Food Fermentations: Microorganisms with Technological Beneficial
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deep Microbial Community Profiling Along the Fermentation Process of Pulque, a Major Biocultural Resource of Mexico
bioRxiv preprint doi: https://doi.org/10.1101/718999; this version posted July 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Deep microbial community profiling along the fermentation process of pulque, a major biocultural resource of Mexico. 1 1 2 Carolina Rocha-Arriaga , Annie Espinal-Centeno , Shamayim Martinez-Sanchez , Juan 1 2 1,3 Caballero-Pérez , Luis D. Alcaraz * & Alfredo Cruz-Ramirez *. 1 Molecular & Developmental Complexity Group, Unit of Advanced Genomics, LANGEBIO-CINVESTAV, Irapuato, México. 2 Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Cd. Universitaria, 04510 Coyoacán, Mexico City, Mexico. 3 Escuela de Agronomía, Universidad de La Salle Bajío, León, Gto, Mexico. *Corresponding authors: [email protected], [email protected] ● Our approach allowed the identification of a broader microbial diversity in Pulque ● We increased 4.4 times bacteria genera and 40 times fungal species detected in mead. ● Newly reported bacteria genera and fungal species associated to Pulque fermentation Abstract Some of the biggest non-three plants endemic to Mexico were called metl in the Nahua culture. During colonial times they were renamed with the antillan word maguey. This was changed again by Carl von Linné who called them Agave (a greco-latin voice for admirable). For several Mexican prehispanic cultures, Agave species were not only considered as crops, but also part of their biocultural resources and cosmovision. Among the major products obtained from some Agave spp since pre-hispanic times is the alcoholic beverage called pulque or octli. -
WINE YEAST: the CHALLENGE of LOW TEMPERATURE Zoel Salvadó Belart Dipòsit Legal: T.1304-2013
WINE YEAST: THE CHALLENGE OF LOW TEMPERATURE Zoel Salvadó Belart Dipòsit Legal: T.1304-2013 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. -
Expanding the Knowledge on the Skillful Yeast Cyberlindnera Jadinii
Journal of Fungi Review Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii Maria Sousa-Silva 1,2 , Daniel Vieira 1,2, Pedro Soares 1,2, Margarida Casal 1,2 and Isabel Soares-Silva 1,2,* 1 Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; [email protected] (M.S.-S.); [email protected] (D.V.); [email protected] (P.S.); [email protected] (M.C.) 2 Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal * Correspondence: [email protected]; Tel.: +351-253601519 Abstract: Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation. -
Pectinolytic Enzymes of Aspergillus Sojae ATCC 20235: the Impact of Bioprocessing Strategy on Solid-State Production and Downstream Processing of Polygalacturonase
Pectinolytic enzymes of Aspergillus sojae ATCC 20235: The impact of bioprocessing strategy on solid-state production and downstream processing of polygalacturonase by Doreen Heerd A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemical Engineering Approved, Thesis Committee Prof. Dr. Marcelo Fernández-Lahore Jacobs University Bremen Prof. Dr. Matthias Ullrich Jacobs University Bremen Dr.-Ing. Dirk Holtmann DECHEMA Research Institute Dr. Sonja Diercks-Horn Jacobs University Bremen Date of Defense: June 14, 2013 School of Engineering and Sciences Summary Since antiquity up to the present Aspergillus spp. like A. oryzae or A. sojae have been used in traditional Japanese fermented food production. The long history of safe use in the production of oriental fermented food favors these microorganisms for their application in industrial enzyme production that are applied in the food industry. This thesis deals with the investigation of A. sojae ATCC 20235 as potential pectinolytic enzyme production organism with focus on polygalacturonase (PG) production under solid-state conditions. Pectinolytic enzymes have been exploited for many industrial applications, e.g. the largest industrial application of these enzymes is in juice and wine production. PGs belong to the pectinolytic enzyme group and are an inherent part of commercial enzyme preparations used for food processing. Recent articles reported about the potential of A. sojae ATCC 20235 to produce PG enzyme in submerged fermentation and via surface cultivation methods. These studies have triggered an interest on the investigation of the potential of this strain for pectinolytic enzyme production in solid-state fermentation (SSF). For this, a microbial screening between A. -
Phylogenetic Circumscription of Saccharomyces, Kluyveromyces
FEMS Yeast Research 4 (2003) 233^245 www.fems-microbiology.org Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora Cletus P. Kurtzman à Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA Received 22 April 2003; received in revised form 23 June 2003; accepted 25 June 2003 First published online Abstract Genera currently assigned to the Saccharomycetaceae have been defined from phenotype, but this classification does not fully correspond with species groupings determined from phylogenetic analysis of gene sequences. The multigene sequence analysis of Kurtzman and Robnett [FEMS Yeast Res. 3 (2003) 417^432] resolved the family Saccharomycetaceae into 11 well-supported clades. In the present study, the taxonomy of the Saccharomyctaceae is evaluated from the perspective of the multigene sequence analysis, which has resulted in reassignment of some species among currently accepted genera, and the proposal of the following five new genera: Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. ß 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. Keywords: Saccharomyces; Kluyveromyces; New ascosporic yeast genera; Molecular systematics; Multigene phylogeny 1. Introduction support the maintenance of three distinct genera. Yarrow [8^10] revived the concept of three genera and separated The name Saccharomyces was proposed for bread and Torulaspora and Zygosaccharomyces from Saccharomyces, beer yeasts by Meyen in 1838 [1], but it was Reess in 1870 although species assignments were often di⁄cult. -
Title Melon Aroma-Producing Yeast Isolated from Coastal
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Melon aroma-producing yeast isolated from coastal marine Title sediment in Maizuru Bay, Japan Sutani, Akitoshi; Ueno, Masahiro; Nakagawa, Satoshi; Author(s) Sawayama, Shigeki Citation Fisheries Science (2015), 81(5): 929-936 Issue Date 2015-09 URL http://hdl.handle.net/2433/202563 The final publication is available at Springer via http://dx.doi.org/10.1007/s12562-015-0912-5.; The full-text file will be made open to the public on 28 July 2016 in Right accordance with publisher's 'Terms and Conditions for Self- Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。 引用の際には出版社版をご確認ご利用ください。 Type Journal Article Textversion author Kyoto University 1 FISHERIES SCIENCE ORIGINAL ARTICLE 2 Topic: Environment 3 Running head: Marine fungus isolation 4 5 Melon aroma-producing yeast isolated from coastal marine sediment in Maizuru Bay, 6 Japan 7 8 Akitoshi Sutani1 · Masahiro Ueno2 · Satoshi Nakagawa1· Shigeki Sawayama1 9 10 11 12 __________________________________________________ 13 (Mail) Shigeki Sawayama 14 [email protected] 15 16 1 Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, 17 Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan 18 2 Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto 19 University, Kyoto 625-0086, Japan 1 20 Abstract Researches on marine fungi and fungi isolated from marine environments are not 21 active compared with those on terrestrial fungi. The aim of this study was isolation of novel 22 and industrially applicable fungi derived from marine environments. -
Mannoside Recognition and Degradation by Bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese
Mannoside recognition and degradation by bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese To cite this version: Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese. Mannoside recognition and degradation by bacteria. Biological Reviews, Wiley, 2016, 10.1111/brv.12316. hal- 01602393 HAL Id: hal-01602393 https://hal.archives-ouvertes.fr/hal-01602393 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biol. Rev. (2016), pp. 000–000. 1 doi: 10.1111/brv.12316 Mannoside recognition and degradation by bacteria Simon Ladeveze` 1, Elisabeth Laville1, Jordane Despres2, Pascale Mosoni2 and Gabrielle Potocki-Veron´ ese` 1∗ 1LISBP, Universit´e de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France 2INRA, UR454 Microbiologie, F-63122, Saint-Gen`es Champanelle, France ABSTRACT Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein–protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them. -
Thesis Contents
Genome diversity in Torulaspora microellipsoides and its contribution to the evolution of the Saccharomyces genus 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 This thesis is presented for the PhD degree of the University of Valencia Thesis Director: Dr. Eladio Barrio Esparducer Thesis Supervisor: Dr. Mercedes Costell Roselló Adriana Mena Romero Valencia, June 2018 El Dr. Eladio Barrio Esparducer, Profesor Titular del Departamento de Genética de la Universitat de València, adscrito como investigador al Departamento de Biotecnología del Instituto de Agroquímica y Tecnología de los Alimentos, CSIC. CERTIFICA Que el presente trabajo titulado “Genome diversity in Torulaspora microellipsoides and its contribution to the evolution of the Saccharomyces genus”, que presenta Dª Adriana Mena Romero para optar al grado de doctor en Biotecnología por la Universitat de València, ha sido realizado bajo su dirección en el Departamento de Genética de la Universidad de Valencia y en el Departamento de Biotecnología del Instituto de Agroquímica y Tecnología de los Alimentos, CSIC. Y para que conste para los trámites de lectura y defensa de la tesis doctoral, en cumplimiento de la legislación vigente, firma el presente certificado en Valencia a 15 de Junio de 2018 Fdo. Eladio Barrio Esparducer Agradecimientos (Acknowledgements) Agradecimientos Todo este trabajo no tendría sentido sin la gente que lleva años apoyándome para sacarlo adelante. -
Lachancea Thermotolerans Applications in Wine Technology
fermentation Review Lachancea thermotolerans Applications in Wine Technology Antonio Morata 1,* ID , Iris Loira 1 ID , Wendu Tesfaye 1, María Antonia Bañuelos 2, Carmen González 1 and José Antonio Suárez Lepe 1 1 Department of Chemistry and Food Technology, ETSIAAB, Technical University of Madrid, 28040 Madrid, Spain; [email protected] (I.L.); [email protected] (W.T.); [email protected] (C.G.); [email protected] (J.A.S.L.) 2 Department of Biotechnology-Plant Biology, ETSIAAB, Technical University of Madrid, 28040 Madrid, Spain; [email protected] * Correspondence: [email protected] Received: 20 June 2018; Accepted: 6 July 2018; Published: 11 July 2018 Abstract: Lachancea (kluyveromyces) thermotolerans is a ubiquitous yeast that can be naturally found in grapes but also in other habitats as soil, insects and plants, extensively distributed around the world. In a 3-day culture, it shows spherical to ellipsoidal morphology appearing in single, paired cells or short clusters. It is a teleomorph yeast with 1–4 spherical ascospores and it is characterized by a low production of volatile acidity that helps to control global acetic acid levels in mixed or sequential inoculations with either S. cerevisiae or other non-Saccharomyces species. It has a medium fermentative power, so it must be used in sequential or mixed inoculations with S. cerevisiae to get dry wines. It shows a high production of lactic acid able to affect strongly wine pH, sometimes decreasing wine pH by 0.5 units or more during fermentation. Most of the acidification is produced at the beginning of fermentation facilitating the effect in sequential fermentations because it is more competitive at low alcoholic degree. -
Identification and Nomenclature of the Genus Penicillium
Downloaded from orbit.dtu.dk on: Dec 20, 2017 Identification and nomenclature of the genus Penicillium Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2014.09.001 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., ... Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343-371. DOI: 10.1016/j.simyco.2014.09.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M. -
Foliar Application of Chitosan and Yeast Elicitor Facilitate Reducing Incidence and Severity of Alternaria Leaf Blight of Tomato and Brinjal F
Research Article iMedPub Journals 2020 www.imedpub.com Research Journal of Plant Pathology Vol.3 No.2:4 Foliar Application of Chitosan and Yeast Elicitor Facilitate Reducing Incidence and Severity of Alternaria Leaf Blight of Tomato and Brinjal F. H. Tumpa and M. A. R. Abstract Khokon* Two pot experiments were conducted in the net house to investigate whether Department of Plant Pathology, aqueous solution of chitosan and yeast elicitor can suppress Alternaria leaf blight Bangladesh Agricultural University, of tomato and brinjal. Aqueous solutions of chitosan and yeast elicitor were Mymensingh-2202, Bangladesh applied on seeds and on the foliage of tomato and brinjal at three growth stages following 0.02, 0.05, 0.1 and 0.2% concentration respectively. The chitosan and yeast elicitor-treated plants were further inoculated artificially to create sufficient disease pressure to monitor incidence and severity. Differential responses were *Corresponding author: Khokon MAR, recorded for chitosan and yeast elicitor considering both growth stages and type of Department of Plant Pathology, Bangladesh crops. Chitosan performed superior in tomato plants while yeast elicitor in brinjal Agricultural University, Mymensingh-2202, plants considering both disease incidence and severity. In both cases, 42 DAT Bangladesh, E-mail: [email protected] was more suitable for chitosan and yeast elicitor spray to get maximum disease suppression. Chitosan and yeast elicitor at 0.2% showed superior performance in reducing blight incidence and severity by Alternaria. Citation: Tumpa FH, Khokon MAR (2020) Keywords: Chitosan; Yeast elicitor; Alternaria solani; Tomato; Brinjal Foliar Application of Chitosan and Yeast Elicitor Facilitate Reducing Incidence and Severity of Alternaria Leaf Blight of Tomato and Brinjal. -
AR TICLE a Plant Pathology Perspective of Fungal Genome Sequencing
IMA FUNGUS · 8(1): 1–15 (2017) doi:10.5598/imafungus.2017.08.01.01 A plant pathology perspective of fungal genome sequencing ARTICLE Janneke Aylward1, Emma T. Steenkamp2, Léanne L. Dreyer1, Francois Roets3, Brenda D. Wingfield4, and Michael J. Wingfield2 1Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; corresponding author e-mail: [email protected] 2Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa 3Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa 4Department of Genetics, University of Pretoria, Pretoria 0002, South Africa Abstract: The majority of plant pathogens are fungi and many of these adversely affect food security. This mini- Key words: review aims to provide an analysis of the plant pathogenic fungi for which genome sequences are publically genome size available, to assess their general genome characteristics, and to consider how genomics has impacted plant pathogen evolution pathology. A list of sequenced fungal species was assembled, the taxonomy of all species verified, and the potential pathogen lifestyle reason for sequencing each of the species considered. The genomes of 1090 fungal species are currently (October plant pathology 2016) in the public domain and this number is rapidly rising. Pathogenic species comprised the largest category FORTHCOMING MEETINGS FORTHCOMING (35.5 %) and, amongst these, plant pathogens are predominant. Of the 191 plant pathogenic fungal species with available genomes, 61.3 % cause diseases on food crops, more than half of which are staple crops. The genomes of plant pathogens are slightly larger than those of other fungal species sequenced to date and they contain fewer coding sequences in relation to their genome size.