United States Patent Office Patented Aug

Total Page:16

File Type:pdf, Size:1020Kb

Load more

3,684,432 United States Patent Office Patented Aug. 15, 1972 2 3,684,432 SUMMARY OF THE INVENTION WEAKACD SALTS OF HYDROXYLAMINE We have found unexpectedly that stable hydroxylamine John Henry Bonfield, Basking Ridge, N.J., assignor to Salts of certain very weak acids, i.e., those having dissocia Allied Chemical Corporation, New York, N.Y. tion constants of less than 1 x 106, can be prepared. No Drawing. Filed Sept. 19, 1969, Ser. No. 859,585 These compounds are useful to form oximes from their nt. C. C91b. 25/00 corresponding ketones in high yield without the need for U.S. C. 423-284 2 Claims neutralization of the reaction mixture and the consequent formation of undesirable salts. ABSTRACT OF THE DISCLOSUIRE 0 DETAILED DESCRIPTION OF THE INVENTION Weak acid salts of hydroxylamine of the formula The compositions of the invention have the formula NH2OH-HX wherein HX represents an acid or cation exchange resin having an acid dissociation constant of less than 1 x 106. These salts are useful in the prepara wherein HX represents a weak acid having a dissociation tion of ketoximes from ketones, especially the preparation 15 constant less than 1 x 106. The compounds and their of cyclohexanone oxime from cyclohexanone. aqueous solutions or dispersions are stable on storage. Weak acids suitable for use in preparing the composi tions of the invention include for example boric acid (dis CROSS REFERENCES TO RELATED Sociation constant, hereinafter referred to as K, of APPLICATIONS 20 2x 1010); carbonic acid (K, 4.3x10-i, K. 5.6X 10-11); This application is related to copending application of hydrocyanic acid (K 7.2 x 1010); hypochlorous acid (K John Henry Bonfield, "Preparation of Oxime’ Ser. No. 3.5X108); phenol (K 1.3 x 1010); phenolphthalein (K 859,298 filed Sept. 19, 1969. 2X100); stannic acid (K 4x1010); telluric acid (K1 This invention relates to novel hydroxylamine salts. 25 6x10", Ka 2x 108); and the like. Weakly acid ion More particularly, this invention relates to stable hy eXchange resins can also form stable hydroxylamine salts, droxylamine salts of weak acids having a dissociation con as for example Amberlite IRC-50, a cation exchange resin stant of less than 1X106. of Rohm and Haas Co. having free carboxyl groups, Zeo Karb 226 of Permutit Co., Ltd., Duolite CS-100 of BACKGROUND OF THE INVENTION 30 Chemical Process Co. and equivalent cation exchange Hydroxylamine is a well known reducing agent and is resins. Thus, the compositions described above are meant employed in the formation of oximes from aldehydes and to include both hydroxylamine salts of weak acids and ketones, particularly in the formation of cyclohexanone hydroxylamine salts of weakly acid ion exchange resins. oxime from cyclohexanone, which oxime is a valuable The hydroxylamine salts of the invention can be pre precursor in the synthesis of e-caprolactam. Since hy 35 pared readily and simply in conventional manner in vari droxylamine is unstable, it is usually employed as an acid ous ways. They can be prepared directly from hydroxyl salt, generally the sulfuric acid salt. The acid which is amine by contacting an aqueous solution of hydroxyl liberated by the reaction of the acid salt with a ketone amine with the weak acid or weak acid resin or prefer must be neutralized, as with ammonia, in order to obtain ably, by conducting the hydroxylamine generating reac a high conversion to the desired oxime. The following 40 tion in the presence of the weak acid or weak acid resin. equations, directed to cyclohexanone, are illustrative of Hydroxylamine can be generated in known manner by this two-step reaction, wherein NH-OHHA represents the reduction of nitroparaffins, by the electrolytic reduc the acid salt. tion of nitric acid, or by the catalytic reduction of oxides of nitrogen with hydrogen. (1) O The hydroxylamine salts of Formula 1 can also be pre 1 NOH pared from strong acid salts of hydroxylamine, as by NHOT.F.A. -- -- HO - FIA reacting a strong acid salt with a weak acid in the pres ence of a reagent that will precipitate the strong acid liberated during the reaction as an insoluble salt, and (2) HA -- NH3 + H2O - NH4A -- H2O 50 filtering off the strong acid salt. This reaction is preferably Thus in addition to the desired oxime, the neutraliza carried out at ambient temperatures, but temperatures up tion step also produces an ammonium salt, usually am to the reflux temperature of the solution can be employed monium sulfate, as a by-product. Although widely used if short residence times are used. as a fertilizer, in recent years this salt has not been com The hydroxylamine weak acid salt solution can be em mercially attractive and poses a disposal problem. There 55 ployed directly, without the need for isolating or further fore, a process for preparing oximes without formation purifying the solution. However, if desired the weak acid of an inorganic salt by-product is desirable. hydroxylamine salts can be purified, as by removal of DESCRIPTION OF THE PRIOR ART water and precipitation with an inert nonsolvent, such as methanol. U.S. Pat. 3,429,920 to DeRooj discloses a process for 60 Hydroxylamine salts of weakly acid ion exchange resins preparing oximes from aldehydes or ketones and a hy can be prepared from strong acid salts by reacting the resin droxylamine salt of acids having a dissociation constant with an aqueous solution of the strong acid salt, adding a of from 2x 101 to 2X 10-6 in the presence of a soluble reagent, such as an alkali metal hydroxide, that will form salt of the same acid to form a buffer solution. The acid a water soluble salt of the strong acid and separating the produced during the reaction is partly neutralized, and 65 resin from the solution. The resin can be washed with somewhat less salt is formed during the reaction than in water to remove any residual strong acid salt. the conventional sulfuric acid salt process. However, in The compositions of the invention are useful as analyti order to produce a high yield of oxime, ammonia must cal reagents and as a stable source of hydroxylamine. still be added to form a nearly neutral solution and thus They are particularly useful in the preparation of oximes by-product salts are still formed. The patentee states that 70 from their corresponding ketones, because the resultant hydroxylamine salts of acids having dissociation constants reaction mixture does not require neutralization to ob of less than 2x 106 are unstable. tain a high yield of the oxime and thereby the formation 3,684,432 3 4. of undesirable by-product salts is avoided. The weak acid droxide as a 25% aqueous solution were added dropwise liberated during the reaction can be recovered for re while stirring and cooling. After one hour, the resinous. cycle to form additional weak acid hydroxylamine salts product was filtered and washed with water. of the present invention. The use of the present com The resinous product (473 parts) was found to con positions in the formation of oximes is described more tain about 50% of theory of hydroxylamine. fully in a copending application of the present inventor Example 3 entitled “Preparation of Oxime’ Ser. No. 859,298, filed Sept. 19, 1968. One hundred parts of hydroxylamine borate prepared The invention will be further illustrated by the follow as in Example 1 is dissolved in 900 parts of water and ing examples, but the invention is not meant to be limited O 98 parts of pure cyclohexanone is added while maintaining to the details disclosed therein. In the examples, all parts the temperature at 25-30 C. After a short induction and percentages are by weight. period, a copious precipitate forms, which is filtered and washed with water. Example 1 A 98 yield of the cyclohexanone oxime product is A solution of 315.5 parts of barium hydroxide octa 5 obtained (111 parts) upon drying under vacuum. hydrate in 750 parts of water was warmed to 70-80 C. The filtrate is treated with a glycerol-base titration to and added to a solution containing 124 parts of boric determine the amount of boric acid released during the acid and 164 parts of hydroxylamine sulfate reaction. Essentially quantitive yields are recovered. The (NHOH). HSO4) boric acid is suitable for recycle to form additional hy 20 droxylamine borate. in 750 parts of water, also preheated to 70-80 C. The I claim: mixture was stirred for one-half hour and the precipi 1. A composition of the formula NHOH.HX wherein tated barium sulfate filtered off. The filtrate was HX is boric acid. concentrated at 30-35 mm. pressure until crystallization 2. An aqueous solution of the composition of claim 1. began. The solution was warmed to redissolve the pre cipitate and the product precipitated with methanol. The 25 References Cited precipitate was filtered, washed with methanol and dried. UNITED STATES PATENTS The hydroxylamine borate product had the formula NHOH-HBO and an acid dissociation constant of 2,749,27 6/1956 Deutschman ------ 23-190. A 7.3X10-10. Analysis showed the product contained 3,429,920 2/1969 De Rooij -------- 23-190 A 35.25% of hydroxylamine. The product was appreciably 3) 3,226,446 12/1965 Drain et al. ----- 260-621. R. soluble in water and formed a 6.4% solution at 20 C., 3,375,273 3/968 Drain et al. 260-62. R. a 9.5% solution at 30° C. and a 14.0% solution at 40 C. These solutions were stable on storage.
Recommended publications
  • Kinetics of Oxidation of Hydrazine & Hydroxylamine by N

    Indian Journal of Chemistry VoL I5A, AUQust 1977, pp. 713-715 Kinetics of Oxidation of Hydrazine & Hydroxylamine by N-Chlorobenzamide B. S. RAWAT & M. C. AGRAWAL Department of Chemistry, Harcourt Butler Technological Institute, Kanpur 208002 Received 16 December 1976; accepted 28 February 1977 The rates of oxidation of hydrazine and hydroxylamine by N-chlorobenzamide (NCB) have been measured in hydrochloric acid media. The reactions follow identical kinetics. being first order each in [NCB]. [H+] and [CI-] and show independent nature to the reducing substrates. Added salt and solvent effects are negligible. Molecular chlorine obtained from the reaction of NCB and HCI has been found to be the effective oxidant. XIDATION of hydrazine- and hydroxylamine- excess of NCB at 40°. The results conformed to by a variety of oxidants in aqueous solutions the reactions (1 and 2), O has been studied. In general, hydrazine is N2H4+2C6HsCONHCI = N2+2C6HsCONH2+2HCl quantitatively converted into nitrogen but other ... (1) products such as ammonia and hydrazoic acid have also been reported. 2NH20H+CaHsCONHCI = N2+C6HsCONH2 It was interesting that the oxidation of hydroxyl- +2H20 +HCl ... (2) amine by ferricyanide" showed a variable stoichio- and are in accord with the results of Singh and metry depending upon the relative concentrations coworkers+ who have experimentally obtained nitro- of the reactants. Both hydrazine and hydroxyl- gen and benzamide as the end-products of the amine were quantitatively estimated in strong acidic reaction. solutions by N-chlorobenzamide4• In this paper the results of the kinetics of oxidation of hydrazine Results and hydroxylamine by N-chlorobenzamide (NCB) Effects of varyi1lg [NeB] and [substrates]- are recorded and a suitable mechanism is proposed.
  • Molecule Based on Evans Blue Confers Superior Pharmacokinetics and Transforms Drugs to Theranostic Agents

    Molecule Based on Evans Blue Confers Superior Pharmacokinetics and Transforms Drugs to Theranostic Agents

    Novel “Add-On” Molecule Based on Evans Blue Confers Superior Pharmacokinetics and Transforms Drugs to Theranostic Agents Haojun Chen*1,2, Orit Jacobson*2, Gang Niu2, Ido D. Weiss3, Dale O. Kiesewetter2, Yi Liu2, Ying Ma2, Hua Wu1, and Xiaoyuan Chen2 1Department of Nuclear Medicine, Xiamen Cancer Hospital of the First Affiliated Hospital of Xiamen University, Xiamen, China; 2Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland; and 3Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland One of the major design considerations for a drug is its The goal of drug development is to achieve high activity and pharmacokinetics in the blood. A drug with a short half-life in specificity for a desired biologic target. However, many potential the blood is less available at a target organ. Such a limitation pharmaceuticals that meet these criteria fail as therapeutics because dictates treatment with either high doses or more frequent doses, of unfavorable pharmacokinetics, in particular, rapid blood clearance, both of which may increase the likelihood of undesirable side effects. To address the need for additional methods to improve which prevents the achievement of therapeutic concentrations. For the blood half-life of drugs and molecular imaging agents, we some drugs, the administration of large or frequently repeated doses developed an “add-on” molecule that contains 3 groups: a trun- is required to achieve and maintain therapeutic levels (1) but can, in cated Evans blue dye molecule that binds to albumin with a low turn, increase the probability of undesired side effects.
  • Efficient Surface Formation Route of Interstellar Hydroxylamine Through NO Hydrogenation II: the Multilayer Regime in Interstellar Relevant Ices

    Efficient Surface Formation Route of Interstellar Hydroxylamine Through NO Hydrogenation II: the Multilayer Regime in Interstellar Relevant Ices

    1 Efficient Surface Formation Route of Interstellar Hydroxylamine through NO Hydrogenation II: the multilayer regime in interstellar relevant ices G. Fedoseev1, a), S. Ioppolo1, ‡, T. Lamberts1, 2, J. F. Zhen1, H. M. Cuppen2, H. Linnartz1 1Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, PO Box 9513, NL 2300 RA Leiden, The Netherlands 2Institute for Molecules and Materials, Radboud University Nijmegen, PO Box 9010, NL 6500 GL Nijmegen, The Netherlands Hydroxylamine (NH2OH) is one of the potential precursors of complex pre-biotic species in space. Here we present a detailed experimental study of hydroxylamine formation through nitric oxide (NO) surface hydrogenation for astronomically relevant conditions. The aim of this work is to investigate hydroxylamine formation efficiencies in polar (water-rich) and non-polar (carbon monoxide-rich) interstellar ice analogues. A complex reaction network involving both final (N2O, NH2OH) and intermediate (HNO, NH2O·, etc.) products is discussed. The main conclusion is that hydroxylamine formation takes place via a fast and barrierless mechanism and it is found to be even more abundantly formed in a water-rich environment at lower temperatures. In parallel, we experimentally verify the non-formation of hydroxylamine upon UV photolysis of NO ice at cryogenic temperatures as well as the non-detection of NC- and NCO-bond bearing species after UV processing of NO in carbon monoxide-rich ices. Our results are implemented into an astrochemical reaction model, which shows that NH2OH is abundant in the solid phase under dark molecular cloud conditions. Once NH2OH desorbs from the ice grains, it becomes available to form more complex species (e.g., glycine and β-alanine) in gas phase reaction schemes.
  • Caprolactam 99/00-4

    Caprolactam 99/00-4

    Caprolactam 99/00-4 March 2001 TABLE OF CONTENTS Page I EXECUTIVE SUMMARY - 1 - A. SYNOPSIS - 1 - B. TECHNOLOGY DEVELOPMENTS - 1 - 1. Enhancements to Conventional Technology - 2 - 2. Caprolactam from Alternative Sources - 2 - C. TECHNO-ECONOMICS - 5 - 1. Enhancements to Conventional Technology - 5 - 2. Routes Based on Butadiene - 5 - D. COMMERCIAL STATUS - 8 - 1. Consumption - 8 - 2. Supply/Demand Balance - 9 - 3. Trade - 9 - 4. Ammonium Sulfate - 10 - E. STRATEGIC ISSUES - 12 - 1. Cyclicality - 12 - 2. Nylon Feedstocks from One Source - 13 - F. NYLON RECYCLING - 14 - G. CONCLUSIONS - 15 - II INTRODUCTION - 16 - A. AIM OF THE STUDY - 1 - B. OVERVIEW - 17 - 1. Enhancements to Conventional Technology - 17 - 2. Caprolactam from Alternative Sources - 17 - C. CHEM SYSTEMS PRODUCTION COST METHODOLOGY - 20 - 1. Capital Cost Estimation - 20 - (a) Battery Limits Investment - 20 - (b) Off-Sites Investment - 21 - (c) Contractor Charges(2) Typically 15-25 Percent of Installed BL and OS Costs - 22 - (d) Project Contingency Allowance(2) - 22 - (e) Working Capital - 22 - (f) Other Project Costs(3) - 23 - (1) Start-Up/Commissioning Costs - 23 - (2) Miscellaneous Owner’s Costs - 23 - 2. Cost of Production Elements - 24 - (a) Battery Limits - 24 - (b) Production Costs - 25 - (1) Labor - 25 - TABLE OF CONTENTS (Continued) Page III CAPROLACTAM FROM AROMATIC-DERIVED FEEDSTOCKS - 26 - A. COMMERCIAL TECHNOLOGIES - 26 - 1. Overview - 26 - 2. Process Chemistry - 26 - (a) Cyclohexanone Synthesis - 26 - (b) Oxime Formation with Cyclohexanone Using Hydroxylamine
  • Toxicological Profile for Hydrazines. US Department Of

    Toxicological Profile for Hydrazines. US Department Of

    TOXICOLOGICAL PROFILE FOR HYDRAZINES U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 1997 HYDRAZINES ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. HYDRAZINES iii UPDATE STATEMENT Toxicological profiles are revised and republished as necessary, but no less than once every three years. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, E-29 Atlanta, Georgia 30333 HYDRAZINES vii CONTRIBUTORS CHEMICAL MANAGER(S)/AUTHOR(S): Gangadhar Choudhary, Ph.D. ATSDR, Division of Toxicology, Atlanta, GA Hugh IIansen, Ph.D. ATSDR, Division of Toxicology, Atlanta, GA Steve Donkin, Ph.D. Sciences International, Inc., Alexandria, VA Mr. Christopher Kirman Life Systems, Inc., Cleveland, OH THE PROFILE HAS UNDERGONE THE FOLLOWING ATSDR INTERNAL REVIEWS: 1 . Green Border Review. Green Border review assures the consistency with ATSDR policy. 2 . Health Effects Review. The Health Effects Review Committee examines the health effects chapter of each profile for consistency and accuracy in interpreting health effects and classifying end points. 3. Minimal Risk Level Review. The Minimal Risk Level Workgroup considers issues relevant to substance-specific minimal risk levels (MRLs), reviews the health effects database of each profile, and makes recommendations for derivation of MRLs. HYDRAZINES ix PEER REVIEW A peer review panel was assembled for hydrazines. The panel consisted of the following members: 1. Dr.
  • Fluorine-18-Labeled Fluorescent Dyes for Dual-Mode Molecular Imaging

    Fluorine-18-Labeled Fluorescent Dyes for Dual-Mode Molecular Imaging

    molecules Review Fluorine-18-Labeled Fluorescent Dyes for Dual-Mode Molecular Imaging Maxime Munch 1,2,*, Benjamin H. Rotstein 1,2 and Gilles Ulrich 3 1 University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada; [email protected] 2 Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada 3 Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, École Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, CEDEX 02, 67087 Strasbourg, France; [email protected] * Correspondence: [email protected]; Tel.: +1-613-696-7000 Academic Editor: Emmanuel Gras Received: 30 November 2020; Accepted: 16 December 2020; Published: 21 December 2020 Abstract: Recent progress realized in the development of optical imaging (OPI) probes and devices has made this technique more and more affordable for imaging studies and fluorescence-guided surgery procedures. However, this imaging modality still suffers from a low depth of penetration, thus limiting its use to shallow tissues or endoscopy-based procedures. In contrast, positron emission tomography (PET) presents a high depth of penetration and the resulting signal is less attenuated, allowing for imaging in-depth tissues. Thus, association of these imaging techniques has the potential to push back the limits of each single modality. Recently, several research groups have been involved in the development of radiolabeled fluorophores with the aim of affording dual-mode PET/OPI probes used in preclinical imaging studies of diverse pathological conditions such as cancer, Alzheimer’s disease, or cardiovascular diseases. Among all the available PET-active radionuclides, 18F stands out as the most widely used for clinical imaging thanks to its advantageous characteristics (t1/2 = 109.77 min; 97% β+ emitter).
  • Hydroxylamines and Hydrazines As Surrogates of Sp3 Carbons in Medicinal Chemistry

    Hydroxylamines and Hydrazines As Surrogates of Sp3 Carbons in Medicinal Chemistry

    Wayne State University Wayne State University Dissertations January 2018 Hydroxylamines And Hydrazines As Surrogates Of Sp3 Carbons In Medicinal Chemistry Sandeep Dhanju Wayne State University, [email protected] Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations Part of the Chemistry Commons Recommended Citation Dhanju, Sandeep, "Hydroxylamines And Hydrazines As Surrogates Of Sp3 Carbons In Medicinal Chemistry" (2018). Wayne State University Dissertations. 2156. https://digitalcommons.wayne.edu/oa_dissertations/2156 This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. HYDROXYLAMINES AND HYDRAZINES AS SURROGATES OF SP3 CARBONS IN MEDICINAL CHEMISTRY by SANDEEP DHANJU DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2019 MAJOR: CHEMISTRY (Organic) Approved By: Advisor Date DEDICATION I dedicate my PhD work to my parents Sanubhai Shrestha and Punamaya Dhanju, for their endless love and support. ii ACKNOWLEDGEMENTS First and foremost, I would like to express my sincere gratitude to my Ph.D. advisor Prof. David Crich for his incessant support and guidance for my Ph.D. research work during the past five years in his laboratory. I am grateful and fortunate to be one of his graduate students. His encouragement and motivation drove me to the end of this thesis, and I was able to develop an in-depth knowledge and enthusiasm in the areas of organic chemistry and medicinal chemistry. I would like to extend my gratitude to Prof.
  • The Reaction Mechanism of Acetaldehyde Ammoximation to Its Oxime in the TS-1/H2O2 System

    The Reaction Mechanism of Acetaldehyde Ammoximation to Its Oxime in the TS-1/H2O2 System

    catalysts Article The Reaction Mechanism of Acetaldehyde Ammoximation to Its Oxime in the TS-1/H2O2 System Chaoqun Meng 1,2, Suohe Yang 1, Guangxiang He 1, Guohua Luo 1, Xin Xu 1 and Haibo Jin 1,* 1 Department of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; [email protected] (C.M.); [email protected] (S.Y.); [email protected] (G.H.); [email protected] (G.L.); [email protected] (X.X.) 2 College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China * Correspondence: [email protected]; Tel.: +86-184-1822-9069 Academic Editor: Keith Hohn Received: 11 May 2016; Accepted: 16 July 2016; Published: 22 July 2016 Abstract: A qualitative analysis for the ammoximation of acetaldehyde to its oxime in the TS-1(Titanium Silicalite-1)/H2O2 system was investigated using an in situ infrared spectrometer (ReactIR15). NH3 is first oxidized to NH2OH by TS-1/H2O2; then, CH3CH=NOH forms after NH2OH reacts with CH3CHO. That means the intermediate of this reaction is NH2OH instead of CH3CH=NH. Experiments have been conducted to verify the mechanism, and the results are in good agreement with the infrared findings. Keywords: TS-1; H2O2; ReactIR15; ammoximation; acetaldehyde 1. Introduction Acetaldoxime is one of the simplest oxime-containing compounds, and it has a wide variety of uses in chemical synthesis processes as an important intermediate [1,2]. It is especially notable for its commercial application as an intermediate in the production of pesticides and cyanogenic glucosides [3] or as boiler chemicals to remove oxygen with its limited toxicity and strong reduction [2].
  • Hydroxylamine Hydrochloride Safety Data Sheet According to Federal Register / Vol

    Hydroxylamine Hydrochloride Safety Data Sheet According to Federal Register / Vol

    Hydroxylamine Hydrochloride Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 05/30/2007 Revision date: 10/31/2017 Supersedes: 09/22/2015 Version: 1.2 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Hydroxylamine Hydrochloride CAS-No. : 5470-11-1 Product code : LC15515 Formula : NH2OH.HCl Synonyms : Hydroxylammonium chloride / hydroxylamine chloride / oxammonium, hydrochloride 1.2. Recommended use and restrictions on use Use of the substance/mixture : Catalyst Recommended use : Laboratory chemicals Restrictions on use : Not for food, drug or household use 1.3. Supplier LabChem Inc Jackson's Pointe Commerce Park Building 1000, 1010 Jackson's Pointe Court Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 [email protected] - www.labchem.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or 011-703-527-3887 SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Corrosive to metals H290 May be corrosive to metals Category 1 Acute toxicity (oral) H302 Harmful if swallowed Category 4 Acute toxicity (dermal) H312 Harmful in contact with skin Category 4 Skin corrosion/irritation H315 Causes skin irritation Category 2 Serious eye damage/eye H319 Causes serious eye irritation irritation Category 2A Skin sensitization, Category H317 May cause an allergic skin reaction 1 Carcinogenicity Category 2 H351 Suspected of causing cancer Specific target organ H373 May cause damage to organs (blood) through prolonged or repeated exposure toxicity (repeated exposure) Category 2 Hazardous to the aquatic H400 Very toxic to aquatic life environment - Acute Hazard Category 1 Full text of H statements : see section 16 2.2.
  • Cyclohexanone Oxime

    Cyclohexanone Oxime

    National Toxicology Program Toxicity Report Series Number 50 NTP Technical Report on Toxicity Studies of Cyclohexanone Oxime (CAS No. 100-64-1) Administered by Drinking Water to B6C3F1 Mice Leo T. Burka, Ph.D., Study Scientist National Toxicology Program Post Office Box 12233 Research Triangle Park, NC 27709 United States Department of Health and Human Services Public Health Service National Institutes of Health Note to the Reader The National Toxicology Program (NTP) is made up of four charter agencies of the United States Department of Health and Human Services (DHHS): the National Cancer Institute (NCI) of the National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS) of the National Institutes of Health; the National Center for Toxicological Research (NCTR) of the Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH) of the Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program was transferred from NCI to NIEHS. NTP coordinates the relevant Public Health Service programs, staff, and resources that are concerned with basic and applied research and with biological assay development and validation. NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. NTP designs and conducts studies to characterize and evaluate the toxicologic potential of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology studies are chosen primarily on the bases of human exposure, level of production, and chemical structure.
  • Fire Diamond HFRS Ratings

    Fire Diamond HFRS Ratings

    Fire Diamond HFRS Ratings CHEMICAL H F R Special Hazards 1-aminobenzotriazole 0 1 0 1-butanol 2 3 0 1-heptanesulfonic acid sodium salt not hazardous 1-methylimidazole 3 2 1 corrosive, toxic 1-methyl-2pyrrolidinone, anhydrous 2 2 1 1-propanol 2 3 0 1-pyrrolidinecarbonyl chloride 3 1 0 1,1,1,3,3,3-Hexamethyldisilazane 98% 332corrosive 1,2-dibromo-3-chloropropane regulated carcinogen 1,2-dichloroethane 1 3 1 1,2-dimethoxyethane 1 3 0 peroxide former 1,2-propanediol 0 1 0 1,2,3-heptanetriol 2 0 0 1,2,4-trichlorobenzene 2 1 0 1,3-butadiene regulated carcinogen 1,4-diazabicyclo(2,2,2)octane 2 2 1 flammable 1,4-dioxane 2 3 1 carcinogen, may form explosive mixture in air 1,6-hexanediol 1 0 0 1,10-phenanthroline 2 1 0 2-acetylaminofluorene regulated carcinogen, skin absorbtion 2-aminobenzamide 1 1 1 2-aminoethanol 3 2 0 corrosive 2-Aminoethylisothiouronium bromide hydrobromide 2 0 0 2-aminopurine 1 0 0 2-amino-2-methyl-1,3-propanediol 0 1 1 2-chloroaniline (4,4-methylenebis) regulated carcinogen 2-deoxycytidine 1 0 1 2-dimethylaminoethanol 2-ethoxyethanol 2 2 0 reproductive hazard, skin absorption 2-hydroxyoctanoic acid 2 0 0 2-mercaptonethanol 3 2 1 2-Mercaptoethylamine 201 2-methoxyethanol 121may form peroxides 2-methoxyethyl ether 121may form peroxides 2-methylamino ethanol 320corrosive, poss.sensitizer 2-methyl-3-buten-2-ol 2 3 0 2-methylbutane 1 4 0 2-napthyl methyl ketone 111 2-nitrobenzoic acid 2 0 0 2-nitrofluorene 0 0 1 2-nitrophenol 2 1 1 2-propanol 1 3 0 2-thenoyltrifluoroacetone 1 1 1 2,2-oxydiethanol 1 1 0 2,2,2-tribromoethanol 2 0
  • Hydroxylamine As an Intermediate in Ammonia Oxidation by Globally Abundant Marine Archaea

    Hydroxylamine As an Intermediate in Ammonia Oxidation by Globally Abundant Marine Archaea

    Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea Neeraja Vajralaa,1, Willm Martens-Habbenab,1, Luis A. Sayavedra-Sotoa, Andrew Schauerc, Peter J. Bottomleyd, David A. Stahlb, and Daniel J. Arpa,2 Departments of aBotany and Plant Pathology and dMicrobiology, Oregon State University, Corvallis, OR 97331; and Departments of bCivil and Environmental Engineering and cEarth and Space Science, University of Washington, Seattle, WA 98195 Edited by Edward F. DeLong, Massachusetts Institute of Technology, Cambridge, MA, and approved December 7, 2012 (received for review August 17, 2012) The ammonia-oxidizing archaea have recently been recognized as or cytochromes c554 and cM552 critical for energy conversion in a significant component of many microbial communities in the AOB (8–15). Thus, either the product of NH3 oxidation is not biosphere. Although the overall stoichiometry of archaeal chemo- NH2OH or, alternatively, these phylogenetically deeply branch- − autotrophic growth via ammonia (NH3) oxidation to nitrite (NO2 ) ing thaumarchaea use a novel biochemistry for NH2OH oxida- is superficially similar to the ammonia-oxidizing bacteria, genome tion and electron transfer (8). sequence analyses point to a completely unique biochemistry. The In an attempt to gain further insights into the biochemistry and only genomic signature linking the bacterial and archaeal bioche- physiology of these unique archaeal nitrifiers, we here investigated Nitrosopumilus maritimus mistries of NH3 oxidation is a highly divergent homolog of the the role of NH2OH in metabolism. ammonia monooxygenase (AMO). Although the presumptive These studies were complicated by the extremely oligotrophic product of the putative AMO is hydroxylamine (NH2OH), the ab- character of this organism contributing to very low cell densities sence of genes encoding a recognizable ammonia-oxidizing bacte- in culture (16).