Galaxies and the Distance Ladder

Total Page:16

File Type:pdf, Size:1020Kb

Galaxies and the Distance Ladder Lecture 27 Galaxy Types and the Distance Ladder December 3, 2018 1 2 Early Observations • Some galaxies had been observed before 1900’s. – Distances were not known. – Some looked like faint spirals. • Originally thought to be nearby star forming nebulas. 3 Hubble Classification • Galaxies are classified by their appearance (morphology) • Main types – Spirals – Ellipticals – Lenticulars – Irregulars 4 Spirals • Flat disk, nuclear bulge, spiral arms • Contain young and old stars, gas, and dust. • Sub-classified by size of bulge and tightness of spiral arms. – Sa -- large bulge, tightly wound arms, less gas and dust. – Sb -- smaller bulge, more loosely wound arms – Sc -- small bulge, more loosely wound arms, more gas and dust. 5 Sa Sb Sc M81 M51 NGC 2997 NGC 4565 6 • Bars in Spirals – Galaxies have bar type shapes near the center – Labeled SBa, SBb, or SBc 7 Ellipticals • Balls of stars with round or oval shape • Classified E0 (round) to E7 (elliptical) • Usually have less dust and gas. • Contain older stars • Large range of sizes E0 M89 E2 M49 E4 NGC4889 8 Lenticulars (S0 / SB0) NGC 2859 type SB0 • Between elliptical and spiral galaxies • Some galaxies classified E4 to E7 may actually be lenticulars • Have disk and large bulge • Labeled S0 or SB0 (barred) • No spiral arms, usually little dust or gas NGC 1201 type S0 9 Irregulars • Do not fall into other categories • Often small NGC 4485 M82 LMC 10 Hubble Tuning Fork Diagram • Organizes classifications • Possible evolutionary track? Not so simple 11 Which type of galaxy tends to have the most gas and dust? A. Elliptical B. Irregular C. Lenticular D. Spiral 12 Distances to Galaxies • Galaxies were first thought to be star forming regions. • Proposed that the “spiral nebula” were “island universes”. • Main-sequence fitting is only good for distances up to 10,000 pc. Andromeda Galaxy 13 Using Cepheid Variable Stars to Measure Distances • Variable stars are stars whose brightness varies in a very smooth, predictable way. • Cepheid variables – periods vary from 1-100 days. Figure 23.5, Chaisson and McMillan, 6th ed. Astronomy Today, © 2008 Pearson Prentice Hall • RR Lyrae variables – periods are all less than 1 day. 14 • Cepheids are stars that have moved off of the main sequence – Star is expanding and contracting. – Luminosity rises and falls. Figure 23.6, Chaisson and McMillan, 6th ed. Astronomy Today, © 2008 Pearson Prentice Hall 15 Cepheid Variables • Average luminosity is related to pulsation period. • If luminosity and apparent brightness are known, distance can be determined Luminosity Apparent Brightness = 4d 2 Figure 23.7, Chaisson and McMillan, 6th ed. Astronomy Today, © 2008 Pearson Prentice Hall 16 Two Cepheid variable stars, A and B, have the same apparent magnitude, but star B has a shorter period. Which star is further away? A. Star A B. Star B C. They are at the same distance from us. 17 Two Cepheid variable stars, A and B, have the same apparent magnitude, but star B has a shorter period. Which star is further away? apparent brightness A. Star A bbAB= B. Star B LL AB= C. They are at the 22 44ddAB same distance dL from us. BB=1 dLAA 18 Supernovae as Standard Candles • Type Ia supernovae (exploding white dwarfs) all reach the same maximum luminosity, about 3 × 109 solar luminosities • If supernova is observed in another galaxy and the peak apparent brightness is measured, the distance can be calculated. Luminosity Apparent Brightness = 4d 2 19 Tully-Fisher Relation for Determining Distances • Used to determine distances to galaxies where individual stars cannot be seen. • Relates speed of rotation and luminosity of a galaxy. – The faster a galaxy rotates, the higher the luminosity. • If apparent brightness and luminosity are known, distance can be determined 20 • How is rotational speed measured? – Doppler Shift Figure 24.11, Chaisson and McMillan, 6th ed. Astronomy Today, • Tully-Fisher calibrated using © 2008 Pearson Prentice Hall nearby galaxies with variable stars 21 The Distance Ladder (or “Distance Chain,” see pp. 415-416) “main sequence fitting” Figure 26.12, Freedman and Kaufmann, 7th ed. Universe, © 2005 W. H. Freeman & Company 22 Which of the following distance calibration methods is most effective at short distances? A. Tully – Fisher B. Main-sequence fitting C. Cepheid variables D. Type Ia supernovae 23 Distribution of Galaxies • Most galaxies are clustered – Milky Way has 3 nearby companions (SMC, LMC, Sagittarius Dwarf) – Andromeda Galaxy (M31) is the largest in Local group – ~40 galaxies in Local Group (Size ~1 Mpc) Map of three-quarters of the members of the Local Group Figure 16-18, Comins and Kaufmann, Artist’s view of the Local Group 7th ed. Discovering the Universe, Figure 16.30, Arny and Schneider, 5th ed. Explorations, © 2005 W.H. Freeman and Company © 2008 The McGraw-Hill Companies, Inc. 24 Clusters of Galaxies • Galaxies often found in clusters – Rich cluster: many hundreds of galaxies – Poor cluster (or group): only a few dozen galaxies • Held together by gravity • Milky Way and Andromeda are the two large galaxies in a Local Group of about 40 to 70 galaxies (see p.4, Figure 1.1) • Milky Way is near the Virgo Cluster of ~1500 galaxies (Size ~4.4 Mpc = 14 Mly across), which is part of the Virgo Supercluster (33 Mpc = 110 Mly across) 25 Virgo Supercluster Figure 16.36, Arny and Schneider, 5th ed. Explorations, © 2008 The McGraw-Hill Companies 26 The Local Group of Galaxies Andromeda Milky Way Image from Wikipedia. See also Fig. 1.1, Bennett et al., The Essential Cosmic Perspective, 7th ed, p. 3. 27 Virgo Cluster – SDSS Image 28 Clusters and Superclusters • Large clusters – More ellipticals found near the center – More spirals found in outer regions • Superclusters – clusters of clusters of galaxies. – In between clusters -- no gas has been detected • Most must have been swept up during galaxy formation. 29 30 Abell 2218 Abell 2218 is a cluster of galaxies so dense that it warps spacetime and acts like a powerful lens, magnifying and distorting the galaxies that lie behind it. Credit: NASA/ESA 31 Role of Interactions • Small interactions may start formation of spiral structure. • Strong interactions (collisions, cannibalism) may alter structure completely – Spirals lose structure, become ellipticals. – Large galaxies “eat” many other galaxies, become very large 32 Galaxy Merger 33 Antennae Galaxy 34 Which of the following is NOT true concerning the Local Group? A. It contains about 50 member galaxies. B. It is roughly spherical in shape with the most massive galaxies near the center. C. It is a poor cluster. D. It is the galaxy cluster to which the Milky Way belongs..
Recommended publications
  • Infrared Spectroscopy of Nearby Radio Active Elliptical Galaxies
    The Astrophysical Journal Supplement Series, 203:14 (11pp), 2012 November doi:10.1088/0067-0049/203/1/14 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES Jeremy Mould1,2,9, Tristan Reynolds3, Tony Readhead4, David Floyd5, Buell Jannuzi6, Garret Cotter7, Laura Ferrarese8, Keith Matthews4, David Atlee6, and Michael Brown5 1 Centre for Astrophysics and Supercomputing Swinburne University, Hawthorn, Vic 3122, Australia; [email protected] 2 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 3 School of Physics, University of Melbourne, Melbourne, Vic 3100, Australia 4 Palomar Observatory, California Institute of Technology 249-17, Pasadena, CA 91125 5 School of Physics, Monash University, Clayton, Vic 3800, Australia 6 Steward Observatory, University of Arizona (formerly at NOAO), Tucson, AZ 85719 7 Department of Physics, University of Oxford, Denys, Oxford, Keble Road, OX13RH, UK 8 Herzberg Institute of Astrophysics Herzberg, Saanich Road, Victoria V8X4M6, Canada Received 2012 June 6; accepted 2012 September 26; published 2012 November 1 ABSTRACT In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett γ , and [Fe ii]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource. Key words: galaxies: elliptical and lenticular, cD – galaxies: nuclei – infrared: general – radio continuum: galaxies ∼ 1. INTRODUCTION 30% of the most massive galaxies are radio continuum sources (e.g., Fabbiano et al.
    [Show full text]
  • Astronomy 2008 Index
    Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs.
    [Show full text]
  • Astronomy 422
    Astronomy 422 Lecture 15: Expansion and Large Scale Structure of the Universe Key concepts: Hubble Flow Clusters and Large scale structure Gravitational Lensing Sunyaev-Zeldovich Effect Expansion and age of the Universe • Slipher (1914) found that most 'spiral nebulae' were redshifted. • Hubble (1929): "Spiral nebulae" are • other galaxies. – Measured distances with Cepheids – Found V=H0d (Hubble's Law) • V is called recessional velocity, but redshift due to stretching of photons as Universe expands. • V=H0D is natural result of uniform expansion of the universe, and also provides a powerful distance determination method. • However, total observed redshift is due to expansion of the universe plus a galaxy's motion through space (peculiar motion). – For example, the Milky Way and M31 approaching each other at 119 km/s. • Hubble Flow : apparent motion of galaxies due to expansion of space. v ~ cz • Cosmological redshift: stretching of photon wavelength due to expansion of space. Recall relativistic Doppler shift: Thus, as long as H0 constant For z<<1 (OK within z ~ 0.1) What is H0? Main uncertainty is distance, though also galaxy peculiar motions play a role. Measurements now indicate H0 = 70.4 ± 1.4 (km/sec)/Mpc. Sometimes you will see For example, v=15,000 km/s => D=210 Mpc = 150 h-1 Mpc. Hubble time The Hubble time, th, is the time since Big Bang assuming a constant H0. How long ago was all of space at a single point? Consider a galaxy now at distance d from us, with recessional velocity v. At time th ago it was at our location For H0 = 71 km/s/Mpc Large scale structure of the universe • Density fluctuations evolve into structures we observe (galaxies, clusters etc.) • On scales > galaxies we talk about Large Scale Structure (LSS): – groups, clusters, filaments, walls, voids, superclusters • To map and quantify the LSS (and to compare with theoretical predictions), we use redshift surveys.
    [Show full text]
  • A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
    TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques.
    [Show full text]
  • Testing the Paradigm That Ultra-Luminous X-Ray Sources As a Class Represent Accreting Intermediate-Mass Black Holes
    Testing the Paradigm that Ultra-Luminous X-ray Sources as a Class Represent Accreting Intermediate-Mass Black Holes C. T. Berghea Department of Physics, The Catholic University of America, Washington, DC 20064 [email protected] K. A. Weaver Laboratory for High Energy Astrophysics, NASA's Goddard Space Flight Center, Greenbelt, MD 20771 [email protected] E. J. M. Colbert Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 [email protected] and T. P. Roberts Department of Physics, Durham University, South Road, Durham DH1 3LE, UK [email protected] ABSTRACT To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting Intermediate-Mass Black Holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray compari- son sample with the highest quality data in the Chandra archive. We establish a general property of ULXs that the most X-ray luminous objects possess the flattest X-ray spectra (in the Chandra band pass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hard- ening occurs at the highest luminosities (absorbed luminosity ≥5×1039 erg s−1) and is in line with recent models arguing that ULXs are actually stellar-mass black holes. From spectral modeling, we show that the evidence originally taken { 2 { to mean that ULXs are IMBHs - i.e., the \simple IMBH model" - is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to some large extent begun to negate the simple IMBH model based on fewer objects.
    [Show full text]
  • Radial Star Formation Histories in Fifteen Nearby Galaxies
    RADIAL STAR FORMATION HISTORIES IN FIFTEEN NEARBY GALAXIES Daniel A. Dale1, Gillian D. Beltz-Mohrmann2, Arika A. Egan3, Alan J. Hatlestad1, Laura J. Herzog4, Andrew S. Leung5, Jacob N. McLane5, Christopher Phenicie6, Jareth S. Roberts1, Kate L. Barnes7, M´ed´eric Boquien8, Daniela Calzetti9, David O. Cook1, Henry A. Kobulnicky1, Shawn M. Staudaher1, and Liese van Zee7 ABSTRACT New deep optical and near-infrared imaging is combined with archival ultravi- olet and infrared data for fifteen nearby galaxies mapped in the Spitzer Extended Disk Galaxy Exploration Science survey. These images are particularly deep and thus excellent for studying the low surface brightness outskirts of these disk- 8 11 dominated galaxies with stellar masses ranging between 10 and 10 M⊙. The spectral energy distributions derived from this dataset are modeled to investigate the radial variations in the galaxy colors and star formation histories. Taken as a whole, the sample shows bluer and younger stars for larger radii until reversing near the optical radius, whereafter the trend is for redder and older stars for larger galacto-centric distances. These results are consistent with an inside-out disk formation scenario coupled with an old stellar outer disk population formed through radial migration and/or the cumulative history of minor mergers and ac- cretions of satellite dwarf galaxies. However, these trends are quite modest and the variation from galaxy to galaxy is substantial. Additional data for a larger sample of galaxies are needed to confirm or dismiss
    [Show full text]
  • Dwarf Galaxies
    Europeon South.rn Ob.ervotory• ESO ML.2B~/~1 ~~t.· MAIN LIBRAKY ESO Libraries ,::;,q'-:;' ..-",("• .:: 114 ML l •I ~ -." "." I_I The First ESO/ESA Workshop on the Need for Coordinated Space and Ground-based Observations - DWARF GALAXIES Geneva, 12-13 May 1980 Report Edited by M. Tarenghi and K. Kjar - iii - INTRODUCTION The Space Telescope as a joint undertaking between NASA and ESA will provide the European community of astronomers with the opportunity to be active partners in a venture that, properly planned and performed, will mean a great leap forward in the science of astronomy and cosmology ­ in our understanding of the universe. The European share, however,.of at least 15% of the observing time with this instrumentation, if spread over all the European astrono­ mers, does not give a large amount of observing time to each individual scientist. Also, only well-planned co­ ordinated ground-based observations can guarantee success in interpreting the data and, indeed, in obtaining observ­ ing time on the Space Telescope. For these reasons, care­ ful planning and cooperation between different European groups in preparing Space Telescope observing proposals would be very essential. For these reasons, ESO and ESA have initiated a series of workshops on "The Need for Coordinated Space and Ground­ based Observations", each of which will be centred on a specific subject. The present workshop is the first in this series and the subject we have chosen is "Dwarf Galaxies". It was our belief that the dwarf galaxies would be objects eminently suited for exploration with the Space Telescope, and I think this is amply confirmed in these proceedings of the workshop.
    [Show full text]
  • New Type of Black Hole Detected in Massive Collision That Sent Gravitational Waves with a 'Bang'
    New type of black hole detected in massive collision that sent gravitational waves with a 'bang' By Ashley Strickland, CNN Updated 1200 GMT (2000 HKT) September 2, 2020 &lt;img alt="Galaxy NGC 4485 collided with its larger galactic neighbor NGC 4490 millions of years ago, leading to the creation of new stars seen in the right side of the image." class="media__image" src="//cdn.cnn.com/cnnnext/dam/assets/190516104725-ngc-4485-nasa-super-169.jpg"&gt; Photos: Wonders of the universe Galaxy NGC 4485 collided with its larger galactic neighbor NGC 4490 millions of years ago, leading to the creation of new stars seen in the right side of the image. Hide Caption 98 of 195 &lt;img alt="Astronomers developed a mosaic of the distant universe, called the Hubble Legacy Field, that documents 16 years of observations from the Hubble Space Telescope. The image contains 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. " class="media__image" src="//cdn.cnn.com/cnnnext/dam/assets/190502151952-0502-wonders-of-the-universe-super-169.jpg"&gt; Photos: Wonders of the universe Astronomers developed a mosaic of the distant universe, called the Hubble Legacy Field, that documents 16 years of observations from the Hubble Space Telescope. The image contains 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. Hide Caption 99 of 195 &lt;img alt="A ground-based telescope&amp;amp;#39;s view of the Large Magellanic Cloud, a neighboring galaxy of our Milky Way.
    [Show full text]
  • The Virgo Supercluster
    12-1 How Far Away Is It – The Virgo Supercluster The Virgo Supercluster {Abstract – In this segment of our “How far away is it” video book, we cover our local supercluster, the Virgo Supercluster. We begin with a description of the size, content and structure of the supercluster, including the formation of galaxy clusters and galaxy clouds. We then take a look at some of the galaxies in the Virgo Supercluster including: NGC 4314 with its ring in the core, NGC 5866, Zwicky 18, the beautiful NGC 2841, NGC 3079 with is central gaseous bubble, M100, M77 with its central supermassive black hole, NGC 3949, NGC 3310, NGC 4013, the unusual NGC 4522, NGC 4710 with its "X"-shaped bulge, and NGC 4414. At this point, we have enough distant galaxies to formulate Hubble’s Law and calculate Hubble’s Red Shift constant. From a distance ladder point of view, once we have the Hubble constant, and we can measure red shift, we can calculate distance. So we add Red Shift to our ladder. Then we continue with galaxy gazing with: NGC 1427A, NGC 3982, NGC 1300, NGC 5584, the dusty NGC 1316, NGC 4639, NGC 4319, NGC 3021 with is large number of Cepheid variables, NGC 3370, NGC 1309, and 7049. We end with a review of the distance ladder now that Red Shift has been added.} Introduction [Music: Antonio Vivaldi – “The Four Seasons – Winter” – Vivaldi composed "The Four Seasons" in 1723. "Winter" is peppered with silvery pizzicato notes from the high strings, calling to mind icy rain. The ending line for the accompanying sonnet reads "this is winter, which nonetheless brings its own delights." The galaxies of the Virgo Supercluster will also bring us their own visual and intellectual delight.] Superclusters are among the largest structures in the known Universe.
    [Show full text]
  • Challenges for Life in the Local Universe Paul A
    Challenges for Life in the Local Universe Paul A. Mason∗y New Mexico State University, Las Cruces, NM, USA Picture Rocks Observatory and Astrobiology Research Center, Las Cruces, NM, USA E-mail: [email protected] Peter L. Biermann PoS(GOLDEN2019)059 Max Planck Institute for Radio Astronomy, Bonn, Germany Karlsruhe Inst. für Tech. Karlsruhe, Germany Univ. of Alabama, Tuscaloosa, AL, USA Fachb. für Phys. & Astron., Univ. Bonn, Germany We address some of the major astrophysical challenges facing present day life, including humans, in the local universe. A truly successful species must break free of the cycle of evolutionary development punctuated by mass extinctions. This must be accomplished before the end of the relatively short habitability lifetime of its planet and within a window between major mass ex- tinctions. It is not inevitable that life will produce an apex species capable of understanding its vulnerability to extinction. Individuals must build a civilization - requiring hyper-social skills, and develop technology - requiring extraordinary mechanical skills. They must have the desire to understand the natural world and the universe well enough to anticipate, and even prevent, a variety of catastrophes. Ultimately, a space faring species is required; a quality not selected for naturally. Getting that far requires a great deal of luck. Getting beyond that, for humans and extraterrestrials alike, will require a sophisticated understanding of the physical universe and the accomplishment of tremendous feats of engineering. In particular, a successful species must learn to leave its home planet to avoid the demise of its host star. Eventually in fact, the Galaxy itself will become inhospitable to complex life during the Milky Way collision with the Andromeda galaxy.
    [Show full text]
  • Lecture Notes 2 the KINEMATICS of a HOMOGENEOUSLY EXPANDING UNIVERSE
    MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe September 15, 2018 Prof. Alan Guth Lecture Notes 2 THE KINEMATICS OF A HOMOGENEOUSLY EXPANDING UNIVERSE INTRODUCTION: Observational cosmology is of course a rich and complicated subject. It is described to some degree in Barbara Ryden's Introduction to Cosmology and in Steven Wein- berg's The First Three Minutes, and I will not enlarge on that discussion here. I will instead concentrate on the basic results of observational cosmology, and on how we can build a simple mathematical model that incorporates these results. The key properties of the universe, which we will use to build a mathematical model, are the following: (1) ISOTROPY Isotropy means the same in all directions. The nearby region, however, is rather anisotropic (i.e., looks different in different directions), since it is dominated by the center of the Virgo supercluster of galaxies, of which our galaxy, the Milky Way, is a part. The center of this supercluster is in the Virgo cluster, approximately 55 million light-years from Earth. However, on scales of several hundred million light-years or more, galaxy counts which were begun by Edwin Hubble in the 1930's show that the density of galaxies is very nearly the same in all directions. The most striking evidence for the isotropy of the universe comes from the observa- tion of the cosmic microwave background (CMB) radiation, which is interpreted as the remnant heat from the big bang itself. Physicists have measured the temperature of the cosmic background radiation in different directions, and have found it to be extremely uniform.
    [Show full text]
  • Clusters of Galaxy Hierarchical Structure the Universe Shows Range of Patterns of Structures on Decidedly Different Scales
    Astronomy 218 Clusters of Galaxy Hierarchical Structure The Universe shows range of patterns of structures on decidedly different scales. Stars (typical diameter of d ~ 106 km) are found in gravitationally bound systems called star clusters (≲ 106 stars) and galaxies (106 ‒ 1012 stars). Galaxies (d ~ 10 kpc), composed of stars, star clusters, gas, dust and dark matter, are found in gravitationally bound systems called groups (< 50 galaxies) and clusters (50 ‒ 104 galaxies). Clusters (d ~ 1 Mpc), composed of galaxies, gas, and dark matter, are found in currently collapsing systems called superclusters. Superclusters (d ≲ 100 Mpc) are the largest known structures. The Local Group Three large spirals, the Milky Way Galaxy, Andromeda Galaxy(M31), and Triangulum Galaxy (M33) and their satellites make up the Local Group of galaxies. At least 45 galaxies are members of the Local Group, all within about 1 Mpc of the Milky Way. The mass of the Local Group is dominated by 11 11 10 M31 (7 × 10 M☉), MW (6 × 10 M☉), M33 (5 × 10 M☉) Virgo Cluster The nearest large cluster to the Local Group is the Virgo Cluster at a distance of 16 Mpc, has a width of ~2 Mpc though it is far from spherical. It covers 7° of the sky in the Constellations Virgo and Coma Berenices. Even these The 4 brightest very bright galaxies are giant galaxies are elliptical galaxies invisible to (M49, M60, M86 & the unaided M87). eye, mV ~ 9. Virgo Census The Virgo Cluster is loosely concentrated and irregularly shaped, making it fairly M88 M99 representative of the most M100 common class of clusters.
    [Show full text]