Puf3 Participates in Ribosomal Biogenesis in Malaria Parasites Xiaoying Liang1, Kevin J

Total Page:16

File Type:pdf, Size:1020Kb

Puf3 Participates in Ribosomal Biogenesis in Malaria Parasites Xiaoying Liang1, Kevin J © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs212597. doi:10.1242/jcs.212597 RESEARCH ARTICLE Puf3 participates in ribosomal biogenesis in malaria parasites Xiaoying Liang1, Kevin J. Hart2, Gang Dong3, Faiza A. Siddiqui1, Aswathy Sebastian4, Xiaolian Li1, Istvan Albert4, Jun Miao1, Scott E. Lindner2 and Liwang Cui1,* ABSTRACT of Puf-encoding genes varies. Drosophila has only one Puf gene, In this study, we characterized the Puf family gene member Puf3 in the whereas 26 and 19 Puf-like genes have been found in the malaria parasites Plasmodium falciparum and Plasmodium yoelii. Arabidopsis and rice genomes, respectively (Tam et al., 2010). Secondary structure prediction suggested that the RNA-binding Puf members have diverse functions during development of domains of the Puf3 proteins consisted of 11 pumilio repeats that eukaryotic organisms. Puf members share a highly conserved were similar to those in the human Puf-A (also known as PUM3) and RNA-binding domain (RBD), which mostly consists of eight ∼ Saccharomyces cerevisiae Puf6 proteins, which are involved in imperfect tandem repeats of 36 amino acids, termed the Pum ribosome biogenesis. Neither P. falciparum (Pf)Puf3 nor P. yoelii repeats (Zamore et al., 1997; Zhang et al., 1997). (Py)Puf3 could be genetically disrupted, suggesting they may be Recent structural and functional studies have revealed three essential for the intraerythrocytic developmental cycle. Cellular distinct subfamilies within the Puf family proteins. Classical Puf fractionation of PfPuf3 in the asexual stages revealed preferential members contain eight Pum repeats organized in a crescent shape, partitioning to the nuclear fraction, consistent with nuclear localization of with the concave surface recognizing specific single-stranded RNA PfPuf3::GFP and PyPuf3::GFP as detected by immunofluorescence. sequences. These classical Puf proteins are predominantly localized Furthermore, PfPuf3 colocalized with the nucleolar marker PfNop1, within the cytoplasm of the cell, which is consistent with their roles demonstrating that PfPuf3 is a nucleolar protein in the asexual stages. in translational repression or activation of mRNAs (Archer et al., We found, however, that PyPuf3 changed its localization from being 2009; Gu et al., 2004; Lublin and Evans, 2007; Macdonald, 1992; nucleolar to being present in cytosolic puncta in the mosquito and liver Moore et al., 2003; Zhang et al., 1997). Classical Puf members stages, which may reflect alternative functions in these stages. Affinity perform a wide range of functions. In D. melanogaster, binding of purification of molecules that associated with a PTP-tagged variant of Pum to the Nanos response element (NRE) in the maternal PfPuf3 revealed 31 proteins associated with the 60S ribosome, and an hunchback mRNA determines abdominal formation by repressing enrichment of 28S rRNA and internal transcribed spacer 2 sequences. its translation (Murata and Wharton, 1995; Wharton et al., 1998; Taken together, these results suggest an essential function for PfPuf3 in Wharton and Struhl, 1991). In C. elegans, the Puf proteins FBF-1 ribosomal biogenesis. and FBF-2 were originally identified by their ability to bind regulatory elements in the 3′ UTR of fem-3 mRNA and repress its KEY WORDS: Plasmodium, Translational regulation, Puf protein, translation (Zhang et al., 1997), which is required for the switch RNA-binding protein, Ribosomal biogenesis from spermatogenesis to oogenesis in hermaphrodites (Ahringer and Kimble, 1991; Hodgkin, 1986). In addition, the FBF proteins INTRODUCTION were also reported to bind to and activate the translation of the target Translational control of gene expression plays an important role mRNA egl-4, which is important for adaptation to odors (Kaye during the development of eukaryotes. This regulation is often et al., 2009). In the budding yeast Saccharomyces cerevisiae, the mediated by cis-acting elements in the 3′ untranslated region (UTR) Puf protein Puf3p represses expression of the cox17 mRNA, of the mRNA. Binding of specific regulators to these cis elements promoting its deadenylation and subsequent decay (García- activates or represses translation of the mRNAs (Gray and Wickens, Rodríguez et al., 2007; Jackson et al., 2004; Olivas and Parker, 1998; Waters et al., 1989). One of these well-characterized 2000), while Puf5p and Puf6p have been shown to control mating regulators is the Puf family of RNA-binding proteins (RBPs), type switching by regulating the expression of the ho gene which were named after the two founding members, Pumilio (Pum) (Goldstrohm et al., 2006; Gu et al., 2004; Tadauchi et al., 2001). in Drosophila melanogaster and fem-3 binding factor (FBF) in Another subfamily of Puf proteins is represented by the human Caenorhabditis elegans (Zamore et al., 1997; Zhang et al., 1997). Puf-A (also known as PUM3) and S. cerevisiae Puf6 proteins (Li Members from this family represent a highly conserved group of et al., 2009; Qiu et al., 2014). Crystal structures of Puf-A and Puf6 RBPs present in many eukaryotic organisms including animals, revealed 11 Pum repeats that are arranged in an ‘L-like’ shape, with plants, fungi and protists. In different model organisms, the number the concave surfaces of the N- and C-terminal subdomains binding single- or double-stranded nucleic acids without apparent sequence specificity (Qiu et al., 2014). Both proteins primarily adopt a 1Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA. 2Department of Biochemistry and Molecular Biology, Center for nucleolar localization, and are involved in biogenesis of the 60S Malaria Research, Pennsylvania State University, University Park, PA 16802, USA. ribosome (Chang et al., 2011; Li et al., 2009; Qiu et al., 2014). A 3Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical closer look at Puf6 revealed that this protein is required for pre- University of Vienna, 1030 Vienna, Austria. 4Bioinformatics Consulting Center, Pennsylvania State University, University Park, Pennsylvania 16802, USA. rRNA processing and 60S ribosome export, and it also facilitates loading of the ribosome protein Rpl43 (Yang et al., 2016). *Author for correspondence ([email protected]) Moreover, S. cerevisiae Puf6 is also found in the cytoplasm, L.C., 0000-0002-8338-1974 where it acts as a translational repressor of the ash1 mRNA and is required for the asymmetric localization of ash1 to the bud tip of the Received 26 October 2017; Accepted 16 February 2018 daughter cell (Gu et al., 2004). Whereas human Puf-A appears to be Journal of Cell Science 1 RESEARCH ARTICLE Journal of Cell Science (2018) 131, jcs212597. doi:10.1242/jcs.212597 important for tumorigenesis (Fan et al., 2013), knockdown of Puf-A is a member of the Puf-A/Puf6 subfamily and may participate in in zebrafish results in abnormal eye development and primordial ribosomal biogenesis in Plasmodium parasites. germ cell migration (Kuo et al., 2009). The third Puf subfamily is represented by S. cerevisiae Nop9, a RESULTS nucleolar protein that is essential for 40S ribosome biogenesis PfPuf3 shows higher similarity to the Puf-A subfamily than (Thomson et al., 2007). Recently, structural and functional analyses the classical Puf subfamily showed that Nop9 contains 11 Pum repeats and forms a ‘C-shaped’ A search of the PlasmoDB database using the Pumilio Puf domain structure (Zhang et al., 2016). Consistent with its role in processing identified another putative Puf gene (PF3D7_0621300) in the the 20S pre-rRNA to produce mature 18S rRNA, Nop9 recognizes P. falciparum genome, which we here call PfPuf3.ThePfPuf3 the base of the internal transcribed spacer (ITS) 1 RNA stem loop, open reading frame is 2382 bp, located on chromosome 6 and which prevents premature cleavage of the 20S pre-rRNA by Nob1 in contains no introns. PfPuf3 encodes a protein of 793 amino acids (aa) the nucleolus (Zhang et al., 2016). In Arabidopsis, APUM23, a with a predicted molecular mass of ∼94.3 kDa. The predicted Puf Nop9 subfamily member, is involved in pre-rRNA processing, and RBD of PfPuf3 is located from aa 166 to 526. Whereas the amino acid disruption of apum23 leads to the accumulation of 35S pre-rRNA sequences of the Puf RBD of PfPuf1 and PfPuf2 are 41 and 58% and unprocessed 18S and 5.8S rRNA precursors without affecting identical to the respective sequences of the Pum RBDs from the steady-state levels of the mature rRNAs (Abbasi et al., 2010, Drosophila melanogaster (Cui et al., 2002), PfPuf3 and Pum RBD 2011). Consistent with its role in ribosomal biogenesis, apum23 only have 15% amino acid identity overall. Like the Puf1 and Puf2 disruption results in an abnormal growth phenotype reminiscent of genes, Puf3 is highly conserved in Plasmodium spp. and a Puf3 that in ribosomal protein gene mutants. In the protozoan parasite ortholog is present in the genome of each sequenced Plasmodium Trypanosoma brucei, two nucleolar Puf proteins, T. brucei species (Fig. 1A). The full-length PfPuf3 sequence shares 45% amino (Tb)PUF7 and TbPUF10, may also be Nop9 subfamily members, acid identity with the orthologous PyPuf3 (PY17X_1121600) and their knockdown (through RNAi) affects rRNA processing, (Fig. S1A). A search for homologous structures based on the leading to slow-growth phenotypes (Droll et al., 2010; Schumann PfPuf3 primary sequence by using NCBI Blastp identified Homo Burkard et al., 2013). These examples have illustrated somewhat sapiens (Hs)Puf-A as the most similar structure in the Protein Data convergent functions for the Puf-A/Puf6 and Nop9 subfamilies of Bank (Qiu et al., 2014). However, sequence alignment showed that the Puf proteins in pre-rRNA processing and ribosomal biogenesis. PfPuf3 shares only 15.1% amino acid identity in the 511-residue (aa It has been increasingly recognized that translational regulation 156–774) fragment that aligned with HsPuf-A (Fig. S1B). Within the plays essential roles in the development of malaria parasites, aligned region, PfPuf3 has a long insertion spanning aa 573–687 especially during developmental stage transitions (Cui et al., 2015).
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Exploring the Relationship Between Gut Microbiota and Major Depressive Disorders
    E3S Web of Conferences 271, 03055 (2021) https://doi.org/10.1051/e3sconf/202127103055 ICEPE 2021 Exploring the Relationship between Gut Microbiota and Major Depressive Disorders Catherine Tian1 1Shanghai American School, Shanghai, China Abstract. Major Depressive Disorder (MDD) is a psychiatric disorder accompanied with a high rate of suicide, morbidity and mortality. With the symptom of an increasing or decreasing appetite, there is a possibility that MDD may have certain connections with gut microbiota, the colonies of microbes which reside in the human digestive system. In recent years, more and more studies started to demonstrate the links between MDD and gut microbiota from animal disease models and human metabolism studies. However, this relationship is still largely understudied, but it is very innovative since functional dissection of this relationship would furnish a new train of thought for more effective treatment of MDD. In this study, by using multiple genetic analytic tools including Allen Brain Atlas, genetic function analytical tools, and MicrobiomeAnalyst, I explored the genes that shows both expression in the brain and the digestive system to affirm that there is a connection between gut microbiota and the MDD. My approach finally identified 7 MDD genes likely to be associated with gut microbiota, implicating 3 molecular pathways: (1) Wnt Signaling, (2) citric acid cycle in the aerobic respiration, and (3) extracellular exosome signaling. These findings may shed light on new directions to understand the mechanism of MDD, potentially facilitating the development of probiotics for better psychiatric disorder treatment. 1 Introduction 1.1 Major Depressive Disorder Major Depressive Disorder (MDD) is a mood disorder that will affect the mood, behavior and other physical parts.
    [Show full text]
  • Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham a Thesis Submitted in Conformity
    Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Molecular Genetics University of Toronto © Copyright by Edward James Higginbotham 2020 i Abstract Characterizing Genomic Duplication in Autism Spectrum Disorder Edward James Higginbotham Master of Science Graduate Department of Molecular Genetics University of Toronto 2020 Duplication, the gain of additional copies of genomic material relative to its ancestral diploid state is yet to achieve full appreciation for its role in human traits and disease. Challenges include accurately genotyping, annotating, and characterizing the properties of duplications, and resolving duplication mechanisms. Whole genome sequencing, in principle, should enable accurate detection of duplications in a single experiment. This thesis makes use of the technology to catalogue disease relevant duplications in the genomes of 2,739 individuals with Autism Spectrum Disorder (ASD) who enrolled in the Autism Speaks MSSNG Project. Fine-mapping the breakpoint junctions of 259 ASD-relevant duplications identified 34 (13.1%) variants with complex genomic structures as well as tandem (193/259, 74.5%) and NAHR- mediated (6/259, 2.3%) duplications. As whole genome sequencing-based studies expand in scale and reach, a continued focus on generating high-quality, standardized duplication data will be prerequisite to addressing their associated biological mechanisms. ii Acknowledgements I thank Dr. Stephen Scherer for his leadership par excellence, his generosity, and for giving me a chance. I am grateful for his investment and the opportunities afforded me, from which I have learned and benefited. I would next thank Drs.
    [Show full text]
  • Transcriptomic Changes Resulting from STK32B Overexpression Identifies Pathways Potentially Relevant to Essential Tremor
    bioRxiv preprint doi: https://doi.org/10.1101/552901; this version posted May 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Transcriptomic changes resulting from 2 STK$%B overexpression identifies pathways 3 potentially relevant to essential tremor 4 Calwing Liao.,0, Faezeh Sarayloo.,0, Veikko Vuokila0, Daniel Rochefort0, Fulya Akçimen.,0, 5 Simone Diamond0, Alexandre D. Laporte0, Dan Spiegelman0, Qin HeJ, Hélène Catoire0, Patrick A. 6 Dion0,O, Guy A. Rouleau.,0,O 7 8 .Department of Human GeneticS, McGill University, Montréal, Quebec, Canada 9 0Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada. 10 JDepartment of Biomedical ScienceS, Université de Montréal, Montréal, Quebec, Canada 11 ODepartment of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada 12 13 Corresponding Author: 14 Dr. Guy A. Rouleau, MD, PhD, FRCPC, OQ 15 Department of Neurology and Neurosurgery 16 McGill University 17 Montréal, Québec, Canada 18 HJA 0BO 19 E-mail: [email protected] 20 21 Keywords: STK$%B, eSSential tremor, transcriptome, FUS 22 Conflict of Interests: All authors report no conflict of intereStS. 23 Funding Sources: Canadian InstituteS of Health ReSearch 24 bioRxiv preprint doi: https://doi.org/10.1101/552901; this version posted May 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Diagnóstico Molecular Do Transtorno Do Espectro Autista Através Do Sequenciamento Completo De Exoma Molecular Diagnosis Of
    Universidade de São Paulo Tatiana Ferreira de Almeida Diagnóstico molecular do transtorno do espectro autista através do sequenciamento completo de exoma Molecular diagnosis of autism spectrum disorder through whole exome sequencing São Paulo 2018 Universidade de São Paulo Tatiana Ferreira de Almeida Diagnóstico molecular do transtorno do espectro autista através do sequenciamento completo de exoma Molecular diagnosis of autism spectrum disorder through whole exome sequencing Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Doutor em Ciências, na Área de Biologia/Genética. Versão corrigida. Orientador(a): Maria Rita dos Santos Passos-Bueno São Paulo ii 2018 Dedico esta tese à ciência, e a todos os seus amantes. O, reason not the need! Our basest beggars Are in the poorest thing superfluous. Allow not nature more than nature needs, Man’s life is cheap as beast’s. Thou art a lady: If only to go warm were gorgeous, Why, nature needs not what thou gorgeous wear’st Which scarcely keeps thee warm. But, for true need- You heavens, give me that patience, patience I need! You see me here, you gods, a poor old man, As full of grief as age; wretched in both.” iii King Lear, William Shakespeare, 1608 Agradecimentos Agradeço em primeiro lugar ao meu grande amor Danilo, sem ele, há 11 anos, essa jornada não teria começado, a vida não teria me surpreendido e eu estaria de volta em casa, com todos os peixinhos do mar, e infeliz pelo resto da minha vida. Agradeço minha família, principalmente minha mãe Flávia e meu pai Airton por sacrificarem com mínimos protestos, as melhores horas que passaríamos juntos para que eu cumprisse meu trabalho.
    [Show full text]
  • Genome-Wide Association Analyses Identify 44 Risk Variants and Refine
    bioRxiv preprint doi: https://doi.org/10.1101/167577; this version posted July 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. PGC MDD GWA Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depressive disorder Naomi R Wray 1,2 †, Stephan Ripke 3,4,5 †, Manuel Mattheisen 6,7,8,9 †, Maciej Trzaskowski 1 †, Enda M Byrne 1 , Abdel Abdellaoui 10 , Mark J Adams 11 , Esben Agerbo 8,12,13 , Tracy M Air 14 , Till F M Andlauer 15,16 , Silviu-Alin Bacanu 17 , Marie Bækvad-Hansen 8,18 , Aartjan T F Beekman 19 , Tim B Bigdeli 17,20 , Elisabeth B Binder 15,21 , Douglas H R Blackwood 11 , Julien Bryois 22 , Henriette N Buttenschøn 7,8,23 , Jonas Bybjerg- Grauholm 8,18 , Na Cai 24,25 , Enrique Castelao 26 , Jane Hvarregaard Christensen 6,7,8 , Toni-Kim Clarke 11 , Jonathan R I Coleman 27 , Lucía Colodro-Conde 28 , Baptiste Couvy-Duchesne 29,30 , Nick Craddock 31 , Gregory E Crawford 32,33 , Cheynna A Crowley 34 , Hassan S Dashti 3,35 , Gail Davies 36 , Ian J Deary 36 , Franziska Degenhardt 37,38 , Eske M Derks 28 , Nese Direk 39,40 , Conor V Dolan 10 , Erin C Dunn 41,42,43 , Thalia C Eley 27 , Nicholas Eriksson 44 , Valentina Escott-Price 45 , Farnush Farhadi Hassan Kiadeh 46 , Hilary K Finucane 47,48 , Andreas J Forstner 37,38,49,50 , Josef Frank 51 , Héléna A Gaspar 27 , Michael Gill 52 , Paola Giusti-Rodríguez 53 , Fernando S Goes 54 , Scott D Gordon 55 , Jakob Grove 6,7,8,56 , Lynsey S Hall 11,57 , Christine Søholm Hansen 8,18 , Thomas F Hansen 58,59,60 , Stefan Herms 37,38,50 , Ian B Hickie 61 , Per Hoffmann 37,38,50 , Georg Homuth 62 , Carsten Horn 63 , Jouke-Jan Hottenga 10 , David M Hougaard 8,18 , Ming Hu 64 , Craig L Hyde 65 , Marcus Ising 66 , Rick Jansen 19,19 , Fulai Jin 67,68 , Eric Jorgenson 69 , James A Knowles 70 , Isaac S Kohane 71,72,73 , Julia Kraft 5 , Warren W.
    [Show full text]
  • Genome-Wide Association Analyses Identify 44 Risk Variants and Refine the Genetic Architecture of Major Depression
    VU Research Portal Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression Wray, Naomi R.; Ripke, Stephan; Mattheisen, Manuel; Trzaskowski, MacIej; Byrne, Enda M.; Abdellaoui, Abdel; Adams, Mark J.; Agerbo, Esben; Air, Tracy M.; Andlauer, Till M.F.; Bacanu, Silviu Alin; Bækvad-Hansen, Marie; Beekman, Aartjan F.T.; Bigdeli, Tim B.; Binder, Elisabeth B.; Blackwood, Douglas R.H.; Bryois, Julien; Buttenschøn, Henriette N.; Bybjerg-Grauholm, Jonas; Cai, Na published in Nature Genetics 2018 DOI (link to publisher) 10.1038/s41588-018-0090-3 document version Publisher's PDF, also known as Version of record document license Article 25fa Dutch Copyright Act Link to publication in VU Research Portal citation for published version (APA) Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., Abdellaoui, A., Adams, M. J., Agerbo, E., Air, T. M., Andlauer, T. M. F., Bacanu, S. A., Bækvad-Hansen, M., Beekman, A. F. T., Bigdeli, T. B., Binder, E. B., Blackwood, D. R. H., Bryois, J., Buttenschøn, H. N., Bybjerg-Grauholm, J., ... Penninx, B. W. J. H. (2018). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 50(5), 668-681. https://doi.org/10.1038/s41588-018-0090-3 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
    [Show full text]
  • Refinement of the Critical Genomic Region for Hypoglycaemia in The
    Wellcome Open Research 2019, 4:149 Last updated: 16 DEC 2019 RESEARCH ARTICLE Refinement of the critical genomic region for hypoglycaemia in the Chromosome 9p deletion syndrome [version 1; peer review: awaiting peer review] Indraneel Banerjee1*, Senthil Senniappan2*, Thomas W. Laver 3*, Richard Caswell 3, Martin Zenker 4, Klaus Mohnike5, Tim Cheetham6, Matthew N. Wakeling 3, Dunia Ismail7, Belinda Lennerz8, Miranda Splitt9, Merih Berberoğlu 10, Susann Empting5, Martin Wabitsch8, Simone Pötzsch 11, Pratik Shah 12, Zeynep Siklar10, Charles F. Verge13, Michael N. Weedon3, Sian Ellard 3, Khalid Hussain14, Sarah E. Flanagan 3 1Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK 2Department of Paediatric Endocrinology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK 3Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK 4Institute of Human Genetics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany 5Department of Paediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany 6Department of Paediatric Endocrinology, Royal Victoria Infirmary, Newcastle, UK 7Department of Paediatric Endocrinology & Diabetes, Royal Alexandra Children’s Hospital, Brighton, UK 8Department of Paediatrics and Adolescent Medicine, Ulm University Hospital, Ulm, Germany 9Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK 10Department of Pediatric Endocrinology, Ankara University School of
    [Show full text]
  • Genome-Wide Association Analyses Identify 44 Risk Variants and Refine
    PGC MDD GWAS 1 Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression 2 Naomi R Wray 1,2†, Stephan Ripke 3,4,5†, Manuel Mattheisen 6,7,8,9†, *Maciej Trzaskowski1†, Enda M Byrne 1, Abdel 3 Abdellaoui 10, Mark J Adams 11, Esben Agerbo 8,12,13, Tracy M Air 14, Till F M Andlauer 15,16, Silviu-Alin Bacanu 17, Marie 4 Bækvad-Hansen 8,18, Aartjan T F Beekman 19, Tim B Bigdeli 17,20, Elisabeth B Binder 15,21, Douglas H R Blackwood 11, Julien 5 Bryois 22, Henriette N Buttenschøn 7,8,23, Jonas Bybjerg-Grauholm 8,18, Na Cai 24,25, Enrique Castelao 26, Jane Hvarregaard 6 Christensen 6,7,8, Toni-Kim Clarke 11, Jonathan R I Coleman 27, Lucía Colodro-Conde 28, Baptiste Couvy-Duchesne 29,30, Nick 7 Craddock 31, Gregory E Crawford 32,33, Cheynna A Crowley 34, Hassan S Dashti 3,35, Gail Davies 36, Ian J Deary 36, Franziska 8 Degenhardt 37,38, Eske M Derks 28, Nese Direk 39,40, Conor V Dolan 10, Erin C Dunn 41,42,43, Thalia C Eley 27, Nicholas Eriksson 9 44, Valentina Escott-Price 45, Farnush Farhadi Hassan Kiadeh 46, Hilary K Finucane 47,48, Andreas J Forstner 37,38,49,50, Josef 10 Frank 51, Héléna A Gaspar 27, Michael Gill 52, Paola Giusti-Rodríguez 53, Fernando S Goes 54, Scott D Gordon 55, Jakob 11 Grove 6,7,8,56, Lynsey S Hall 11,57, Eilis Hannon 58, Christine Søholm Hansen 8,18, Thomas F Hansen 59,60,61, Stefan Herms 12 37,38,50, Ian B Hickie 62, Per Hoffmann 37,38,50, Georg Homuth 63, Carsten Horn 64, Jouke-Jan Hottenga 10, David M Hougaard 13 8,18, Ming Hu 65, Craig L Hyde 66, Marcus Ising 67, Rick Jansen 19,19, Fulai Jin 68,69, Eric Jorgenson 70, James A Knowles 71, Isaac 14 S Kohane 72,73,74, Julia Kraft 5, Warren W.
    [Show full text]
  • Protein List (6009)
    Protein Accession Protein Id Protein Name Q9CQV8 1433B 14-3-3 protein beta/alpha OS=Mus musculus OX=10090 GN=Ywhab PE=1 SV=3 P62259 1433E 14-3-3 protein epsilon OS=Mus musculus OX=10090 GN=Ywhae PE=1 SV=1 P68510 1433F 14-3-3 protein eta OS=Mus musculus OX=10090 GN=Ywhah PE=1 SV=2 P61982 1433G 14-3-3 protein gamma OS=Mus musculus OX=10090 GN=Ywhag PE=1 SV=2 P68254 1433T 14-3-3 protein theta OS=Mus musculus OX=10090 GN=Ywhaq PE=1 SV=1 P63101 1433Z 14-3-3 protein zeta/delta OS=Mus musculus OX=10090 GN=Ywhaz PE=1 SV=1 Q6PD03 2A5A Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform OS=Mus musculus OX=10090 GN=Ppp2r5a PE=1 SV=1 Q6PD28 2A5B Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit beta isoform OS=Mus musculus OX=10090 GN=Ppp2r5b PE=1 SV=1 Q61151 2A5E Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit epsilon isoform OS=Mus musculus OX=10090 GN=Ppp2r5e PE=1 SV=3 Q60996 2A5G Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit gamma isoform OS=Mus musculus OX=10090 GN=Ppp2r5c PE=1 SV=2 Q76MZ3 2AAA Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform OS=Mus musculus OX=10090 GN=Ppp2r1a PE=1 SV=3 Q7TNP2 2AAB Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform OS=Mus musculus OX=10090 GN=Ppp2r1b PE=1 SV=2 Q6P1F6 2ABA Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform OS=Mus musculus OX=10090 GN=Ppp2r2a PE=1 SV=1 Q925E7 2ABD Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B delta isoform OS=Mus musculus OX=10090 GN=Ppp2r2d PE=1 SV=1 P55194 3BP1 SH3 domain-binding protein 1 OS=Mus musculus OX=10090 GN=Sh3bp1 PE=1 SV=3 Q06649 3BP2 SH3 domain-binding protein 2 OS=Mus musculus OX=10090 GN=Sh3bp2 PE=1 SV=1 Q99L13 3HIDH 3-hydroxyisobutyrate dehydrogenase, mitochondrial OS=Mus musculus OX=10090 GN=Hibadh PE=1 SV=1 P48193 41 Protein 4.
    [Show full text]
  • Complement Activation in Peritoneal Dialysis–Induced Arteriolopathy
    CLINICAL RESEARCH www.jasn.org Complement Activation in Peritoneal Dialysis–Induced Arteriolopathy † ‡ Maria Bartosova,* Betti Schaefer,* Justo Lorenzo Bermejo, Silvia Tarantino, | Felix Lasitschka,§ Stephan Macher-Goeppinger, Peter Sinn,§ Bradley A. Warady,¶ †† †† †† ‡‡ Ariane Zaloszyc,** Katja Parapatics, Peter Májek, Keiryn L. Bennett, Jun Oh, ‡ ‡ Christoph Aufricht, Franz Schaefer,* Klaus Kratochwill, §§ and Claus Peter Schmitt* *Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, †Department of Medical Biometry, Institute of Medical Biometry and Informatics, and §Department of General Pathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; ‡Department of Pediatrics and Adolescent Medicine and §§Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, Vienna, Austria; |Department of Pathology, University Medical Center Mainz, Mainz, Germany; ¶Division of Pediatric Nephrology, Children’s Mercy Hospital, University of Missouri- Kansas City School of Medicine, Kansas City, Missouri; **Department of Pediatrics 1, University Hospital of Strasbourg, Strasbourg, France; ††CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; and ‡‡Department of Pediatric Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ABSTRACT Cardiovascular disease (CVD) is the leading cause of increased mortality in patients with CKD and is further aggravated by peritoneal dialysis (PD). Children are devoid of preexisting CVD and provide unique insight into specificuremia-andPD-inducedpathomechanismsofCVD.We obtained peritoneal specimens from children with stage 5 CKD at time of PD catheter insertion (CKD5 group), children with established PD (PD group), and age-matched nonuremic controls (n=6/group). We microdissected omental arterioles from tissue layers not directly exposed to PD fluid and used adjacent sections of four arterioles per patient for transcriptomic and proteomic analyses.
    [Show full text]
  • Loss of DMRT1 Gene in a Mos 45,XY,-9[8]/ 46,XY,R(9)[29]/47,XY,+Idic R(9)× 2[1]/ 46,XY,Idic R(9)[1]/46,XY[1] Female Presenting with Short Stature Bagas A
    Marsudi et al. Molecular Cytogenetics (2018) 11:28 https://doi.org/10.1186/s13039-018-0379-z CASE REPORT Open Access Loss of DMRT1 gene in a Mos 45,XY,-9[8]/ 46,XY,r(9)[29]/47,XY,+idic r(9)× 2[1]/ 46,XY,idic r(9)[1]/46,XY[1] female presenting with short stature Bagas A. Marsudi1*, Hannie Kartapradja1, Chrysantine Paramayuda1, Jose R. L. Batubara2, Alida R. Harahap1 and Nanis S. Marzuki1 Abstract Background: A 46,XY sex reversal syndrome is characterized by discordant genetic and phenotypic sex, leading to normal external female genitalia, undeveloped gonads and presence of Müllerian structures in an otherwise 46,XY individual. Chromosome 9pter aberrations, such as ring chromosome have been reported to cause 46,XY disorders of sex development (DSD), due to involvement of DMRT1 gene located at the 9p24.3 region. Case presentation: This study presents a unique case of a 12-year-old female with mos 46,XY, (r)9[31]/45,XY,-9[9] karyotype, presenting with intellectual disability and short stature, mimicking Turner syndrome. Re-karyotyping was performed using standard GTL-banding technique. Further cytogenetic study using standard metaphase fluorescent in situ hybridization (FISH) technique was applied to cultured lymphocytes from peripheral blood, hybridized using green control probe specific to 9q21 loci, and red DMRT1 probe specific to 9p24.3 loci. Cytogenetics and FISH analysis revealed mos 45,XY,-9[8]/46,XY,r(9)[29]/47,XY,+idic r(9)× 2[1]/46,XY,idic r(9)[1]/46,XY[1] and haploinsufficiency of DMRT1 gene in most cells.
    [Show full text]