Hypersensitivity – Type IV
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Poison Ivy (Toxicodendron Radicans) DESCRIPTION
Weed Identification and Control Sheet: www.goodoak.com/weeds Poison Ivy (Toxicodendron radicans) DESCRIPTION: Poison ivy is a native woody vine and member of the sumac family. It can be found in shady and sunny sites rambling along the ground, forming a small shrub, or climbing up trees. The vines attach to surfaces by means of thin aerial roots which grow along the length of the stem. The plant always has three leaflets which are often serrated. Usually these leaflets have one dominant lobe, giving the outer two leaves the appearance of mittens with the central leaf resembling a mitten with two thumbs. Young leaves are often dark green or maroonish, and the attractive fall foliage can range from brick to fire- engine red. Poison ivy is generally not considered a threat to native plant communities, in fact, the white berries provide winter food for birds and deer relish the foliage. Though harmless to most animals, many humans are allergic to the urushiol (yoo-roo-shee-ol) oil produced by the plant which results in itching, inflammation and blisters. This oil is found in all parts of the plant during all times of the year. This oil can also be spread by contact with clothing, shoes, pets or equipment that have touched poison ivy weeks or months after initial contact. It can even be transmitted in the air when poison ivy is burned, which presents a severe risk if inhaled and has been known to result in hospitalization and death. Though some people are not alleargic to the oil, its important to wear pants, long sleeves and gloves when working around poison ivy since the allergy can develop af- ter repeated exposures to urushiol. -
Frontiers in Dermatology and Venereology - a Series of Theme Issues in Relation to the 100-Year Anniversary of Actadv
ISSN 0001-5555 ActaDV Volume 100 2020 Theme issue ADVANCES IN DERMATOLOGY AND VENEREOLOGY A Non-profit International Journal for Interdisciplinary Skin Research, Clinical and Experimental Dermatology and Sexually Transmitted Diseases Frontiers in Dermatology and Venereology - A series of theme issues in relation to the 100-year anniversary of ActaDV Official Journal of - European Society for Dermatology and Psychiatry Affiliated with - The International Forum for the Study of Itch Immediate Open Access Acta Dermato-Venereologica www.medicaljournals.se/adv ACTA DERMATO-VENEREOLOGICA The journal was founded in 1920 by Professor Johan Almkvist. Since 1969 ownership has been vested in the Society for Publication of Acta Dermato-Venereologica, a non-profit organization. Since 2006 the journal is published online, independently without a commercial publisher. (For further information please see the journal’s website https://www. medicaljournals.se/acta) ActaDV is a journal for clinical and experimental research in the field of dermatology and venereology and publishes high- quality papers in English dealing with new observations on basic dermatological and venereological research, as well as clinical investigations. Each volume also features a number of review articles in special areas, as well as Correspondence to the Editor to stimulate debate. New books are also reviewed. The journal has rapid publication times. Editor-in-Chief: Olle Larkö, MD, PhD, Gothenburg Former Editors: Johan Almkvist 1920–1935 Deputy Editors: Sven Hellerström 1935–1969 -
Hypersensitivity Reactions (Types I, II, III, IV)
Hypersensitivity Reactions (Types I, II, III, IV) April 15, 2009 Inflammatory response - local, eliminates antigen without extensively damaging the host’s tissue. Hypersensitivity - immune & inflammatory responses that are harmful to the host (von Pirquet, 1906) - Type I Produce effector molecules Capable of ingesting foreign Particles Association with parasite infection Modified from Abbas, Lichtman & Pillai, Table 19-1 Type I hypersensitivity response IgE VH V L Cε1 CL Binds to mast cell Normal serum level = 0.0003 mg/ml Binds Fc region of IgE Link Intracellular signal trans. Initiation of degranulation Larche et al. Nat. Rev. Immunol 6:761-771, 2006 Abbas, Lichtman & Pillai,19-8 Factors in the development of allergic diseases • Geographical distribution • Environmental factors - climate, air pollution, socioeconomic status • Genetic risk factors • “Hygiene hypothesis” – Older siblings, day care – Exposure to certain foods, farm animals – Exposure to antibiotics during infancy • Cytokine milieu Adapted from Bach, JF. N Engl J Med 347:911, 2002. Upham & Holt. Curr Opin Allergy Clin Immunol 5:167, 2005 Also: Papadopoulos and Kalobatsou. Curr Op Allergy Clin Immunol 7:91-95, 2007 IgE-mediated diseases in humans • Systemic (anaphylactic shock) •Asthma – Classification by immunopathological phenotype can be used to determine management strategies • Hay fever (allergic rhinitis) • Allergic conjunctivitis • Skin reactions • Food allergies Diseases in Humans (I) • Systemic anaphylaxis - potentially fatal - due to food ingestion (eggs, shellfish, -
Delayed-Type Hypersensitivity Reaction to Measure Cellular Immune Responses in RNA-SARS-Cov-2 Vaccinated Individuals
Communication The Beauty of Simplicity: Delayed-Type Hypersensitivity Reaction to Measure Cellular Immune Responses in RNA-SARS-Cov-2 Vaccinated Individuals Yvelise Barrios 1, Andres Franco 1, Inmaculada Sánchez-Machín 2, Paloma Poza-Guedes 2, Ruperto González-Pérez 2 and Victor Matheu 2,* 1 Department of Immunology, Hospital Universitario de Canarias, 38320 San Cristóbal de La Laguna, Spain; [email protected] (Y.B.); [email protected] (A.F.) 2 Department of Allergy, Hospital Universitario de Canarias, 38320 San Cristóbal de La Laguna, Spain; [email protected] (I.S.-M.); [email protected] (P.P.-G.); [email protected] (R.G.-P.) * Correspondence: [email protected] Abstract: Background: Monitoring cellular immune responses elicited in vaccinated individuals is highly complicated. Methods: 28 individuals participated during the vaccination process with 12 BNT162b2 mRNA (Pfizer) vaccine. Specific anti-RBD IgG using a classic ELISA was performed in days 10 and 20 (after one dose of the vaccine) and on day 35 (after two vaccine doses) in serum samples of all participants. In parallel, DTH (delayed-type hypersensitivity) Skin Test using S protein was performed before (11/28) and after two doses (28/28) of the vaccine. Results: 6/28 individuals Citation: Barrios, Y.; Franco, A.; were considered positive for the specific anti-RBD IgG positive at day 10, whereas all 28 individuals Sánchez-Machín, I.; Poza-Guedes, P.; were positive at day 20. Moreover, 28/28 individuals increased the OD ratios at day 36 (2 doses). González-Pérez, R.; Matheu, V. The DTH cutaneous test was performed on 11/28 participants at day 20 (1 dose) showing 8/11 a positive Beauty of Simplicity: Delayed-Type Hypersensitivity Reaction to Measure reaction at 12 h. -
In Vitro Studies of Poison Oak Immunity. I. in Vitro Reaction of Human Lymphocytes to Urushiol
In vitro studies of poison oak immunity. I. In vitro reaction of human lymphocytes to urushiol. V S Byers, … , N Castagnoli, H Baer J Clin Invest. 1979;64(5):1437-1448. https://doi.org/10.1172/JCI109602. Research Article Poison oak, ivy, and sumac dermatitis is a T-cell-mediated reaction against urushiol, the oil found in the leaf of the plants. This hapten is extremely lipophilic and concentrates in cell membranes. A blastogenesis assay employing peripheral blood lymphocytes obtained from humans sensitized to urushiol is described. The reactivity appears 1--3 wk after exposure and persists from 6 wk to 2 mon. The dose-response range is narrow, with inhibition occurring at higher antigen concentrations. Urushiol introduced into the in vitro culture on autologous lymphocytes, erythrocytes and heterologous erythrocytes produces equal results as measured by the optimal urushiol dose, the intensity of reaction, and the frequency of positive reactors. This suggests that the urushiol is passed from introducer to some other presenter cell. Although the blastogenically reactive cell is a T cell, there is also a requirement for an accessory cell, found in the non-T- cell population, for reactivity. Evidence is presented that this cell is a macrophage. Find the latest version: https://jci.me/109602/pdf In Vitro Studies of Poison Oak Immunity I. IN VITRO REACTION OF HUMAN LYMPHOCYTES TO URUSHIOL VERA S. BYERS, WILLIAM L. EPSTEIN, NEAL CASTAGNOLI, and H. BAER, Department of Dermatology and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143; and Bureau of Biologics, Food and Drug Administration, Bethesda, Maryland 20014 A B S TR A C T Poison oak, ivy, and sumac dermatitis plant represents a severe hazard for outdoor workers is a T-cell-mediated reaction against urushiol, the oil (3,4). -
Leaves of Three, Let It Be
Leaves of Three, Let It Be By Doug Coffey, Fairfax Master Gardener Intern My neighbor, an Iranian immigrant, decided to remove a large bush maybe 4 to 5 feet tall and nearly as wide between our properties. I had ignored it, knowing it was so covered in poison ivy that the original plant was unrecognizable. I decided it was better to leave the “bush” alone until I could figure out how to get rid of it. But my neighbor, not consulting with me and not knowing the risks, got out a shovel, dug it up, pulled it out, cut it into pieces and hauled it to the curb. Within Brandeia University hours, he was in the emergency room and then several days after in the hospital getting massive doses of photo: steroids. He was so uncomfortable with the extensive blistering, rash and itching that he couldn’t even find a way to sleep. Even thinking about it today makes my skin itch. !P!o!i!s!o!n! !i!v!y! !(!T!o!x!i!c!o!d!e!n!d!r!o!n! !r!a!d!i!c!a!n!s!)! !c!o!n!t!a!i!n!s! !a! !l!a!c!q!u!e!r!-!t!y!p!e! !o!i!l! !c!a!ll! !e!d! !u!r!u!s!h!i!o!l!,! !(!y!o!u!-!R!o!o!-!s!h!e!e!-!a!l!l!)! !t!h!a!t! !c!a!n! !c!a!u!s!e! !r!e!d!n!e!s!s!,! !s!w!e!l!l!i!n!g! !a!n!d! !b!l!i!s!t!e!r!s!.! ! !U!r!u!s!h!i!o!l! !i!s! !f!o!u!n!d! !i!n! !a!l!l! !p!a!r!t!s! !o!f! !t!h!e! !p!l!a!n!t! --! !t!h!e! !l!e!a!v!e!s!,! !s!t!e!m!s! !a!n!d! !e!v!e!n! !t!h!e! !r!o!o!t!s!,! !a!n!d! !i!s! !p!a!r!t! !o!f! !t!h!e! !p!l!a!n!t’!s! !d!e!f!e!n!s!e! !a!g!a!i!n!s!t! !b!r!o!w!s!i!n!g! !a!n!i!m!a!l!s! !a!n!d! !h!u!m!a!n! !b!e!i!n!g!s! !w!h!o! !t!r!y! !t!o! !r!e!m!o!v!e! !i!t!.! !T!h!e! !o!i!l! !i!s! !m!o!s!t!l!y! -
What Is This Plant and Why Is This Japanese Artist Eating It? (From Page 196)
Brief Toxicology Communications BRIEF TOXICOLOGY COMMUNICATIONS Since many aspects of clinical toxicology involve visual 3. A clinical question should accompany the image. clues, the editorial board of The Journal of Medical A clinical narrative must be included and will be Toxicology is pleased to announce a new section. published separately in the same issue. The nar- rative should include any pertinent pathophysi- 1. The focal point of this section is an image sup- ology, mechanisms, pharmacokinetics, and a ported by a clinical case or a vignette of informa- reference list. tion. This is not intended to replace case reports, 4. Text and image format must meet the criteria which are published elsewhere in the journal. listed on the Instructions for Authors at http:// Examples may include a physical finding, crea- jmt.pennpress.org/PennPress/journals/jmt/ ture, plant, chemical structure, medication vial or authorGuide.pdf bottle, ECG tracing, historical photo, etc. 5. Submissions should be sent directly to lesliedye@ 2. The submission should be no more than 500 earthlink.net words. What is this plant and why is this Japanese artist eating it? (From page 196) Lewis S. Nelson, MDa, Michael Balick, PhDb, Nieve Shere, MSb aNew York City Poison Control Center, New York, New York bThe New York Botanical Garden, Bronx, New York ANSWER/DISCUSSION: hyposensitization, allowing them to work intimately with the urushiol monomer without developing the pruritic and uncom- Japanese lacquer artists use an urushiol-based product derived fortable vesicular rash typical of poison ivy (allergic contact from Toxicodendron vernicifluum (the Japanese lacquer tree) to dermatitis) [2]. -
Intriguing World of Weeds Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Intriguing World of Weeds iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Poison-Ivy/Poison-Oak/Poison-Sumac-The Virulent Weeds 1 LARRY W. MITICH2 I I; INTRODUCTION I, ii The word poison entered the English language in 1387 as 'poysoun" (18), and in Memoirs ofAmerican Academy of Arts and Sciences, v. 1, 1785, the word poison-ivy was used for the first time: "Poison ivy ... produces the same kind of inflammation and eruptions . as poison wood tree" (18). · The first known reference to poison-ivy, Toxicodendron radicans (L.) Ktze., dates from the 7th century in China and the 10th century in Japan. Since Toxicodendron species do not grow in Europe, the plants re mained unknown to Western civiliza tion until explorers visited the New World seven centuries later (7). Capt. John Smith (1579-1631) wrote the first description of poison-ivy and origi nated its common name; he noted a similarity in the climbing habit of They used that name for a shrub of the Southern States, North American poison-ivy to English with crenately-lobed, very pubescent leaflets (1). ivy (Hedera helix L.) (7). Toxicodendron, a pre-Linnaean name, was not accepted Joseph Pitton de Tournefort (1656-1708) established at the generic level by Linnaeus. Tournefort limited the the genus for poison-ivy in lnstitutiones rei herbariae, v. genus to ternate-leaved plants, thus omitting such close 1, p. 610, 1700 (7). The name is from the Latin for poison relatives of poison-ivy as poison-sumac and the oriental ous tree (9). lacquer tree (7). The lacquer tree has been known for In 1635 Jacques Philippe Cornut ( 1601-1651) wrote the first book on Canadian botany (Canadensium Plantarum thousands of years, and descriptions of the inflammations aliarumque nondum editarum historia, Parisiis [Paris]). -
Poison Ivy If Scratching Doesn’T Spread It, What Does? Itchy Myths Shattered! 4
October 1990 Poison Ivy If scratching doesn’t spread it, what does? Itchy myths shattered! 4 MysteryMatters The Fox River Fish Kill 6 Thousands of fish were dead. The neighbors were raising a stink. The scientists investigating it were stumped. Light Your Candy Get some wintergreen candies...put a little sparkle in your mouth! 10 The Phantom Flame A chemistry student transforms a common assignment into a metaphor for science. 13 The Back Burner Friedrich Wöhler’s Lost Aluminum 14 Shiny, cheap, useful aluminum is around us, everywhere. Wasn’t it always? The Puzzle Page The Margarine Puzzle 16 What common substance is added to margarine to lower the calorie count? pOisoN IVY By Eric Witzel Dormant, not dead Urushiol is actually a mixture of four It was a pleasant sunny afternoon, different but similar phenolic com and I was helping my father stack pounds called catechols, which con firewood. Some of the logs had con sist of a benzene ring with two venient handle-like vines that had hydroxyl (-OH) groups on grown firmly onto the tree. I grasped adjacent carbons them to carry the logs, blithely igno and a 15-carbon side rant of the type of vines they were. I chain (Figure 1). The paid for that ignorance. The next day catechols in urushiol are rela- I developed the red, itching rash that tively small, stable organic~~ ...~· comes from touching poison ivy compounds. Because vines-and so learned that the irritat they are stable, any ing agent in poison ivy remains active article that becomes con- '. long·after the plant is dead. -
Urushiol (Poison Ivy)-Triggered Suppressor T Cell Clone Generated from Peripheral Blood
Urushiol (poison ivy)-triggered suppressor T cell clone generated from peripheral blood. R S Kalish, C Morimoto J Clin Invest. 1988;82(3):825-832. https://doi.org/10.1172/JCI113685. Research Article Allergic contact dermatitis to Toxicodendron radicans (poison ivy) is mediated by the hapten urushiol. An urushiol-specific, interleukin 2 (IL-2)-dependent T cell clone (RLB9-7) was generated from the peripheral blood of a patient with a history of allergic contact dermatitis to T. radicans. This clone proliferated specifically to both leaf extract and pure urushiol. Although the clone had the phenotype CD3+CD4+CD8+, proliferation to antigen was blocked by anti-CD8 and anti-HLA- A, B, C, but not by anti-CD4, suggesting that CD4 was not functionally associated with the T cell receptor. Furthermore, studies with antigen-presenting cells from MHC-typed donors indicated that the clone was MHC class 1 restricted. RLB9- 7 was WT31 positive, indicating it bears the alpha beta T cell receptor. The clone lacked significant natural killer cell activity and produced only low levels of IL-2 or gamma-interferon upon antigen stimulation. Addition of RLB9-7 to autologous peripheral blood mononuclear cells in the presence of urushiol inhibited the pokeweed mitogen-driven IgG synthesis. This suppression was resistant to irradiation (2,000 rad) and was not seen when RLB9-7 was added to allogeneic cells, even in the presence of irradiated autologous antigen-presenting cells, suggesting that suppression was MHC restricted and not mediated by nonspecific soluble factors. However, RLB9-7 cells in the presence of urushiol inhibited the synthesis of tetanus toxoid-specific IgG by autologous lymphocytes, indicating that the suppression, […] Find the latest version: https://jci.me/113685/pdf Urushiol (Poison Ivy)-triggered Suppressor T Cell Clone Generated from Peripheral Blood Richard S. -
Hypersensitivity Reaction Types
put together by Alex Yartsev: Sorry if i used your images or data and forgot to reference you. Tell me who you are. [email protected] ypersensitivity Reactions ripped shamelessly fffrfrrromom a website which can no longer be recalled Type I - immediate hypersensitivity Mediated by IgE antibodies and produced by the immediate release of histamine, arachidonate and derivatives by basophils and mast cells. This causes an inflammatory response leading to an immediate (within seconds to minutes) reaction. Some examples: • Allergic asthma • Allergic conjunctivitis • Allergic rhinitis ("hay fever") • Anaphylaxis • Angioedema • Urticaria (hives) Type II - antibody-dependent hypersensitivity In type II hypersensitivity, the antibodies produced by the immune response bind to antigens on the patient's own cell surfaces. IgG and IgM antibodies bind to these antigens to form complexes that activate the classical pathway of complement activation for eliminating cells presenting foreign antigens (which are usually, but not in this case, pathogens). That is, mediators of acute inflammation are generated at the site and membrane attack complexes cause cell lysis and death. The reaction takes hours to a day. Some examples: • Autoimmune haemolytic anaemia • Goodpasture's syndrome • Pemphigus • Pernicious anemia • Immune thrombocytopenia • Transfusion reactions Type III - immune complex hypersensitivity In type III hypersensitivity, soluble immune complexes (aggregations of antigens and IgG and IgM antibodies) form in the blood and are deposited -
Hypersensitivity Reactions to Monoclonal Antibodies: Classification and Treatment Approach (Review)
EXPERIMENTAL AND THERAPEUTIC MEDICINE 22: 949, 2021 Hypersensitivity reactions to monoclonal antibodies: Classification and treatment approach (Review) IRENA PINTEA1,2*, CARINA PETRICAU1,2, DINU DUMITRASCU3, ADRIANA MUNTEAN1,2, DANIEL CONSTANTIN BRANISTEANU4*, DACIANA ELENA BRANISTEANU5* and DIANA DELEANU1,2,6 1Allergy Department, ‘Professor Doctor Octavian Fodor’ Regional Institute of Gastroenterology and Hepatology; 2Allergology and Immunology Discipline, 3Anatomy Discipline, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400000 Cluj‑Napoca; Departments of 4Ophthalmology and 5Dermatology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi; 6Internal Medicine Department, ‘Professor Doctor Octavian Fodor’ Regional Institute of Gastroenterology and Hepatology, 400000 Cluj‑Napoca, Romania Received February 16, 2021; Accepted March 18, 2021 DOI: 10.3892/etm.2021.10381 Abstract. The present paper aims to review the topic of adverse Contents reactions to biological agents, in terms of the incriminating mechanisms and therapeutic approach. As a result of immuno‑ 1. Introduction modulatory therapy, the last decade has achieved spectacular 2. Adverse reactions to monoclonal antibodies: Classification results in the targeted treatment of inflammatory, autoimmune, 3. Therapeutic approach: Rapid drug desensitization and neoplastic diseases, to name a few. The widespread use of 4. Conclusions biological agents is, however, associated with an increase in the number of observed adverse drug reactions ranging from local erythema