considered rare, namely, Limnonectes doriae, H. picturata, Odorrana hosii, Polypedates leucomystax and Rhacophorus bimaculatus. Preliminary analysis of the data showed that the estimated populations of H. nicobariensis, H. labialis and P. hosii are 23, 13 and 10 individuals per 100 meters of river length, respectively. Due to the brief nature of the study, and the small area covered, the number of species is considered relatively moderate. More than 95% of frogs collected are forest species that require clean and pollution-free habitats to survive.
    [Show full text]
  • A New Species of Odorrana Inhabiting Complete Darkness in a Karst Cave in Guangxi, China
    Asian Herpetological Research 2015, 6(1): 11–17 ORIGINAL ARTICLE DOI: 10.16373/j.cnki.ahr.140054 A New Species of Odorrana Inhabiting Complete Darkness in a Karst Cave in Guangxi, China Yunming MO1, Weicai CHEN1*, Huaying WU1, Wei ZHANG2 and Shichu ZHOU1 1 Natural History Museum of Guangxi, Nanning 530012, Guangxi, China 2 School of Life Sciences, East China Normal University, Shanghai 200062, China Abstract A new species of the genus Odorrana is described from a completely dark karst cave of northeastern Guangxi, southern China. The new species, Odorrana lipuensis sp. nov., can be distinguished from its congeners by a combination of the following characters: medium size (SVL: 40.7–47.7 mm in males, 51.1–55.4 mm in females); tips of all but first finger expanded with circummarginal grooves; smooth, grass-green dorsum with irregular brown mottling; pineal body invisible; throat to upper abdomen with gray mottling; dorsal surfaces of limbs with brown bands; dorsolateral fold absent; tiny spinules on lateral body, temporal region, and anterior and posterior edge of tympanum; white nuptial pad present on finger I; males lacking vocal sacs; females having creamy yellow eggs, without black poles. Uncorrected sequence divergences between O. lipuensis sp. nov. and all homologous 16S rRNA sequences of Odorrana available on GenBank is equal to or greater than 4.9%. Currently, the new species is only known from the type locality. Keywords Odorrana lipuensis sp. nov., karst cave, Guangxi, southern China 1. Introduction monophyletic group (Chen et al., 2013). All are known to be associated with mountain streams except O.
    [Show full text]
  • Hand and Foot Musculature of Anura: Structure, Homology, Terminology, and Synapomorphies for Major Clades
    HAND AND FOOT MUSCULATURE OF ANURA: STRUCTURE, HOMOLOGY, TERMINOLOGY, AND SYNAPOMORPHIES FOR MAJOR CLADES BORIS L. BLOTTO, MARTÍN O. PEREYRA, TARAN GRANT, AND JULIÁN FAIVOVICH BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY HAND AND FOOT MUSCULATURE OF ANURA: STRUCTURE, HOMOLOGY, TERMINOLOGY, AND SYNAPOMORPHIES FOR MAJOR CLADES BORIS L. BLOTTO Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina MARTÍN O. PEREYRA División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Laboratorio de Genética Evolutiva “Claudio J. Bidau,” Instituto de Biología Subtropical–CONICET, Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina TARAN GRANT Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; Coleção de Anfíbios, Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil; Research Associate, Herpetology, Division of Vertebrate Zoology, American Museum of Natural History JULIÁN FAIVOVICH División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Research Associate, Herpetology, Division of Vertebrate Zoology, American
    [Show full text]
  • Host Defense Peptides from Asian Frogs As Potential Clinical Therapies
    Host Defense Peptides from Asian Frogs as Potential Clinical Therapies. Vineeth T.V. Kumar, Rajiv Gandhi Centre for Biotechnology (RGCB) David Holthausen, Emory University Joshy Jacob, Emory University Sanil George, Rajiv Gandhi Centre for Biotechnology (RGCB) Journal Title: Antibiotics Volume: Volume 4, Number 2 Publisher: MDPI | 2015, Pages 136-159 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.3390/antibiotics4020136 Permanent URL: https://pid.emory.edu/ark:/25593/rmwpf Final published version: http://dx.doi.org/10.3390/antibiotics4020136 Copyright information: © 2015 by the authors; licensee MDPI, Basel, Switzerland. This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). Accessed September 24, 2021 11:23 PM EDT Antibiotics 2015, 4, 136-159; doi:10.3390/antibiotics4020136 OPEN ACCESS antibiotics ISSN 2079-6382 www.mdpi.com/journal/antibiotics Review Host Defense Peptides from Asian Frogs as Potential Clinical Therapies Vineeth T.V. Kumar 1, David Holthausen 2, Joshy Jacob 2,* and Sanil George 1,* 1 Molecular Ecology Lab, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India; E-Mail: [email protected] 2 Emory Vaccine Center, Department of Microbiology and Immunology, Emory University, Yerkes National Primate Research Center, 954 Gatewood Rd, Atlanta, GA 30329, USA; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (J.J.); [email protected] (S.G.); Tel.: +1-404-727-7919 (J.J.); +91-471-252-9520 (S.G.). Academic Editor: William M. Shafer Received: 10 November 2014 / Accepted: 4 March 2015 / Published: 30 March 2015 Abstract: Host defense peptides (HDPs) are currently major focal points of medical research as infectious microbes are gaining resistance to existing drugs.
    [Show full text]