Inhomogeneous Cosmologies with Clustered Dark Energy Or a Local Matter Void
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cosmicflows-3: Cosmography of the Local Void
Draft version May 22, 2019 Preprint typeset using LATEX style AASTeX6 v. 1.0 COSMICFLOWS-3: COSMOGRAPHY OF THE LOCAL VOID R. Brent Tully, Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Daniel Pomarede` Institut de Recherche sur les Lois Fondamentales de l'Univers, CEA, Universite' Paris-Saclay, 91191 Gif-sur-Yvette, France Romain Graziani University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN Lyon, France Hel´ ene` M. Courtois University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN Lyon, France Yehuda Hoffman Racah Institute of Physics, Hebrew University, Jerusalem, 91904 Israel Edward J. Shaya University of Maryland, Astronomy Department, College Park, MD 20743, USA ABSTRACT Cosmicflows-3 distances and inferred peculiar velocities of galaxies have permitted the reconstruction of the structure of over and under densities within the volume extending to 0:05c. This study focuses on the under dense regions, particularly the Local Void that lies largely in the zone of obscuration and consequently has received limited attention. Major over dense structures that bound the Local Void are the Perseus-Pisces and Norma-Pavo-Indus filaments sepa- rated by 8,500 km s−1. The void network of the universe is interconnected and void passages are found from the Local Void to the adjacent very large Hercules and Sculptor voids. Minor filaments course through voids. A particularly interesting example connects the Virgo and Perseus clusters, with several substantial galaxies found along the chain in the depths of the Local Void. The Local Void has a substantial dynamical effect, causing a deviant motion of the Local Group of 200 − 250 km s−1. -
An Overview of Nonstandard Signals in Cosmological Data †
Proceeding Paper An Overview of Nonstandard Signals in Cosmological Data † George Alestas ‡,* , George V. Kraniotis ‡ and Leandros Perivolaropoulos ‡ Division of Theoretical Physics, University of Ioannina, 45110 Ioannina, Greece; [email protected] (G.V.K.); [email protected] (L.P.) * Correspondence: [email protected] † Presented at the 1st Electronic Conference on Universe, 22–28 February 2021; Available online: https://ecu2021.sciforum.net/. ‡ Current address: Department of Physics, University of Ioannina, 45110 Ioannina, Greece. Abstract: We discuss in a unified manner many existing signals in cosmological and astrophysical data that appear to be in some tension (2s or larger) with the standard LCDM as defined by the Planck18 parameter values. The well known tensions of LCDM include the H0 tension the S8 tension and the lensing (Alens) CMB anomaly. There is however, a wide range of other, less standard signals towards new physics. Such signals include, hints for a closed universe in the CMB, the cold spot anomaly indicating non-Gaussian fluctuations in the CMB, the hemispherical temperature variance assymetry and other CMB anomalies, cosmic dipoles challenging the cosmological principle, the Lyman-a forest Baryon Accoustic Oscillation anomaly, the cosmic birefringence in the CMB, the Lithium problem, oscillating force signals in short range gravity experiments etc. In this contribution present the current status of many such signals emphasizing their level of significance and referring to recent resources where more details can be found for each signal. We also briefly mention some possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. In many cases, the signals presented are controversial and there is currently debate in the literature on the possible systematic origin of some of these signals. -
Finite Cosmology and a CMB Cold Spot
SLAC-PUB-11778 gr-qc/0602102 Finite cosmology and a CMB cold spot Ronald J. Adler,∗ James D. Bjorken† and James M. Overduin∗ ∗Gravity Probe B, Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, U.S.A. †Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, U.S.A. The standard cosmological model posits a spatially flat universe of infinite extent. However, no observation, even in principle, could verify that the matter extends to infinity. In this work we model the universe as a finite spherical ball of dust and dark energy, and obtain a lower limit estimate of its mass and present size: the mass 23 is at least 5 10 M⊙ and the present radius is at least 50 Gly. If we are not too far × from the dust-ball edge we might expect to see a cold spot in the cosmic microwave background, and there might be suppression of the low multipoles in the angular power spectrum. Thus the model may be testable, at least in principle. We also obtain and discuss the geometry exterior to the dust ball; it is Schwarzschild-de Sitter with a naked singularity, and provides an interesting picture of cosmogenesis. Finally we briefly sketch how radiation and inflation eras may be incorporated into the model. 1 Introduction The standard or “concordance” model of the present universe has been very successful in that it is consistent with a wide and diverse array of cosmological data. The model posits a spatially flat (k = 0) Friedmann-Robertson-Walker (FRW) universe of infinite extent, filled with dark energy, well described by a cosmological constant, and pressureless cold dark matter or “dust.” Despite the phenomenological success of the model, our present ignorance of the physical nature of both the dark energy and dark matter should prevent us from being complacent. -
Calibrating the Fundamental Plane with SDSS DR8 Data⋆
A&A 557, A21 (2013) Astronomy DOI: 10.1051/0004-6361/201321466 & c ESO 2013 Astrophysics Calibrating the fundamental plane with SDSS DR8 data Christoph Saulder1,2,Steffen Mieske1, Werner W. Zeilinger2, and Igor Chilingarian3,4 1 European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago, Chile e-mail: [csaulder,smieske]@eso.org 2 Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria e-mail: [email protected] 3 Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS09 Cambridge, MA 02138, USA e-mail: [email protected] 4 Sternberg Astronomical Institute, Moscow State University, 13 Universitetski prospect, 119992 Moscow, Russia Received 13 March 2013 / Accepted 27 May 2013 ABSTRACT We present a calibration of the fundamental plane using SDSS Data Release 8. We analysed about 93 000 elliptical galaxies up to z < 0.2, the largest sample used for the calibration of the fundamental plane so far. We incorporated up-to-date K-corrections and used GalaxyZoo data to classify the galaxies in our sample. We derived independent fundamental plane fits in all five Sloan filters u, g, r, i,andz. A direct fit using a volume-weighted least-squares method was applied to obtain the coefficients of the fundamental plane, which implicitly corrects for the Malmquist bias. We achieved an accuracy of 15% for the fundamental plane as a distance indicator. We provide a detailed discussion on the calibrations and their influence on the resulting fits. These re-calibrated fundamental plane relations form a well-suited anchor for large-scale peculiar-velocity studies in the nearby universe. -
Southwest Florida Astronomical Society SWFAS
Southwest Florida Astronomical Society SWFAS The Eyepiece September 2013 A MESSAGE FROM THE PRESIDENT I hope everyone had a good Labor Day weekend! Well, as I said last month, Comet ISON is on its way. How it will perform is still uncertain. I will be talking about it and other upcoming events as our program this month. This summer the rain has really hurt observing. Did anyone get to see Nova Delphini at its brightest? We have a very busy fall/winter season with a lot of events and requests. Please let me know if you can help at any of the events. I will be sending out updated calendars regularly. Our October meeting program is to be determined. If you have a presentation or idea for a program, please let me know! Carole Holmberg has a public event planned for Friday Sept 13th at 8pm at the CNCP. The November meeting is our annual Telescope Renaissance night (with observing) starting at 7pm on the 7th at the CNCP. There will be no formal meeting that night. Moon: Sep New 5th, 1st Quarter 12th, Full 19th, Last Quarter 26th Oct New 4th, 1st Quarter 11th, Full 18th, Last Quarter 26th Star Parties: September 14, October 5, November 2, November 30, December 28. The planets: Venus is dominating the evening sky after sunset as Saturn slips further towards the sun. Mercury will make a brief appearance midmonth after sunset. Mars is reappearing in the morning sky (key to finding ISON) and Jupiter rises a few hours after midnight. Club Positions President: Program Coordinator: (239-940-2935) Brian Risley Vacant Club Historian: swfasbrisley@embarqmail. -
The Hestia Project: Simulations of the Local Group
MNRAS 000,2{20 (2020) Preprint 13 August 2020 Compiled using MNRAS LATEX style file v3.0 The Hestia project: simulations of the Local Group Noam I. Libeskind1;2 Edoardo Carlesi1, Rob J. J. Grand3, Arman Khalatyan1, Alexander Knebe4;5;6, Ruediger Pakmor3, Sergey Pilipenko7, Marcel S. Pawlowski1, Martin Sparre1;8, Elmo Tempel9, Peng Wang1, H´el`ene M. Courtois2, Stefan Gottl¨ober1, Yehuda Hoffman10, Ivan Minchev1, Christoph Pfrommer1, Jenny G. Sorce11;12;1, Volker Springel3, Matthias Steinmetz1, R. Brent Tully13, Mark Vogelsberger14, Gustavo Yepes4;5 1Leibniz-Institut fur¨ Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany 2University of Lyon, UCB Lyon 1, CNRS/IN2P3, IUF, IP2I Lyon, France 3Max-Planck-Institut fur¨ Astrophysik, Karl-Schwarzschild-Str. 1, D-85748, Garching, Germany 4Departamento de F´ısica Te´orica, M´odulo 15, Facultad de Ciencias, Universidad Aut´onoma de Madrid, 28049 Madrid, Spain 5Centro de Investigaci´on Avanzada en F´ısica Fundamental (CIAFF), Facultad de Ciencias, Universidad Aut´onoma de Madrid, 28049 Madrid, Spain 6International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia 7P.N. Lebedev Physical Institute of Russian Academy of Sciences, 84/32 Profsojuznaja Street, 117997 Moscow, Russia 8Potsdam University 9Tartu Observatory, University of Tartu, Observatooriumi 1, 61602 T~oravere, Estonia 10Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel 11Univ. Lyon, ENS de Lyon, Univ. Lyon I, CNRS, Centre de Recherche Astrophysique de Lyon, UMR5574, F-69007, Lyon, France 12Univ Lyon, Univ Lyon-1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230, Saint-Genis-Laval, France 13Institute for Astronomy (IFA), University of Hawaii, 2680 Woodlawn Drive, HI 96822, USA 14Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Accepted | . -
Astronomy Club of Tulsa Observer August 2013
Astronomy Club of Tulsa Observer August 2013 Photo: The Night Sky from 3RF, by Jerry Mullenix. Thank you Jerry! Permission to reprint anything from this newsletter is granted, PROVIDED THAT CREDIT IS GIVEN TO THE ORIGINAL AUTHOR AND THAT THE ASTRONOMY CLUB OF TULSA “OBSERVER” IS LISTED AS THE ORIGINAL SOURCE. For original content credited to others and so noted in this publication, you should obtain permission from that respective source prior to re-printing. Thank you very much for your cooperation. Please enjoy this edition of the Observer. Inside This Edition: Article/Item Page Calendar and Upcoming Events 3 President’s Message, by Lee Bickle 4 Treasurer’s and Membership Report, by John Land 5 The Secretary’s Stuff, by Tamara Green 7 NITELOG, by Tom Hoffelder 10 Size Does Matter, But So Does Dark Energy, by Dr. Ethan Siegel 14 Where We Meet 17 Officers, Board, Staff and Membership Info 18 The Editor wishes a big fat To Owen Green, whose birthday is August 29! Many Happy Returns Owen! 2 August 2013 September 2013 Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat 1 2 MN 3 MNB 1 2 3 4 5 6 MN 7 MNB 4 5 6 7 8 9 10 8 9 10 11 12 13 14 11 12 13 14 15 16 17 SW 15 16 17 18 19 20 CM 21 SW 18 19 20 21 22 23 PSP 24 22 23 24 25 26 27 28 PSPB PSPB 25 26 27 28 29 30 31 29 30 UPCOMING EVENTS: Sidewalk Astronomy Sat Aug 17 Bass Pro 7:45 PM Public Star Party Fri Aug 23 ACT Observatory 7:30 PM Labor Day Mon Sep 2 Members’ Night Fri Sep 6 ACT Observatory 7:00 PM General Meeting Fri Sep 20 TCC NE Campus 7:00 PM Sidewalk Astronomy Sat Sep 21 Bass Pro 7:15 PM Public Star Party Fri Sep 27 ACT Observatory 6:30 PM OKIE-TEX STAR PARTY is Sep 28 thru Oct 6 at Black Mesa! 3 President’s Message By Lee Bickle Hello everyone! Although July was a little unusual for us in the way of cooler temps and rain, we still had a busy month. -
A Mock Catalogue of Galaxy Luminosities, Colours and Positions for Cosmology
Durham E-Theses Rosella: A mock catalogue of galaxy luminosities, colours and positions for cosmology SAFONOVA, ALEKSANDRA How to cite: SAFONOVA, ALEKSANDRA (2019) Rosella: A mock catalogue of galaxy luminosities, colours and positions for cosmology, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/13321/ Use policy This work is licensed under a Creative Commons Attribution Non-commercial No Derivatives 2.0 UK: England & Wales (CC BY-NC-ND) Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Rosella: A mock catalogue of galaxy luminosities, colours and positions for cosmology Sasha Safonova A thesis presented for the degree of Master of Science by Research Institute for Computational Cosmology Department of Physics The University of Durham United Kingdom August 2019 Dedicated to Margarita Safonova, who devoted her life to the search for controlled thermonuclear fusion and taught me that physics adds a game to any situation. Rosella: A mock catalogue of galaxy luminosities, colours and positions for cosmology Sasha Safonova Abstract The scientific exploitation of the Dark Energy Spectroscopic Instrument Bright Galaxy Survey (DESI BGS) data requires the construction of mocks with galaxy population properties closely mimicking those of the actual DESI BGS targets. We create a high fidelity mock galaxy catalogue that can be used to interpret the DESI BGS data, as well as meeting the precision required for the tuning of thousands of approximate DESI BGS mocks needed for cosmological analyses with DESI BGS data. -
How Fast Can You Go
Traveling on Earth How fast can you go . Fast walking 2 m/s . Fast running 12 m/s You are always moving, even when you are standing still. Below are some . Automobile 30 m/s speeds to ponder. All values are expressed in meters per second. Japanese Bullet Train 90 m/s . Passenger Aircraft, 737 260 m/s You are Travelling . Concord Supersonic Aircraft 600 m/s . Bullet 760 m/s . Earth's rotation, at North Pole 0 m/s . Earth's rotation, at New York City 354 m/s . Earth's rotation, at the Equator 463 m/s Going to Space . Earth orbiting Sun 29,780 m/s The escape velocity is the minimum speed needed for a free, non-propelled . Sun orbiting Milky Way Galaxy 230,000 m/s object (e.g. bullet) to escape from the gravitational influence of a massive body. It is slower the farther away from the body the object is, and slower . Milky Way moving through space 631,000 m/s for less massive bodies. Your total speed in New York City 891,134 m/s . Earth 11,186 m/s . Moon 2,380 m/s Solar System Objects . Mars 5,030 m/s Planets closer to the Sun travel faster: . Jupiter 60,200 m/s . Mercury orbiting Sun 47,870 m/s . Milky Way (from Sun's orbit) 500,000 m/s . Venus orbiting Sun 35,020 m/s . Earth orbiting Sun 29,780 m/s References . Mars orbiting Sun 24,077 m/s https://en.wikipedia.org/wiki/Galactic_year . Jupiter orbiting Sun 13,070 m/s https://en.wikipedia.org/wiki/Tropical_year . -
Arxiv:1807.06205V1 [Astro-Ph.CO] 17 Jul 2018 1 Introduction2 3 the ΛCDM Model 18 2 the Sky According to Planck 3 3.1 Assumptions Underlying ΛCDM
Astronomy & Astrophysics manuscript no. ms c ESO 2018 July 18, 2018 Planck 2018 results. I. Overview, and the cosmological legacy of Planck Planck Collaboration: Y. Akrami59;61, F. Arroja63, M. Ashdown69;5, J. Aumont99, C. Baccigalupi81, M. Ballardini22;42, A. J. Banday99;8, R. B. Barreiro64, N. Bartolo31;65, S. Basak88, R. Battye67, K. Benabed57;97, J.-P. Bernard99;8, M. Bersanelli34;46, P. Bielewicz80;8;81, J. J. Bock66;10, 7 12;95 57;92 71;56;57 2;6 45;32;48 42 85 J. R. Bond , J. Borrill , F. R. Bouchet ∗, F. Boulanger , M. Bucher , C. Burigana , R. C. Butler , E. Calabrese , J.-F. Cardoso57, J. Carron24, B. Casaponsa64, A. Challinor60;69;11, H. C. Chiang26;6, L. P. L. Colombo34, C. Combet73, D. Contreras21, B. P. Crill66;10, F. Cuttaia42, P. de Bernardis33, G. de Zotti43;81, J. Delabrouille2, J.-M. Delouis57;97, F.-X. Desert´ 98, E. Di Valentino67, C. Dickinson67, J. M. Diego64, S. Donzelli46;34, O. Dore´66;10, M. Douspis56, A. Ducout57;54, X. Dupac37, G. Efstathiou69;60, F. Elsner77, T. A. Enßlin77, H. K. Eriksen61, E. Falgarone70, Y. Fantaye3;20, J. Fergusson11, R. Fernandez-Cobos64, F. Finelli42;48, F. Forastieri32;49, M. Frailis44, E. Franceschi42, A. Frolov90, S. Galeotta44, S. Galli68, K. Ganga2, R. T. Genova-Santos´ 62;15, M. Gerbino96, T. Ghosh84;9, J. Gonzalez-Nuevo´ 16, K. M. Gorski´ 66;101, S. Gratton69;60, A. Gruppuso42;48, J. E. Gudmundsson96;26, J. Hamann89, W. Handley69;5, F. K. Hansen61, G. Helou10, D. Herranz64, E. Hivon57;97, Z. Huang86, A. -
Prime Focus 2º Below Venus for Much Fainter Spica
Highlights of the September Sky. - - - 5thth → 6h - - - DUSK: Low in the west- southwest, look less than Prime Focus 2º below Venus for much fainter Spica. A Publication of the Kalamazoo Astronomical Society - - - 5th - - - September 2013 New Moon 7:36 am EDT - - - 8thth → 9thth - - - AM: Mars passes through M44, the Beehive Cluster ThisThis MonthsMonths KAS EventsEvents in Cancer. - - - 8thth - - - DUSK: Venus is very close General Meeting: Friday, September 13 @ 7:00 pm to a thin crescent Moon, Kalamazoo Area Math & Science Center - See Page 8 for Details with Spica nearby and Saturn to their upper left. th Observing Session: Saturday, September 14 @ 8:00 pm - - - 9th - - - DUSK: Saturn is to the The Moon, Uranus & Neptune - Kalamazoo Nature Center right of the Moon, with Venus to their lower left. Board Meeting: Sunday, September 15 @ 5:00 pm - - - 12thth - - - First Quarter Moon Sunnyside Church - 2800 Gull Road - All Members Welcome 1:08 pm EDT Observing Session: Saturday, September 28 @ 8:00 pm - - - 16thth → 19thth - - - DUSK: Saturn is less than Overwhelming Open Clusters - Kalamazoo Nature Center 4º from Venus. - - - 19th - - - Full Moon 7:13 am EDT InsideInside thethe Newsletter.Newsletter. .. .. - - - 22nd - - - Equinox: Autumn begins in the Northern Hemisphere Perseid Potluck Picnic Report............. p. 2 at 4:44 pm. Observations........................................... p. 2 - - - 24thth - - - DUSK: Binoculars and Stargazing at the Kiwanis Area............ p. 3 telescopes should show Spica just ¾º below Bruce C. Murray..................................... p. 4 brighter Mercury very low in WSW 15 - 30 minutes NASA Space Place.................................. p. 5 after sunset. September Night Sky............................. p. 6 - - - 26th - - - Last Quarter Moon KAS Board & Announcements............ p. 7 11:55 pm EDT General Meeting Preview.................... -
Local Galaxy Flows Within 5
A&A 398, 479–491 (2003) Astronomy DOI: 10.1051/0004-6361:20021566 & c ESO 2003 Astrophysics Local galaxy flows within 5 Mpc?;?? I. D. Karachentsev1,D.I.Makarov1;11,M.E.Sharina1;11,A.E.Dolphin2,E.K.Grebel3, D. Geisler4, P. Guhathakurta5;6, P. W. Hodge7, V. E. Karachentseva8, A. Sarajedini9, and P. Seitzer10 1 Special Astrophysical Observatory, Russian Academy of Sciences, N. Arkhyz, KChR 369167, Russia 2 Kitt Peak National Observatory, National Optical Astronomy Observatories, PO Box 26732, Tucson, AZ 85726, USA 3 Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany 4 Departamento de F´ısica, Grupo de Astronom´ıa, Universidad de Concepci´on, Casilla 160-C, Concepci´on, Chile 5 Herzberg Fellow, Herzberg Institute of Astrophysics, 5071 W. Saanich Road, Victoria, B.C. V9E 2E7, Canada 6 Permanent address: UCO/Lick Observatory, University of California at Santa Cruz, Santa Cruz, CA 95064, USA 7 Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA 8 Astronomical Observatory of Kiev University, 04053, Observatorna 3, Kiev, Ukraine 9 Department of Astronomy, University of Florida, Gainesville, FL 32611, USA 10 Department of Astronomy, University of Michigan, 830 Dennison Building, Ann Arbor, MI 48109, USA 11 Isaac Newton Institute, Chile, SAO Branch Received 10 September 2002 / Accepted 22 October 2002 Abstract. We present Hubble Space Telescope/WFPC2 images of sixteen dwarf galaxies as part of our snapshot survey of nearby galaxy candidates. We derive their distances from the luminosity of the tip of the red giant branch stars with a typical accuracy of 12%.