UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

CENTRO DE BIOCIÊNCIAS

PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA

TESE DE DOUTORADO

VARIABILIDADE ACÚSTICA E RESPOSTAS EVOLUTIVAS A DIFERENTES PRESSÕES SELETIVAS NO CANTO DE ANÚNCIO DE ANFÍBIOS

David Lucas Röhr

Natal-RN

Maio/2015

David Lucas Röhr

VARIABILIDADE ACÚSTICA E RESPOSTAS EVOLUTIVAS A DIFERENTES PRESSÕES SELETIVAS NO CANTO DE ANÚNCIO DE ANFÍBIOS

Tese apresentada à Coordenação do Programa de Pós-Graduação em Ecologia, da Universidade Federal do Rio Grande do Norte, em cumprimento às exigências para obtenção do grau

de Doutor.

Orientador: Prof. Dr. Adrian Antonio Garda

Natal-RN

Maio/2015

Catalogação da Publicação na Fonte. UFRN / Biblioteca Setorial do Centro de Biociências

Röhr, David Lucas. Variabilidade acústica e respostas evolutivas a diferentes pressões seletivas no canto de anúncio de anfíbios. / David Lucas Röhr. – Natal, RN, 2015.

158 f.: il.

Orientador: Prof. Dr. Adrian Antonio Garda.

Tese (Doutorado) – Universidade Federal do Rio Grande do Norte. Centro de Biociências. Programa de Pós-Graduação em Ecologia.

1. Anura. – Tese. 2. Comunicação acústica. – Tese. 3. Canto de anúncio. – Tese. I. Garda, Adrian Antonio. II. Universidade Federal do Rio Grande do Norte. III. Título.

RN/UF/BSE-CB CDU 567.8

BANCA EXAMINADORA

______

Dr. Adrian Antonio Garda – Universidade Federal do Rio Grande do Norte/Presidente – Orientador

______

Dr. Carlos Roberto Sorensen Dutra da Fonseca – Universidade Federal do Rio Grande do Norte/ Membro Interno

______

Dr. Márcio Zikán Cardoso – Universidade Federal do Rio Grande do Norte/ Membro Interno

______

Dr. Carlos Barros de Araújo - Universidade Federal da Paraíba

Membro Externo

______

Dr. Marcelo Felgueiras Napoli - Universidade Federal da Bahia

Membro Externo

AGRADECIMENTOS

Gostaria de começar agradecendo à minha família, devo tudo que sou a eles. Meu pai, Ferdinand Röhr, que sempre foi meu maior exemplo, por todos os conselhos muito sensatos (deveria ter seguido-os mais), por todo carinho e apoio em todas as fases da minha vida, especialmente durante o doutorado. Minha mãe, Gunde Schneider, por todo amor e cuidado que sempre teve por mim e o grande apoio, principalmente nos momentos de dificuldade. Minha irmã, Lucia Röhr, por ser minha melhor amiga e uma grande parceira na vida, juntamente com meu sobrinho, João Lucas, que tá pra nascer a qualquer momento e já o amo muito. A David Lemos, meu cunhado e amigo.

Gostaria também de agradecer fortemente ao meu orientador, Adrian Garda, e à minha co-orientadora, Flora Juncá, por todos os ensinamentos sobre bioacústica, herpetologia e ciência em geral, além de todo o apoio e amizade.

Agradeço muito ao meu grande amigo Gustavo Paterno. A convivência com ele durante esse doutorado foi fundamental para a elaboração desta tese. As muitas discussões sobre ciência, estudos de xadrez e a ajuda direta na confecção da tese, além de sua amizade e companheirismo, foram inestimáveis para minha vida em Natal.

Agradeço muito também ao Felipe Camurugi, sua amizade e sua disposição em me ajudar foram muito especiais pra mim.

Agradeço ao Marcelo Gehara e ao Pablo Martinez, pela grande contribuição em dois diferentes capítulos desta tese.

Agradeço a todos os bons amigos que fiz em Natal, especialmente todos com quem morei na república Tanquetão, vocês todos fizeram minha estadia nesta cidade muito feliz, me sentindo fazer parte de uma verdadeira família: Laura Fernandez, Gustavo Paterno; Anna Santos, Natália Pires, Andree Kimber, Nicolas Sebastian, Lucas Viegas e Marina Fagundes.

Agradeço a todos do Laboratório de Anfíbios e Repteis da UFRN, em especial, Felipe Camurugi, Vinicius São Pedro, Eliana Faria, Marcelo Gehara, Jéssica Fernanda,

Felipe Medeiros, Diego Santana, Sara Mângia, Emanuel Fonseca, Flávia Mól Lanna, Adrian Garda, Marília Lion, Alan Felipe e Thiago Pereira, que se tornaram bons amigos.

Agradeço a todos que foram a campo comigo, foram tantos que minha memória ridícula não permite listar todos.

Aos meus amigos do C.R.A, especialmente Bruno Caxias, Fausto Luiz, Gustavo Galvão, Mário Jarbas, Rodrigo Lapa, Cláudio Leandro, Leo Vidal, Rodrigo Almeida e Ricardo Quirino.

Agradeço a diversas pessoas que passaram por minha vida em diferentes fases e me tornaram uma pessoa melhor: Antônio Mattos, Washington Aarão, Alana Araújo, Denise Bacelar, Bruno Pilatus, Gustavo Paterno, Arturo Escobar, Vinícius São Pedro, Eliana Faria, Karol Marcal, Mario Jarbas, Juliana Fortes, Igor Alexandre, Welber Pina, Thiago Nilo e Thiago Mallman.

Agradeço a CAPES pela bolsa, ao CNPq por financiamento das coletas do segundo capítulo e ao projeto Sisbiota Herpeto-Helmintos por financiar as coletas no Amapá do primeiro capítulo.

Por último, gostaria de fazer um agradecimento especial à Alana Araújo, que há quatro anos topou o desafio de enfrentar esse doutorado junto comigo e, apesar da distância física, na maior parte do tempo, foi minha maior companheira durante todos esses anos. Sua importância pra mim é imensurável.

SUMÁRIO

Introdução Geral ...... 01 Referências Introdução Geral...... 04 Capítulo 01 - Variability in Anuran Advertisement Call: a Multi-level Study with the Genus Phyllomedusa (: Anura)…………………… 07 Introdução...... 08 Material e Métodos...... 10 Resultados...... 12 Discussão...... 14 Referências Bibliográficas...... 17 Figuras...... 21 Tabelas...... 23 Material Suplementar...... 27 Capítulo 02 - Depended Variation in the Advertisement Call of Phyllomedusa nordestina (HYLIDAE: ANURA)...... 37 Introdução...... 38 Material e Métodos...... 41 Resultados...... 44 Discussão...... 45 Referências Bibliográficas...... 48 Figuras...... 52 Tabelas...... 55 Material Suplementar...... 57 Capítulo 03 - Background Noise as a Selective Pressure: Stream-breeding Anurans Call at Higher Frequencies...... 63 Introdução...... 65 Material e Métodos...... 66 Resultados...... 67 Discussão...... 68 Referências Bibliográficas...... 72 Tabelas...... 75 Figuras...... 76 Material Suplementar...... 77 Apêndice...... 89

Introdução Geral

Sinais reprodutivos podem ter um papel fundamental no processo de especiação, uma vez que isolamento reprodutivo pode ocorrer mediante variações na estrutura destes sinais e nas preferências dos possíveis parceiros sexuais (Turelli et al., 2001). A evolução destes sinais pode ser influenciada por uma gama de forças evolutivas, como seleção natural, seleção sexual e processos estocásticos (Erdtmann e Amézquita, 2009). Sinais acústicos são o principal meio de comunicação da maioria das espécies de anuros (Gerhardt e Huber, 2002). Dentre os diferentes tipos de vocalizações conhecidos para o grupo, o canto de anúncio, cuja principal função é atrair as fêmeas, tem sido o mais estudado (Gerhardt, 1994).

A evolução de vocalizações animais pode ser influenciada por processos estocásticos ou adaptativos que atuam diretamente no processo de especiação. A importância dos processos estocásticos em mudanças não-adaptativas nas vocalizações é atribuída à deriva genética (Gerhardt e Huber, 2002; Erdtmann e Amézquita, 2009) e à mudanças pleiotrópicas acompanhadas indiretamente por mudanças morfológicas (Cocroft e Ryan, 1995; Podos, 2001; Seddon, 2005; Erdtmann e Amézquita, 2009). Dentre os processos adaptativos, a importância do reconhecimento específico (Pfenning, 1998) e da seleção sexual (Ryan e Rand, 1993; Carson, 2003; Boul et al., 2007) têm sido os mais estudados.

Por outro lado, diferentes pressões impostas pelo ambiente onde a comunicação ocorre podem promover a evolução dos cantos, em distintas direções e intensidades (Boughman, 2002). Por exemplo, a presença de predadores (Tuttle e Ryan, 1981) ou parasitas (Bernal et al., 2006) no ambiente, os quais se utilizam dos sinais acústicos de suas presas para sua detecção/localização, podem exercer uma forte pressão seletiva sobre estes sinais.

Uma pressão seletiva pode favorecer sinais que minimizem a interferência do ruído ambiente oriundo dos sinais acústicos de outros animais ou de fatores abióticos (Wollerman e Wiley, 2002; Feng et al., 2006; Preininger et al., 2007). Na verdade, o ruído ambiente é um dos principais limitantes da comunicação acústica (Brumm e Slabberkoorn, 2005). Ambientes lóticos como riachos, que são utilizados por diversas espécies de anuros para reprodução, produzem um ruído ambiente constante que muitas vezes pode alcançar altas intensidades e apresenta predominância de energia em

1 espectros graves (Goutte et al., 2013) que se sobrepõe ao canto relativamente grave dos anuros (Wells, 2007). Desta forma, pode se esperar que anuros que vocalizem perto destes ambientes utilizem frequências mais altas com menor sobreposição espectral com o barulho ambiente. De fato, estudos mostram que a estrutura de comunidade de anuros próximos a riachos está associada à intensidade do barulho da água corrente (Goutte et al., 2013) e que a utilização de cantos mais agudos aumenta a capacidade de detecção e localização destes sinais nesses ambientes (Boonman e Kurniati, 2011). Além disso, todas as espécies de anuros que utilizam de comunicação ultrassônica cantam perto de corredeiras (Narins et al., 2004; Feng et al., 2006; Arch et al., 2008).

A eficiência da propagação do sinal acústico também está sob intensa pressão seletiva. Machos com vocalizações de maior alcance aumentam sua chance de atrair fêmeas. Desse modo, sinais acústicos que sofram o menor grau de atenuação (perda de energia) e degradação (perda de fidelidade) (Kime et al.,2000; Castellano et al., 2003) tendem a ser selecionados. A estrutura da vegetação pode ter um papel importante na propagação do som, uma vez que ondas sonoras se propagam com eficiências distintas em vegetações abertas ou fechadas. Assim, determinadas características acústicas dos sinais podem ser mais propícias à propagação em tipos específicos de ambientes (Wiley e Richards 1978; Kime et al., 2000).

Desta forma, é esperado que animais, especialmente naqueles grupos onde a comunicação acústica é amplamente difundida (ex. aves, mamíferos e anuros), modulem a estrutura de suas vocalizações para otimizar sua propagação, o que é conhecido como a ―Hipótese da Adaptação Acústica‖ (Morton, 1975; Rothstein e Fleischer, 1987; Ey e Fischer, 2009). Áreas de vegetação aberta apresentam características acústicas muito diferentes de áreas com vegetação densa (Wiley e Richards, 1978). Hábitats fechados tendem a impor maiores pressões seletivas sobre a sinalização acústica (Ey e Fischer, 2009), uma vez que nestes ambientes a comunicação visual é mais restrita, as condições acústicas são mais estáveis (Morton, 1975; Brown e Handford, 2000) e a reverberação e absorção das ondas sonoras são mais intensas (Wiley e Richards, 1978).

Existem várias predições sobre como as características dos sinais acústicos devem se comportar em hábitats abertos versus fechados. Como áreas de vegetação fechada são ambientes de propagação mais estáveis em relação a áreas abertas (maiores

2 flutuações de vento e temperatura), acredita-se que nestes hábitats as vocalizações devam apresentar um maior grau de estereotipia em relação aos hábitats abertos. Além disto, há várias características sonoras, relacionadas a diversos parâmetros acústicos temporais e espectrais, que favorecem uma propagação eficiente nestes dois ambientes. Por exemplo, espera-se que vocalizações em ambientes fechados apresentem uma maior duração, menor taxa de repetição de subelementos do canto, menor número de elementos de frequência modulados, frequências máximas e mínimas mais baixas, menores frequências média e dominante, além de bandas de frequências mais restritas. Dos estudos feitos até hoje com anuros, mamíferos e aves, parte corroboram algumas destas tendências (revisado em Ey e Fischer, 2009).

Existem basicamente duas metodologias para estudar a influência do ambiente nos sinais acústicos de diferentes animais: uma abordagem comparativa e outra experimental (Castellano et al., 2003). Em estudos de base comparativa, sinais acústicos de diferentes espécies dentro de um grupo monofilético são comparados controlando-se os possíveis efeitos da filogenia nas diferenças observadas (ver Ey e Fisher, 2009 e Peters e Peters, 2010). Com isso, é possível determinar se as correlações observadas são decorrentes da ancestralidade comum ou da evolução convergente em resposta a pressões seletivas semelhantes (Cosens e Falls, 1984; Wiley, 1991; Badyaey e Leaf, 1997). Em estudos de base experimental, para testar o efeito das diferenças ambientas e as variações nos sinais acústicos os pesquisadores podem testar de forma direta a eficiência de propagações em diferentes hábitats e analisar a quantidade de atenuação e/ou degradação com o aumento da distância (Ryan et al., 1990; Penna e Solis, 1998; Kime et al., 2000; Röhr e Juncá, 2013).

Estudos realizados com aves e primatas demonstram que, para diferentes grupos, uma propagação eficiente está sujeita a uma pressão seletiva significativa exercida pelo meio de propagação (e.g. Wiley, 1991; Brown et al., 1995; Badyaey e Leaf, 1997; Patten et al., 2004; Seddon, 2005; Kirschel et al., 2009; Ripmeester et al., 2010). Existem menos estudos realizados com anuros e os resultados não são conclusivos (Zimmerman, 1983; Ryan et al., 1990; Penna e Solis, 1998; Kime et al., 2000; Castellano et al., 2003; Bosch e De la Riva, 2004). Isso ocorre especialmente pelo fato de uma análise filogenética comparativa não ter sido conduzida para anfíbios, visto que hipóteses filogenéticas robustas para anfíbios só foram disponibilizadas recentemente.

3

Nesta tese, tentamos avançar sobre o conhecimento dos processos evolutivos que atuam sobre sinais acústicos, mais especificamente o canto de anúncio dos anuros. No primeiro capítulo, fizemos uma análise descritiva da variabilidade do canto de anúncio do gênero Phyllomedusa (Hylidae: Anura) em diferentes níveis: diferentes cantos de um mesmo indivíduo; cantos de diferentes indivíduos de uma mesma população; cantos de indivíduos de diferentes populações; cantos de diferentes espécies. Discutimos como a variabilidade dos diferentes parâmetros acústicos nesses níveis podem evidenciar processos evolutivos atuantes sobre essas vocalizações. Nos capítulos seguintes testamos se diferentes pressões seletivas estão associadas à diversidade intra e interespecífica nesta vocalização. No segundo capítulo, testamos a importância de barreiras de propagação sobre o canto de anúncio de Phyllomedusa nordestina. Para isto comparamos vocalizações de indivíduos de diferentes populações que ocorrem na Mata Atlântica e na Caatinga, além de testar se os parâmetros acústicos estão correlacionados à quantidade de vegetações no entorno do indivíduo. Já no terceiro capítulo, avaliamos se a frequência dominante do canto de anúncio das espécies que reproduzem em ambientes lóticos é mais alta em relação às espécies de ambientes lênticos. Para isto, utilizamos dados de literatura sobre espécies distribuídas por todo o globo.

Referências

Arch, V. S., Grafe, T. U., Gridi-Papp, U., & Narins, P. M. 2009. Pure ultrasonic communication in an endemic Bornean . Plos One, 4, e5413. Badyaev, A. V. & Leaf, E. S. 1997. Habitat associations of song characteristics in Phylloscopus and HippolaisWarblers. The Auk, 114, 40-46. Bernal, X. E., Rand, A. S. & Ryan, M. J. 2006. Acoustic preferences and localization performance of blood- sucking flies (Corethrella Coquillett) to túngara frog calls. Behavioral Ecology, 17, 709-715. Boonman, A. and Kurniati, H. 2011. Evolution of high-frequency communication in . Evolutionary Ecology Research, 13, 197-207. Bosch, J. & De la Riva, I. 2004. Are frogs calls modulated by the environment? An analysis with anuran from . Canadian Journal of Zoology, 82, 1051-1059. Boughman, J. W. 2002. How sensory drive can promote speciation. Trends in Ecology & Evolution, 17, 571- 577. Boul, K. E., Funk, W. C., Darst, C. R., Cannatella, D. C. & Ryan, M. J. 2007.Sexual selection drives speciation in an Amazonian frog. Proceedings of the Royal Society B: Biological Sciences, 274, 399-406. Brown, T. J. & Handford, P. 2000. Sound design for vocalizations: quality in the woods, consistency in the fields. The Condor, 102, 81-92. Brown, C. H., Gomez, R. & Waser, P. M. 1995. Old World monkey vocalizations: adaptation to the local habitat? Behaviour, 50, 954-961. Brumm, H.& Slabbekoorn, H.. 2005. Acoustic communication in noise. Advances in the Study of Behavior 35, 151-209. Carson, H. L. 2003. Mate choice theory and the mode of selection in sexual populations.

4

Castellano, S., Giacoma, C. & Ryan, M. J. 2003. Call degradation in diploid and tetraploid . Biological Journal of the Linnean Society, 78, 11-26. Cocroft, R. B. & Ryan, M. J. 1995. Patterns of advertisement call evolution in toads and chorus frogs. Animal Behaviour, 49, 283-303. Cosens, S. E. & Falls, J. B. 1984. A comparison of sound propagation and song frequency in temperate marsh and .Behavioral Ecology and Sociobiology, 3, 161-170. Erdtmann, L. & Amézquita, A. 2009. Differential evolution of advertisement call traits in dart-poison frogs (Anura: Dendrobatidae). Ethology, 115, 801-811. Ey, E. & Fischer, J. 2009. The ―Acoustic Adaptation Hypothesis‖ – a review of the evidence from birds, anurans and mammals. Bioacoustics, 19, 21-48. Feng, A. S., Narins, P. M., Xu, C., Lin., W., Yu, Z., Qiu, Q., Xu, Z. & Shen, J. 2006. Ultrasonic communication in frogs. Nature, 404, 333-336. Gerhardt, H. C. 1994. The evolution of vocalization in frogs and toads. Annual Review of Ecology and Systematics, 25, 293-324. Gerhardt, H. C. & Huber, F. 2002. Acoustic communication in insects and anurans. Chicago: University of Chicago Press. Goutte, S., Dubois, A. & Legendre, F. 2013. The importance of ambient sound level to characterise anuran habitat. Plos One, 8, e78020. Kime, N. M., Turner, W. R. & Ryan, M. J. 2000. The transmission of advertisement calls in Central American frogs. Behavioral Ecology,11, 71-83. Kirschel, N. G., Blumstein, D. T., Cohen, R. E., Buemann, W. Smith, T. B. & Slabbekoorn, H. 2009. Birdsong tuned to the environment: green hylia song varies with elevation, tree cover, and noise. Behavioral ecology, 20, 1089-1095. Morton, E. S. 1975. Ecological sources of selection on avian sounds. The American Naturalist, 109, 13-17. Narins, P. M., Feng, A. S., Lin, W. Y., Schnitzler, H. U., Denzinger, A., Suthers, R. A., & Xu, C. H. 2004. Old World frog and bird, vocalizations contain prominent ultrasonic harmonics. Journal of the Acoustical Society of America, 115, 910-913. Patten, M. A., Rotenberry, J. T. & Zuk, M. 2004. Habitat selection, acoustic adaptation, and the evolution of reproductive isolation. Evolution, 58, 2144-2155. Penna, M. & Solís, R. 1998. Frog call intensities and sound propagation in the South American temperate region. Behavioral Ecology and Sociobiology, 42, 371-381. Peters, G. & Peters, M. K. 2010. Long-distance call evolution in the Felidae: effects of body weight, habitat, and phylogeny. Biological Journal of the Linnean Society, 101, 487-500. Pfenning, K. S. 1998. The evolution of mate choice and the potential for conflict between species and mate- quality recognition. Proceedings of the Royal Society B: Biological Sciences, 265, 1743-1748. Podos, J. 2001. Correlated evolution of morphology and vocal signal structure in Darwin´s Finches. Nature, 409, 185-188. Preininger, D., Markus, B. & Hödl. 2007. Comparison of anuran acoustic communities of two habitat types in the Danum Valley Conservation Area, Sabah, Malaysia. Salamandra, 43, 129-138. Ripmeester, E. A. P., Mulder, A. & Slabbekoorn, H. 2010. Habitat-dependent acoustic divergence affects playbacks in urban and forest populations of the European blackbird. Behavioral Ecology, 21, 876-883. Röhr, D. L. & Juncá, F. A. 2013. Micro-habitat influence on the advertisement call structure and sound propagation efficiency of Hypsiboas crepitans (Anura: Hylidae). Journal of Herpetology, 47, 549-554. Rothstein, S. I. & Fleischer, R. C. 1987. Vocal dialects and the possible relation to honest status signaling in the Brown-Headed Cowbird. The Condor, 89, 1-23. Ryan, M. J. & Rand, A. S. 1993. Sexual selection and signal evolution: the ghost of biases past. Philosophical Transactions: Biological Sciences, 340, 187-195. Ryan, M. J., Cocroft, R. B. & Wilczynski, W. 1990. The role of environmental selection in intraspecific divergence of mate recognition signals in the cricket frog, Acris crepitans. Evolution, 44, 1869-1872. Seddon, N. 2005. Ecological adaptation and species recognition drives vocal evolution in neotropical suboscine birds. Evolution, 59, 200-215. Turelli, M., Barton, N. H. & Coyne, J. A. 2001. Theory and speciation. Trends in Ecology & Evolution, 16, 330-343. Tuttle, M. D. & Ryan, M. J. 1981. Bat predation and the evolution of frog vocalizations in the neotropics. Science, 214, 677-678. Wells, K. D. 2010. The ecology and behavior of . University of Chicago Press, Chicago. Wiley, R. H. 1991.Associations of song properties with habitats for territorial oscine birds of Eastern North America. The American Naturalist, 138, 973-993. Wiley, R. H. & Richards, D. G. 1978. Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behavioral Ecology and Sociobiology, 3, 69-94.

5

Wollerman, L. & Wiley, R. H. 2002. Background noise from natural chorus alters female discrimination of male calls in a Neotropical frog. Animal Behaviour, 63, 15-22. Zimmerman, B. L. 1983. A comparison of structural features of calls of open and forest habitat frog species in the Central Amazon. Herpetologica, 39, 235-246.

6

CAPÍTULO 01

Variability in Anuran Advertisement Call: a Multi-level Study with the Genus Phyllomedusa (Hylidae: Anura).

David Lucas Röhr, Gustavo Brant Paterno, Marcelo Gehara, Felipe Camurugi; Flora Acuña Juncá, Guilherme Fajardo R. Álvares, Reuber Albuquerque Brandão, Adrian Antonio Garda

Abstract

Understanding variability of acoustic signals is a first important step for the comprehension of the evolutionary processes that led to present diversity. Herein, we evaluate the variability of the advertisement of the anuran genus Phyllomedusa at different levels: intra-individual; intra-population; inter-population; inter-specific. Analysis of coefficients of variation showed a continuum of variability between the acoustic parameters analyzed, from static to highly dynamic. Most of the variation was attributed to the inter-specific level, while the intra-individual varied the less, however, the variability at each level differed between parameters. While most temporal acoustic parameters were affected by environmental temperature, the spectral parameter was strongly influenced by body size. Only one acoustic parameter was correlated to the geographic distance between populations, while all presented a significant phylogenetic signal. Furthermore, the advertisement call for this genus showed a low potential for individual recognition. Based on these results, we discuss the possible importance of different evolutionary forces and the usage of this vocalization for .

Keywords: Acoustic communication; Evolution; Individual recognition; Variation

7

Introduction

Understanding variability is fundamental for the comprehension of evolution (Hallgrímsson and Hall, 2011). Darwin´s observations on phenotypic variation were the basis for the development of the concept of natural selection (Darwin, 1859), and intra and inter-specific variation were central for the modern evolutionary synthesis (Mayr, 1963; Wright, 1968).

Acoustic signals are important for a large proportion of current fauna, and for most groups it has a predominant reproductive function (Gerhardt, 1994). Because these signals are involved in conspecific recognition, they may have a key role in diversification, and their importance as evolutionary forces has been the focus of many studies (Wilkins et al., 2013).

Acoustic signals are the predominant form of communication for the vast majority of anuran species. Although many species present more than one type of call, the advertisement call emitted by males with main function of attracting females can be considered the most important acoustic signal for this clade (Wells, 1977). Since the first bioacoustic studies with frogs, authors noticed that each species has a distinct advertisement call (Blair, 1958, 1964; Duellman and Pyles, 1983). Furthermore, it has been shown that females demonstrate strong preference for conspecific advertisement calls, even when considering sister taxa with relatively similar calls (Backwell and Jennions, 1993; Gerhardt, 1974). Thus, this vocalization is considered an important pre- zygotic reproductive barrier (Gerhardt and Huber, 2002) and has been used as an important taxonomic tool, helping overcome the lack of useful external morphological traits in frogs (Padial and De La Riva, 2009).

The anuran advertisement call is considered stereotyped, especially in comparison to other vertebrates such as birds and mammals. Still, there is considerable amount of intra-specific variation at the individual level (Howard and Young, 1998), at the population level (Sullivan, 1982), and among population of the same species (Sullivan, 1989). Although several studies clearly demonstrate this variation in each level separately, few studies have quantified how different acoustic parameters vary at different levels within a specific clade (Bee et al., 2010; Castellano et al., 2002). Different acoustic parameters from the same call are semi-independent and might encode distinct messages, thus evolving under differing selective pressures (Gerhardt

8 and Huber, 2002). Therefore, a broad comprehension of variability at different levels enables the proposition of various hypotheses about the evolutionary mechanisms that led to the present acoustic diversity.

In general, variation in acoustic signals can be related to pleiotropic effects (Podos, 2001), stochastic processes (Goicoechea et al., 2010), natural selection (Ryan et al., 1990), and sexual selection (Gerhardt, 2005). For anurans, pleiotropic effects of morphology and physiology are exemplified by the well-known influence of body size and temperature on acoustic parameters. The size of the vocal apparatus usually affects spectral parameters, while temperature often influences temporal characteristics of the calls (Gerhardt, 1994). Such relationships can affect the variability of different acoustic parameters at different levels. For example, acoustic parameters that are more dependent on temperature should vary more, especially intra-individually and in a shorter time scale. At the same time, parameters that are highly dependent on morphology should be more stereotyped, with most of the variation occurring at levels above individuals or ontogenetically. Therefore, it is important to carefully consider the influence of temperature and body size in any bioacoustic study.

Stochastic processes affect the evolution and variability of acoustic signals. For anurans, these effects are tested evaluating the geographic variation of acoustic parameters (Pröhl et al., 2007) or the effect of phylogeny on inter-specific variation (Goicoechea et al., 2010). While some acoustic parameters vary mostly in response to stochastic processes, others are not correlated with phylogeny or biogeography, possibly because they are under strong selective forces (Erdtmann and Amézquita, 2009). These different evolutionary pathways should also influence the amount of variation detected at different levels.

Selection may affect the variability of acoustic parameters in different ways (Wilkins et al., 2013). For example, acoustic parameters important for conspecific recognition are under selective pressure not to overlap with calls from sympatric species, possibly leading to more stereotypy and hence reducing the likelihood of hybridization (Lemmom, 2009). Beyond this, in diverse acoustic communities, calls might also be more stereotyped in order to use silent windows and reduce masking interference (Bee, 2008; Chek et al., 2003). At the same time, a higher stereotypy might be expected in habitats with dense vegetation coverage, because the acoustic

9 propagation scenario is more stable compared to open areas, which are more susceptible to wind and temperature shifts (Wiley and Richards, 1978; Ey and Fischer, 2009).

Nevertheless, most studies on the variability of anuran advertisement call discuss sexual selection (Gerhardt and Huber, 2002). One key measurement of acoustic variation in frogs has been the individual coefficient of variation. Based on this measure, extensive literature has shown that variability of different acoustic parameters follows a continuum from static to dynamic (Bee et al., 2010; Castellano et al., 2002; Gerhardt, 1991). Static parameters should be under stabilizing or weakly directional sexual selection (Gerhardt, 1991; Gerhardt and Huber, 2002). Indeed, most studies confirm that females tend to prefer advertisement calls with values close to the species/population mean for such acoustic parameters (Castellano et al., 1998; Rosso et al., 2006), and these parameters should be important for specific recognition and are more reliable taxonomic tools (Gerhardt and Huber, 2002). In contrast, acoustic parameters with high individual variability should be under directional selection, and females should prefer calls with more extreme values from the species distribution for these parameters (Bosch and Márquez, 2005; Castellano and Giacoma, 1998). These parameters can indicate male’s quality or facilitate localization (Gerhardt and Huber, 2002).

Herein, we evaluate the variability of different acoustic parameters of the advertisement call of 15 species of the anuran genus Phyllomedusa at different levels: intra-individual; intra-population; inter-population; intra-specific; inter-specific. We also estimated what percentage of the total variation detected can be explained by each levels. Furthermore, we tested: 1) the effect of environmental temperature and body size on the acoustic parameters, 2) if they present significant phylogenetic signal and 3) if they are correlated to geographic distance between populations. Finally, we evaluated the possibility of individual, population, and specific recognition considering the variation found in the acoustic parameters analyzed.

Material & Methods

The genus Phyllomedusa is composed of approximately 30 species, which are hylid frogs commonly known as monkey frogs and belong to the Subfamily Phyllomedusinae. We recorded the advertisement of species from the genus Phyllomedusa throughout . Most recordings were done using a Marantz PMD 660

10 digital recorder with a sampling rate of 48 kHz and 16 bit resolution, connected to a Sennheiser ME66 directional microphone. After each recording for the large majority of the individual we measured the environmental temperature and snout-vent length (See Table S1 for data on each recording: species; location; coordinates; recording equipment; temperature; body size; total number of calls analyzed). Acoustic parameters were measured in Raven Pro 1.4 and spectrograms produced as follows: FFT window width = 256; Frame = 100; Overlap = 50%.

We analyzed a total of five acoustic parameters for all calls recorded, which we believe are comparable at all levels, even between different species of this genus: dominant frequency (DF); total number of pulses in the call (PN); average pulse length considering all pulses from the call (PL); pulse rate (PR); total duration of the call (DU); interval between calls (CI).

To estimate the variability of the acoustic parameters we calculated the coefficient of variation (CV), which is a standardized measure of dispersion calculated through the ratio of the standard deviation to the mean, for all acoustic parameters at five different levels: 1) intra-individual (different calls from a single individual); 2) intra-population (calls from different individuals from a single population); 3) inter- population (calls from individuals from different populations); 4) intra-specific (calls from different individuals from the same species, independent from which population); 5) inter-specific (calls from individuals from different species).

To deal with different sample sizes at each level, we created a stratified hierarchical subsampling method in which we repeatedly drew from our data pool five different calls that were used to calculate the CV. We ensured that the calls were drawn from different entities forming the respective level of interest. For instance, before drawing five calls at the intra-individual level, we drew a species, than a population, than an individual, than five different calls. For the intra-population level we first drew a species, than a population, than five calls from different individuals and so on (see Table 1 for a stepwise description of all steps used to obtain the calls used for each level). We repeated each subsampling 1,000 times for each level to create five distributions of variation for each acoustic parameter. The CV for intra and inter- population was only calculated for Phyllomedusa nordestina due to the lack of sufficient population replicates for the other species.

11

Additionally, we performed a hierarchical ANOVA to calculate the amount of variation that can be attributed to each level. For this analysis we used only four levels in order to access the variability repartition for the entire genus: call; individual; population; species. To test the influence of body size and environmental temperature on acoustic parameters of Phyllomedusa we performed a regression model using the mean value from all calls from each individual and including the species as a block. To evaluate the geographic variation for the different populations of P. nordestina we applied a Mantel test for each acoustic parameter. In the correlation matrix we included the geographical coordinates of each locality and the mean acoustic parameters for each individual.

To quantify the phylogenetic signal strength for each acoustic parameter between the species of Phyllomedusa we recorded, we used Blomberg's K, which metric is based on Brownian motion model of evolution, where its significance is tested by permuting traits across a phylogenetic tree. When K is larger than one, related species present trait values more similar than expected from a Brownian motion and when it is smaller than one, relatives are less similar than expected (Blomberg et al., 2003).

Finally, we used a discriminant function analysis with all acoustic parameters to examine the extent to which calls can be assigned to the correct individual, population and species, and a cross-validation procedure was used to measure classification success.

All analyses were done on the R 3.1.2. environment using the following packages: ggplot2; reshape2; dplyr; gridExtra; ape; picante; caper; diversitree.

Results

We analyzed a total of 3,994 advertisement calls from 188 individuals of 15 different species of Phyllomedusa (see Table S1 for details on each individual recorded). Although we sampled calls from more than one locality for various species, we only obtained enough samples from different populations for P. nordestina, for which we recorded various individuals from 14 populations from different localities distributed throughout most of the species geographical distribution (Table S1). The advertisement call from all species recorded is relatively simple, being composed of

12 several similar pulses that can be grouped in different notes (See Table 2 for the mean values of the acoustic parameters for the specie recorded and Figure S1 and S2 for spectrograms of one call from each species).

The multiple-level analyses of variability using CV showed that all acoustic parameters presented the lowest variation intra-individually, but the intensity of this trend varied between parameters. Dominant frequency, pulse length, and pulse rate are the most static parameters, especially intra-individually. Pulse number and call duration present intermediate values, while call interval is highly dynamic and shows less difference between the intra-specific levels and the inter-specific level (Figure 1).

Call parameters also vary considerably below the interespecific level. In general, the variability is smallest at the intra-individual level for all parameters and a tendency for the intra-population level to show less variability than the inter-population, with the intra-specific intermediate. Furthermore, the three most static parameters (dominant frequency, pulse length, and call rate) show the largest difference inter-specifically compared to other levels (Figure 1).

The ANOVA confirmed the results from our multi-level CV evaluation, where most of the advertisement call variability for the 15 species of Phyllomedusa is explained by inter-specific differences. However, this trend also varies a lot between parameters, where there is a clear tendency for static acoustic parameters have a larger percentage of their variability credited to the inter-specific level, with intermediate parameters having a little less of their variability explained by this level (however more than 75%) and the dynamic parameter less than 50%. Below the inter-specific level, pulse rate had a considerable part of its variation attributed to the population level (Figure 2).

The correlation analyses showed that most of the acoustic parameters are significantly affected by body size and/or environmental temperature. While temperature affects mostly the temporal acoustic parameters measured (Table 3), most parameters where influenced by individuals body size, with a strong effect on the spectral parameter (dominant frequency) (Table 4). Only pulse rate and call duration were significantly correlated to the geographical distance between the populations of P. nordestina (Table 5). Conversely, all acoustic parameters tested presented a significant phylogenetic signal (Table 6). Finally, discriminant function analysis including all

13 acoustic parameters attributed 30.7% of the calls to the correct individual, 37.8% to the population, and more than 81.2% to the correct species.

Discussion

Our results corroborate most studies on acoustic variability for anuran advertisement calls, where the acoustic parameters present a continuum of variation (Bee et al., 2010; Castellano et al., 2002). The parameters that presented the lowest CV were mainly those that are considered important for frog specific recognition, especially dominant frequency and pulse rate (Gerhardt, 1994). Tests on female preference demonstrate that females generally prefer calls with medium values for those parameters, exerting a stabilizing sexual selection over the population (Castellano and Giacoma, 1998). Furthermore, studies on reproductive character displacement show that when populations occur in sympatry with sister taxa with similar advertisement calls these preferences are stronger, confirming the importance of these parameters for specific recognition and as reproductive barrier, diminishing hybridization (Lemmom, 2009). However, for some frog species females prefer calls with slightly lower dominant frequencies, exerting weak directional sexual selection, possibly choosing for larger males (Poole and Murphy, 2007; Ryan, 1980).

Considering the more variable parameters, call duration generally presents intermediate values of CV, while call interval/call rate are highly dynamic (Bee et al., 2010; Castellano et al., 2002; Gerhardt, 1991). Accordingly, females show directional preferences for these parameters, which are behaviorally controlled to some extent and are directly involved in the energetic expenditure of call production (Sullivan, 1992; Bosch and Márquez, 2005). These more extreme values from the population/species distribution could indicate higher fitness males or maybe just enhance probability of signal detection and facilitate localization, with this preference simply representing less energy cost and lower predation risk (Gerhardt, 1994).

As expected, the inter-specific level was the most variable and most of the advertisement call variability for Phyllomedusa is attributed to this level, while the lowest CV was detected intra-individually, except for call interval, which has a high variability at all levels (Figures 1 & 2). Furthermore, variability in levels that compare calls from different individuals of the same species also changed as predicted, parameters showing less variability at the intra-population level in relation to inter-

14 population, with intermediate values for intra-specific, probably because it includes calls from individuals which may or not be from the same population.

Most studies on geographical variation of anuran advertisement call detected significant differences between calls from individuals from distinct populations (Snyder and Jameson, 1965; Hasegawa et al., 1999; Castellano and Giacoma, 2000). This variation may be associated to stochastic processes and be directly related to gene flow or selection (Smith et al., 2003; Bernal et al., 2005, Pröhl et al., 2007; Ohmer et al., 2009), which may act directly on call characteristics or through pleiotropic effects (Castellano et al., 1999). When selective pressures are weak, call variation is expected to be correlated with geographical distance between populations or associated to an important dispersal barrier (Pröhl et al., 2006).

From all acoustic parameters evaluated for P. nordestina only pulse rate and call duration are related to geographical distance between populations, and pulse rate had a higher percentage of its variation explained by the population level when compared to the other static parameters. Possibly, less parameters were correlated to geographic distance because there is little variation between populations, both comparing with the inter-specific variation we detected for the species of Phyllomedusa and with other studies on geographical variation in anuran advertisement call (Snyder and Jameson, 1965; Hasegawa et al., 1999; Castellano and Giacoma, 2002; Bernal et al., 2005; Pröhl et al., 2007). This low variability between different populations may be related to conservative selective pressures acting upon all or most populations, to a large amount of gene flow, or because of recent population expansions. Other studies on geographic variation of anuran advertisement calls found contrasting results on the relationship between call variation and geographic distances (Snyder and Jameson, 1965; Hasegawa et al., 1999; Castellano and Giacoma, 2000; Smith et al 2003; Bernal et al., 2005; Pröhl et al., 2005; Ohmer et al., 2009).

Conversely, when considering the variation between the calls from the different species studied, all acoustic parameters presented a significant phylogenetic signal. These results corroborate most studies on phylogenetic signals for anurans (Cocroft and Ryan, 1995; Wollenberg et al., 2007; Erdtmann and Amézquita, 2009; Goicoechea et al., 2010). Although the anuran advertisement call traditionally is seen as a rapidly evolving trait and under strong selective forces, especially sexual selection (Gerhardt,

15

1994), recent studies have found surprisingly strong phylogenetic signals for most acoustic parameters tested, calling attention to the importance of stochastic processes, such as genetic drift, in the evolution of these vocalizations (Cocroft and Ryan, 1995; Wollenberg et al., 2007; Erdtmann and Amézquita, 2009; Goicoechea et al., 2010).

Analyzing acoustic signal variability in different parameters also enables evaluating the possibility of individual recognition (Bee, 2004; Bee et al., 2010; Bee and Gerhardt, 2001a; Bee et al., 2001; Feng et al., 2009a; Gasser et al., 2009). Besides attracting mates, the anuran advertisement call also presents a territorial function (Wells, 1977), and studies on individual recognition have focused on the dear enemy effect, because recognizing constant neighbors might reduce male’s aggressiveness (Bee, 2003, 2004; Bee and Gerhardt, 2001b). For at least some species it has been shown that males are capable of recognizing neighbor calls (Bee and Gerhardt, 2002; Davis, 1987; Feng et al., 2009b), and studies of variability using discriminant function analyses generally assign more than 70% of the calls to the correct individual (Bee, 2004; Bee et al., 2010; Bee and Gerhardt, 2001a; Bee et al., 2001; Feng et al., 2009b; Feng et al., 2009a; Gasser et al., 2009). For Phyllomedusa, probably individual recognition is not important (only about 30% of the calls were assigned to the correct individual). Furthermore, discriminant analyses confirms the relative low variability between populations (less than 40% of the calls were assigned to the correct population). Finally, only slightly more than 80% of the calls were assigned to the correct species, which could account for the apparent large amount of hybridization in this genus (Haddad et al., 1994).

Our results confirm that the advertisement call of the species studied from the genus Phyllomedusa may be used as a reliable taxonomic tool, because all acoustic parameters analyzed, except call interval, presented a much higher inter-specific variation in comparison to all intra-specific levels. However, considering the variation detected for the different intra-specific levels, it is important to have adequate replicates from different localities. Furthermore, it is recomended to consider temperature and body size, because most of the acoustic parameters were influenced by one or both variables. It is important to emphasize the influence of body size on the dominant frequency, considering that it was the only strong correlation recovered. CV at different levels shows that, between the analyzed acoustic parameters, dominant frequency could be considered the most reliable parameter for taxonomy. However, most of the inter-

16 specific variation is related to differences in body size, with a pleiotropic effect on the advertisement call.

Acknowledgements AAG and FAJ thank CNPq for financial support (Universal # 473503/2012-3 and #305704/2013-3, respectively). DLR also thanks Sisbiota Herpeto-Helmintos project for financial support.

References

Backwell, P.R.Y., and Jennions, M.D. (1993). Mate choice in the Neotropical frog, ebraccata: sexual selection, mate recognition and signal selection Animal Behaviour 45, 1248– 1250. Bee, M.A. (2003). A test of the "dear enemy effect" in the strawberry dart-poison frog (Dendrobates pumilio). Behavioral Ecology and Sociobiology 54, 601–610. Bee, M.A. (2004). Within-individual variation in bullfrog vocalizations: Implications for a vocally mediated social recognition system. The Journal of the Acoustical Society of America 116, 3770–3781. Bee, M.A. (2008). Finding a mate at a cocktail party: spatial release from masking improves acoustic mate recognition in grey treefrogs. Animal Behaviour 75, 1781–1791. Bee, M.A., Cook, J.M., Love, E.K., O’Bryan, L.R., Pettitt, B.A., Schrode, K., and Vélez, A. (2010). Assessing acoustic signal variability and the potential for sexual selection and social recognition in boreal chorus frogs (Pseudacris maculata). Ethology 116, 564–576. Bee, M.A., and Gerhardt, H.C. (2001a). Neighbour–stranger discrimination by territorial male bullfrogs (Rana catesbeiana): II. Perceptual basis. Animal Behaviour 62, 1141–1150. Bee, M.A., and Gerhardt, H.C. (2001b). Neighbour–stranger discrimination by territorial male bullfrogs (Rana catesbeiana): I. Acoustic basis. Animal Behaviour 62, 1129–1140. Bee, M.A., and Gerhardt, H.C. (2002). Individual voice recognition in a territorial frog (Rana catesbeiana). Proceedings of the Royal Society of London B: Biological Sciences 269, 1443– 1448. Bee, M.A., Kozich, C.E., Blackwell, K.J., and Gerhardt, H.C. (2001). Individual variation in advertisement calls of territorial male green frogs, Rana clamitans: implications for individual discrimination. Ethology 107, 65–84.

17

Bernal, X. E., Guarnizo, C. and Lüddecke, H. (2005). Geographic variation in advertisement call and genetic structure of Colostethus palmatus (Anura, Dendrobatidae) from the Colombian . Herpetologica 61, 395-408. Blair, W.F. (1958). Mating call in the speciation of anuran amphibians. The American Naturalist 92, 27–51. Blair, W.F. (1964). Isolating mechanisms and interspecies interactions in anuran amphibians. The Quarterly Review of Biology 39, 334–344. Blomberg, S.P., Garland Jr., T., and Ives, A.R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717-745. Bosch, J., and Márquez, R. (2005). Female preference intensities on different call characteristics and symmetry of preference above and below the mean in the iberian midwife Alytes cisternasii. Ethology 111, 323—333. Castellano, S. and Giacoma, C. (2000). Morphometric and advertisement call geographic variation in polyploid green toads. Biological Journal of the Linnean Society 70, 341-360. Castellano, S., Cuatto, B., Rinella, R., Rosso, A., and Giacoma, C. (2002). The advertisement call of the European treefrogs (Hyla arborea): a multilevel study of variation. Ethology 108, 75–89. Castellano, S., and Giacoma, C. (1998). Stabilizing and directional female choice for male calls in the European green toad. Animal Behaviour 56, 275–287. Castellano, S., Rosso, A., Doglio, S., and Giacoma, C. (1999). Body size and calling variation in the green toad (Bufo viridis). Journal of Zoology 248, 83–90. Chek, A.A., Bogart, J.P., and Lougheed, S.C. (2003). Mating signal partitioning in multi-species assemblages: a null model test using frogs. Ecology Letters 6, 235–247. Cocroft, R. B. and Ryan, M. J. (1995). Patterns of advertisement call evolution in toads and chorus frogs. Animal Behaviour 49, 283-303. Darwin, C.R. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Davis, M.S. (1987). Acoustically mediated neighbor recognition in the North American bullfrog, Rana catesbeiana. Behavioral Ecology and Sociobiology 21, 185–190. Duellman, W.E., and Pyles, R.A. (1983). Acoustic resource partitioning in anuran communities. Copeia 1983, 639–649. Erdtmann, L., and Amézquita, A. (2009). Differential evolution of advertisement call traits in dart-poison frogs (Anura: Dendrobatidae). Ethology 115, 801–811. Ey, E. and Fischer, J. (2009). The ―acoustic adaptation hypothesis‖ - a review of the evidence from birds, anurans and mammals. Bioacoustics 19, 21-48. Feng, A.S., Arch, V.S., Yu, Z., Yu, X.J., Xu, Z.M., and Shen, J.X. (2009b). Neighbor–stranger discrimination in concave-eared Torrent Frogs, Odorrana tormota. Ethology 115, 851–856.

18

Feng, A.S., Riede, T., Arch, V.S., Yu, Z., Xu, Z.M., Yu, X.J., and Shen, J.X. (2009a). Diversity of the vocal signals of concave-eared torrent frogs (Odorrana tormota): evidence for individual signatures. Ethology 115, 1015–1028. Gasser, H., Ameézquita, A., and Hödl, W. (2009). Who is calling? Intraspecific call variation in the aromobatid frog Allobates femoralis. Ethology 115, 596–607. Gerhardt, H.C. (1974). Behavioral isolation of the tree frogs, Hyla cinerea and Hyla andersonii. American Midland Naturalist 91, 424–433. Gerhardt, H.C. (1991). Female mate choice in treefrogs: static and dynamic acoustic criteria. Animal Behaviour 42, 615–635. Gerhardt, H.C. (1994). The evolution of vocalization in frogs and toads. Annual Review of Ecology and Systematics 25, 293–324. Gerhardt, H.C. (2005). Advertisement-call preferences in diploid-tetraploid treefrogs (Hyla chrysoscelis and Hyla versicolor): implications for Mate choice and the evolution of communication systems. Evolution 59, 395–408. Gerhardt, H.C., and Huber, F. (2002). Acoustic communication in insects and anurans: common problems and diverse solutions (University of Chicago Press). Goicoechea, N., De La Riva, I., and Padial, J.M. (2010). Recovering phylogenetic signal from frog mating calls. Zoologica Scripta 39, 141–154. Haddad, C.F.B., Pombal, J., J.P., and Batistic, R.F. (1994). Natural hybridization between diploid and tetraploid species of leaf-frogs, genus Phyllomedusa (Amphibia). Journal of Herpetology 28, 425–430. Hallgrímsson, B., and Hall, B.K. (2011). Variation: a central concept in biology (Academic Press). Hasegawa, H., Ueda, H. and Sumida, M. 1999. Clinal geographic variation in the advertisement call of the Wrinkled Frog, Rana rugosa. Herpetologica 55, 318-324. Howard, R.D., and Young, J.R. (1998). Individual variation in male vocal traits and female mating preferences in Bufo americanus. Animal Behaviour 55, 1165–1179. Lemmom, E.M. (2009). Diversification of conspecific signals in sympatry: geographic overlap drives multidimensional reproductive character displacement in frogs Evolution 63, 1155–1170. Mayr, E. (1963). Animal Species and Evolution (Cambridge, Massachusets: Belknap Press). Ohmer, M. E., Robertson, J. M. and Zamudio, K. R. 2009. Discordance in body size, colour pattern, and advertisement call across genetically distinct populations in a Neotropical anuran ( ebraccatus). Biological Journal of the Linnean Society 97, 298-313. Padial, J.M., and De La Riva, I. (2009). Integrative taxonomy reveals cryptic Amazonian species of Pristimantis (Anura: Strabomantidae). Zoological Journal of the Linnean Society 155, 97-122.

19

Podos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin's finches. Nature 409, 185-188. Poole, K.G., and Murphy, C.G. (2007). Preferences of female barking treefrogs, Hyla gratiosa, for larger males: univariate and composite tests. Animal Behaviour 73, 513-524. Pröhl, H., Hagemann, S., Karsch, J., and Höbel, G. (2007). Geographic variation in male sexual signals in strawberry poison frogs (Dendrobates pumilio). Ethology 113, 825-837. Pröhl, H., Koshy, R.A., Mueller, U., Rand, A.S., and Ryan, M.J. (2006). Geographic variation of genetic and behavioral traits in Northern and Southern Túngara frogs. Evolution 60, 2006. Rosso, A., Castellano, S.and Giacoma, C. (2006). Preferences for call spectral properties in Hyla intermedia. Ethology 112, 599-607. Ryan, M.J. (1980). Female mate choice in a Neotropical frog. Science 209, 523-525. Ryan, M.J., Cocroft, R.B., and Wilczynski, W. (1990). The role of environmental selection in intraspecific divergence of mate recognition signals in the cricket frog, Acris crepitans. Evolution 44, 1869-1872. Smith, M. J., Roberts, J. D., Hammond, T.J. and Davis, R. A. (2003). Intraspecific variation in the advertisement call of the Sunset Frog Spicospina flammocaerulea (Anura: Myobatrachidae): A frog with a limited geographic distribution. Journal of Herpetology 37, 285-291. Snyder, W. F. and Jameson, D. L. (1965). Multivariate geographic variation of mating call in populations of the Pacific Tree Frog (Hyla regilla). Copeia 1965, 129-142. Sullivan, B.K. (1982). Significance of size, temperature and call attributes to sexual selection in Bufo woodhousei australis. Journal of Herpetology 16, 103-106. Sullivan, B.K. (1989). Interpopulational variation in vocalizations of Bufo woodhousii. Journal of Herpetology 23, 368-373. Sullivan, B. K. (1992). Sexual selection and calling behavior in the American Toad (Bufo americanus). Copeia 1992, 1-7. Wells, K.D. (1977). The social behaviour of anuran amphibians. Animal Behaviour 25, 666- 693. Wiley, R. H. and Richards D. G. (1978). Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behavioral Ecology and Sociobiology 3, 69-94. Wilkins, M.R., Seddon, N., and Safran, R.J. (2013). Evolutionary divergence in acoustic signals: causes and consequences. Trends in Ecology & Evolution 28, 156-155. Wollenberg, K. C., Glaw, F. Meyer, A. and Vences, M. (2007). Molecular phylogeny of Malagasy reed frogs, , and the relative performance of bioacoustics and color- patterns for resolving their systematics. Molecular Phylogenetics and Evolution 45, 14-22. Wright, S. (1968). Evolution and the Genetics of Populations: A Treatise, Vol 4 (Chicago: University of Chicago Press).

20

Figure 1: Variability of six acoustic parameters from the advertisement call of 15 species of Phyllomedusa at different levels. Coeficient of variation was calculated based on a stratified hierarchical subsampling method in which we repeatedly drew from our data pool five different calls. This procedure was repeated 1,000 times for each parameter at each level.

21

Figure 2: Results of the hierarchical ANOVA showing what percentage of the variability of the advertisement call of 15 species of Phyllomedusa is attributed to each level for all acoustic parameters: dominant frequency (df); number of pulses (pn); pulse length (pn); pulse rate (pr); call duration (dur); interval between calls (ci).

22

Table 1: Detailed step by step procedure used to draw calls from our data pool in the stratified hierarchical subsampling method used to calculate the coefficient of variation of the advertisement call of Phyllomedusa at different levels for each acoustic parameter.

Level Step 1 Step 2 Step 3 Step 4 Step 5 Intra-individual Draw one Draw one Draw five Calculate CV Repeat 1,000 x specie individual different calls from this individual Intra- Draw one Draw five Draw one call Calculate CV Repeat 1,000 x population population of different from each P. nordestina individuals from individual this population Inter- Draw five Draw one Draw one call Calculate CV Repeat 1,000 x population different individual from from each populations of each population individual P. nordestina Intra-specific Draw one Draw five Draw one call Calculate CV Repeat 1,000 x species different from each individuals individual

Inter-specific Draw five Draw one Draw one call Calculate CV Repeat 1,000 x different individual from from each species each specie individual

23

Table 02: Advertisement call description for all species of Phyllomedusa recorded. Mean, standard deviation, maximum and minimum values for each acoustic parameter.

Number of Number of Call duration Dominant frequency Call interval Number of pulses Pulse rate Pulse lenght Specie individuals calls (s) (Hz) (s) (pulse/s) (s) 0.039 ± 0.017 2079.086 ± 193.94 9.085 ± 26.595 3.814 ± 0.913 109.906 ± 32.993 0.005 ± 0.001 Phyllomedusa nordestina 100 2227 (0.01-0.089) (1500-2625) (0.015-290.299) (2-8) (40-230.769) (0.0005-0.01) 0.029 ± 0.0014 2291.151 ± 59.219 21.599 ± 20.662 4 ± 0 135.705 ± 7.606 0.005 ± 0.0005 Phyllomedusa azurea 4 45 (0.026-0.034) (2153.3-2411.7) (1.432-88.384) (4-4) (111.111-150) (0.004-0.006) 0.311 ± 0.171 1141.304 ± 148.107 18.408 ± 14.256 14.495 ± 4.170 43.085 ± 9.245 0.014 ± 0.004 Phyllomedusa bahiana 10 115 (0.134-0.992) (937.5-1312.5) (0.986-74.14) (7-26) (20.618-63.492) (0.006-0.021) 0.039 ± 0.008 668.509 ± 105.429 5.812 ± 15.196 4.711 ± 1.117 112.587 ± 8.558 0.005 ± 0.0005 Phyllomedusa camba 5 260 (0.024-0.074) (562.5-1125) (0.087-121.42) (3-9) (88.888-142.857) (0.003-0.006) 0.230 ± 0.051 1299.226 ± 99.332 22.976 ± 12.378 6.832 ± 1.059 27.883 ± 3.640 0.017 ± 0.001 Phyllomedusa distincta 9 113 (0.134-0.35) (1125-1875) (9.2-82.562) (5-10) (15.244-35.714) (0.013-0.024) 0.027 ± 0.005 1970.339 ± 98.021 8.157 ± 19.462 4.070 ± 0.747 141.152 ± 14.440 0.005 ± 0.0009 Phyllomedusa hypocondrialis 11 354 (0.017-0.048) (1687.5-2250) (0.203-195.219) (3-7) (103.448-200) (0.003-0.008) 0.318 ± 0.065 1240.473 ± 132.010 17.350 ± 12.203 9.310 ± 1.798 27.735 ± 3.038 0.017 ± 0.003 Phyllomedusa iheringii 7 164 (0.19-0.494) (937.5-1500) (1.011-109.484) (6-14) (20.746-36.363) (0.012-0.025) 0.150 ± 0.072 2014.628 ± 189.398 37.132 ± 43.132 5.234 ± 2.397 33.164 ± 4.555 0.018 ± 0.003 Phyllomedusa rohdei 7 47 (0.078-0.415) (1687.5-2250) (2.773-183.164) (3-11) (25.157-46.391) (0.011-0.024) 0.033 ± 0.090 1182.335 ± 107.827 18.038 ± 13.749 9.280 ± 2 29.389 ± 3.812 0.015 ± 0.001 Phyllomedusa tetraploidea 7 121 (0.194-0.645) (937.5-1312.5) (2.24-77.324) (5-15) (20.634-38.095) (0.010-0.022) 0.043 ± 0.007 1609.375 ± 148.680 64.123 ± 65.685 7.916 ± 1.311 178.123 ± 15.675 0.004 ± 0.0006 Phyllomedusa vaillantii 4 12 (0.03-0.053) (1312.5-1875) (11.986-180.149) (5-10) (155.555-212.121) (0.002-0.005) 0.118 ± 0.010 1102.5 ± 154.0.65 8.396 ± 4.860 6.8 ± 0.447 51.450 ± 0.778 0.004 ± 0.0002 Phyllomedusa burmeisteri 1 5 (0.1-0.126) (1033.6-1378.1) (3.724-15.224) (6-7) (50.420-52.173) (0.004-0.004) 0.321 ± 0.085 1809.375 ± 139.717 42.742 ± 34.665 13.4 ± 3.589 39.782 ± 7.990 0.005 ± 0.0006 Phyllomedusa megacephala 2 20 (0.25-0.566) (1687.5-2062.5) (7.033-137.449) (8-22) (23.381-54.140) (0.004-0.006) 0.093 ± 0.039 1471.444 ± 167.530 7.3 ± 12.846 5.625 ± 1.135 71.520 ± 40.508 0.008 ± 0.002 Phyllomedusa ayeaye 5 96 (0.025-0.16) (1205.9-1722.7) (0.253-60.04) (3-10) (30.303-208.33) (0.003-0.015) 0.025 ± 0.005 1679.589 ± 153.0.89 15.362 ± 42.189 3.925 ± 0.641 1140.519 ± 23.248 0.004 ± 0.001 Phyllomedusa oreades 7 200 (0.018-0.068) (1125-2067.2) (0.192-352.912) (3-7) (79.365-285.714) (0.002-0.007) 0.037 ± 0.014 1271.514 ± 174.469 7.552 ± 12.433 4.423 ± 0.838 115.818 ± 28.474 0.004 ± 0,001 Phyllomedusa centralis 9 215 (0.019-0.099) (937.5-1550.4) (0.2-79.318) (3-7) (45.977-166.666) (0.002-0.008)

24

Table 3: Influence of the environmental temperature on the acoustic parameters of the advertisement call of 15 species of Phyllomedusa. Regression models included the mean value of the acoustic parameter for each individual and the species was included as a block.

Source n F p Call Interval 172 3.035 0.0833 Dominant Frequency 172 4.612 0.0332 Call Duration 172 19.329 <0.001 Pulse Length 172 9.499 0.002 Number of Pulses 172 2.393 0.123 Pulse Rate 172 21.142 <0.001

Table 4: Influence of body size on the acoustic parameters of the advertisement call of 15 species of Phyllomedusa. Regression models included the mean value of the acoustic parameter for each individual and the species was included as a block.

Source n F p Call Interval 165 0.501 0.479 Dominant Frequency 165 360.321 <0.001 Call Duration 165 63.311 <0.001 Pulse Length 165 44.384 <0.001 Number of Pulses 165 92.656 <0.001 Pulse Rate 165 28.451 <0.001

Table 5: Results of Mantel test evaluating which acoustic parameters of the advertisement call of Phyllomedusa nordestina are correlated to the geographic distance between populations.

Source r p Call Duration 0.064 0.0492 Dominant Frequency 0.0346 0.1896 Number of Pulses 0.0177 0.3174 Pulse Length -0.0169 0.6096 Pulse Rate 0.1099 0.0039 Call Interval -0.0038 0.4668

25

Table 6: Phylogenetic signal for acoustic parameters and body size of Phyllomedusa calculated through Blomberg’s K (Blomberg et al., 2003)

Source Blomberg´s K PIC.mean PIC.rdn.mean P Call Duration 0.735 0.0011 0.0043 0.009 Dominant Freuency 0.6418 16689.364 56643.053 0.007 Call Interval 0.691 23.480 74.192 0.016 Number of Pulses 0.535 0.964 2.696 0.023 Pulse Rate 0.794 198.234 729.991 0.004 Pulse Length 0.566 <0.001 <0.001 0.027 Body Size 0.355 58.681 64.193 0.462

26

Supplementary Material:

Table S1: Detailed information in each individual of Phyllomedusa recorded throughout Brazil

Location Geographical coordenates Temperature Body Size Number of Species ID (City/State) (Latitude/Longitude) (°C) (mm) calls Phyllomedusa nordestina 1 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 19.7 35.19 36 Phyllomedusa nordestina 2 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 19.3 34.55 35 Phyllomedusa nordestina 3 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 19.7 36 39 Phyllomedusa nordestina 4 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 19.1 32.45 39 Phyllomedusa nordestina 5 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 19.1 33.42 56 Phyllomedusa nordestina 6 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 21.1 34.34 11 Phyllomedusa nordestina 7 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 21.1 32.94 12 Phyllomedusa nordestina 8 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 19.5 34.05 08 Phyllomedusa nordestina 9 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 19.8 38.12 16 Phyllomedusa nordestina 10 Cuité/Paraíba 6°29’28.4‖S 36°9’28.1‖W 21 31.27 10 Phyllomedusa nordestina 11 Cuité/Paraíba 6°29’28.4‖S 36°9’28.1‖W 21.4 32.35 24 Phyllomedusa nordestina 12 Cuité/Paraíba 6°29’28.4‖S 36°9’28.1‖W 21.4 36.6 24 Phyllomedusa nordestina 13 Cuité/Paraíba 6°29’28.4‖S 36°9’28.1‖W 20.7 30.3 11 Phyllomedusa nordestina 14 Cuité/Paraíba 6°29’28.4‖S 36°9’28.1‖W 20.7 32.45 14 Phyllomedusa nordestina 15 Cuité/Paraíba 6°29’28.4‖S 36°9’28.1‖W 20.3 32.69 07 Phyllomedusa nordestina 16 Cuité/Paraíba 6°29’28.4‖S 36°9’28.1‖W 20.3 35.41 13 Phyllomedusa nordestina 17 Estância/Sergipe 11°14’45‖S 37°27’49‖W 22.2 29.78 27 Phyllomedusa nordestina 18 Estância/Sergipe 11°14’45‖S 37°27’49‖W 23.2 34.93 19 Phyllomedusa nordestina 19 Estância/Sergipe 11°14’45‖S 37°27’49‖W 22.4 35.42 07 Phyllomedusa nordestina 20 Estância/Sergipe 11°14’45‖S 37°27’49‖W 22 35.16 04 Phyllomedusa nordestina 21 Igarassu/Pernambuco 7°49’1.2‖S 34°57’19.2‖W 23.7 35.74 05 Phyllomedusa nordestina 22 Igarassu/Pernambuco 7°49’1.2‖S 34°57’19.2‖W 21.1 37.28 04 Phyllomedusa nordestina 23 Igarassu/Pernambuco 7°49’1.2‖S 34°57’19.2‖W 21.2 36.74 07 Phyllomedusa nordestina 24 Igarassu/Pernambuco 7°49’1.2‖S 34°57’19.2‖W 21 36.02 02 Phyllomedusa nordestina 25 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 21.3 NA 15 Phyllomedusa nordestina 26 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 21.3 35.69 50 Phyllomedusa nordestina 27 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 19 NA 20 Phyllomedusa nordestina 28 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 19 35.39 16

27

Location in Brazil Geographical coordenates Temperature Body Size Number of Specie ID (City/State) (Latitude/Longitude) (°C) (mm) calls Phyllomedusa nordestina 29 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 18.5 33.37 20 Phyllomedusa nordestina 30 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 21.1 37.99 56 Phyllomedusa nordestina 31 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 21 32.86 23 Phyllomedusa nordestina 32 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 20.5 33.96 12 Phyllomedusa nordestina 33 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 18.8 32.09 37 Phyllomedusa nordestina 34 Jaguaquara/Bahia 13°28’28‖S 39°55’10.5‖W 20.5 40.28 34 Phyllomedusa nordestina 35 Jaguaquara/Bahia 13°28’28‖S 39°55’10.5‖W 20.5 35.82 24 Phyllomedusa nordestina 36 Jaguaquara/Bahia 13°28’28‖S 39°55’10.5‖W 19.5 37.13 60 Phyllomedusa nordestina 37 Jaguaquara/Bahia 13°28’28‖S 39°55’10.5‖W 19.5 38.69 15 Phyllomedusa nordestina 38 Jaguaquara/Bahia 13°28’28‖S 39°55’10.5‖W 19.5 40.01 24 Phyllomedusa nordestina 39 Jaguaquara/Bahia 13°28’28‖S 39°55’10.5‖W 18 36.31 19 Phyllomedusa nordestina 40 Jaguaquara/Bahia 13°28’28‖S 39°55’10.5‖W 18 35.02 25 Phyllomedusa nordestina 41 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 24.5 32.54 39 Phyllomedusa nordestina 42 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 24.6 30.8 40 Phyllomedusa nordestina 43 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 24.3 32.13 18 Phyllomedusa nordestina 44 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 24.4 30.97 16 Phyllomedusa nordestina 45 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 24 NA 33 Phyllomedusa nordestina 46 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 24 32.73 63 Phyllomedusa nordestina 47 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 23.1 34.95 44 Phyllomedusa nordestina 48 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 23.1 34.57 23 Phyllomedusa nordestina 49 Mamanguape/Paraíba 6°56’35.6‖S 35°7’23.7‖W 22.5 35.54 22 Phyllomedusa nordestina 50 Mamanguape/Paraíba 6°56’35.6‖S 35°7’23.7‖W 22 34.3 26 Phyllomedusa nordestina 51 Mamanguape/Paraíba 6°56’35.6‖S 35°7’23.7‖W 21 38.33 05 Phyllomedusa nordestina 52 Mamanguape/Paraíba 6°56’35.6‖S 35°7’23.7‖W 20 33.93 06 Phyllomedusa nordestina 53 Mamanguape/Paraíba 6°56’35.6‖S 35°7’23.7‖W 21.5 32.34 14 Phyllomedusa nordestina 54 Mamanguape/Paraíba 6°56’35.6‖S 35°7’23.7‖W 21.3 33.08 24 Phyllomedusa nordestina 55 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 18.8 37.87 30 Phyllomedusa nordestina 56 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 18 36.48 04 Phyllomedusa nordestina 57 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 18 36.4 32 Phyllomedusa nordestina 58 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 18 36.77 56 Phyllomedusa nordestina 59 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 18 35.8 37 Phyllomedusa nordestina 60 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 18 34.94 26 Phyllomedusa nordestina 61 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 16.8 35.16 04 Phyllomedusa nordestina 62 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 16.3 32.55 34

28

Location in Brazil Geographical coordenates Temperature Body Size Number of Specie ID (City/State) (Latitude/Longitude) (°C) (mm) calls Phyllomedusa nordestina 63 Paripiranga/ Bahia 10°41’22‖S 37°52’59.3‖W 20 34.27 21 Phyllomedusa nordestina 64 Paripiranga/ Bahia 10°41’22‖S 37°52’59.3‖W 20 40.31 10 Phyllomedusa nordestina 65 Paripiranga/ Bahia 10°41’22‖S 37°52’59.3‖W 20 36.07 44 Phyllomedusa nordestina 66 Paripiranga/ Bahia 10°41’22‖S 37°52’59.3‖W 20 39.14 36 Phyllomedusa nordestina 67 Paripiranga/ Bahia 10°41’22‖S 37°52’59.3‖W 20 36.78 20 Phyllomedusa nordestina 68 Paripiranga/ Bahia 10°41’22‖S 37°52’59.3‖W 20 NA 20 Phyllomedusa nordestina 69 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 22.1 33.31 11 Phyllomedusa nordestina 70 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 22.9 30.02 18 Phyllomedusa nordestina 71 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 21 31.01 41 Phyllomedusa nordestina 72 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 21 30.49 18 Phyllomedusa nordestina 73 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 19.5 34.35 51 Phyllomedusa nordestina 74 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 19.7 30.24 15 Phyllomedusa nordestina 75 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 19.7 29.57 20 Phyllomedusa nordestina 76 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 19.5 30.92 26 Phyllomedusa nordestina 77 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 19.5 31.25 38 Phyllomedusa nordestina 78 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 18.6 30.43 09 Phyllomedusa nordestina 79 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 18.6 35.06 24 Phyllomedusa nordestina 80 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 25.4 35.77 20 Phyllomedusa nordestina 81 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 25.4 35.47 19 Phyllomedusa nordestina 82 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 25.4 34.45 16 Phyllomedusa nordestina 83 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 25.4 34.77 11 Phyllomedusa nordestina 84 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 25.4 34.12 05 Phyllomedusa nordestina 85 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 19.3 32.75 07 Phyllomedusa nordestina 86 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 19.3 33.16 19 Phyllomedusa nordestina 87 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 19.3 34.34 46 Phyllomedusa nordestina 88 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 19.4 33.16 07 Phyllomedusa nordestina 89 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 19.4 33.62 08 Phyllomedusa nordestina 90 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 19.3 32.98 21 Phyllomedusa nordestina 91 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 19.3 32.65 09 Phyllomedusa nordestina 92 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 18.7 33.56 07 Phyllomedusa nordestina 93 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 18 36.35 21 Phyllomedusa nordestina 94 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 17.4 NA 20 Phyllomedusa nordestina 95 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 17.8 NA 25 Phyllomedusa nordestina 96 Taquaritinga do Norte/ Pernambuco 7°53’21.4‖S 36°3’45‖W 17 33.32 32

29

Location in Brazil Geographical coordenates Temperature Body Size Number of Specie ID (City/State) (Latitude/Longitude) (°C) (mm) calls Phyllomedusa nordestina 97 Taquaritinga do Norte/ Pernambuco 7°53’21.4‖S 36°3’45‖W 17.4 35.94 14 Phyllomedusa nordestina 98 Taquaritinga do Norte/ Pernambuco 7°53’21.4‖S 36°3’45‖W 17 33.48 05 Phyllomedusa nordestina 99 Taquaritinga do Norte/ Pernambuco 7°53’21.4‖S 36°3’45‖W 16 35.51 12 Phyllomedusa nordestina 100 Taquaritinga do Norte/ Pernambuco 7°53’21.4‖S 36°3’45‖W 16 30.97 09 Phyllomedusa azurea 101 Cocalzinho/ Goiás 15°42’23.5‖S 48°49’48.2‖W 23 34.75 29 Phyllomedusa azurea 102 Cocalzinho/ Goiás 15°42’23.5‖S 48°49’48.2‖W 23.1 34.55 05 Phyllomedusa azurea 103 Cocalzinho/ Goiás 15°42’23.5‖S 48°49’48.2‖W 23.9 31.79 05 Phyllomedusa azurea 104 Cocalzinho/ Goiás 15°42’23.5‖S 48°49’48.2‖W 20 35.27 06 Phyllomedusa bahiana 105 Feira de Santana/ Bahia 12°7’60‖S 39°1’0.01‖W 20 76.62 21 Phyllomedusa bahiana 106 Feira de Santana/ Bahia 12°7’60‖S 39°1’0.01‖W 20 72.74 14 Phyllomedusa bahiana 107 Feira de Santana/ Bahia 12°7’60‖S 39°1’0.01‖W 19.8 77.67 07 Phyllomedusa bahiana 108 Paripiranga/ Bahia 10°41’22‖S 37°52’59.3‖W 20 75.42 08 Phyllomedusa bahiana 109 Macajuba/Bahia 12°7’55.8‖S 40°18’27.6‖W 15.3 72.21 14 Phyllomedusa bahiana 110 Ilhéus/Bahia 14°47’44.4‖S 39°10’21.7‖W 24.2 69.31 12 Phyllomedusa bahiana 111 Ilhéus/Bahia 14°47’44.4‖S 39°10’21.7‖W 23.5 77.74 14 Phyllomedusa bahiana 112 Ilhéus/Bahia 14°47’44.4‖S 39°10’21.7‖W 23.8 75.48 09 Phyllomedusa bahiana 113 Ilhéus/Bahia 14°47’44.4‖S 39°10’21.7‖W 24 77.56 10 Phyllomedusa bahiana 114 Ilhéus/Bahia 14°47’44.4‖S 39°10’21.7‖W 23.7 78.48 06 Phyllomedusa camba 115 Aripuanã/ Mato Grosso 10°8’29‖S 59°26’11.9‖W 24.1 79.49 26 Phyllomedusa camba 116 Aripuanã/ Mato Grosso 10°8’29‖S 59°26’11.9‖W 24.1 83.41 89 Phyllomedusa camba 117 Aripuanã/ Mato Grosso 10°8’29‖S 59°26’11.9‖W 22.1 82.5 04 Phyllomedusa camba 118 Aripuanã/ Mato Grosso 10°8’29‖S 59°26’11.9‖W 22.1 85.34 44 Phyllomedusa camba 119 Aripuanã/ Mato Grosso 10°8’29‖S 59°26’11.9‖W 22.1 84.4 97 Phyllomedusa distincta 120 Blumenau/Santa Catarina 26°50’19‖S 48°47’18‖W 16 50.33 08 Phyllomedusa distincta 121 Urussunga/ Santa Catarina 28°31’43.8‖S 49°20’23.7‖W 19.7 53.16 10 Phyllomedusa distincta 122 Urussunga/ Santa Catarina 28°31’43.8‖S 49°20’23.7‖W 18.3 50.44 07 Phyllomedusa distincta 123 Urussunga/ Santa Catarina 28°31’43.8‖S 49°20’23.7‖W 18.3 49.61 21 Phyllomedusa distincta 124 Urussunga/ Santa Catarina 28°31’43.8‖S 49°20’23.7‖W 19.8 47.9 18 Phyllomedusa distincta 125 Urussunga/ Santa Catarina 28°31’43.8‖S 49°20’23.7‖W 19.5 53.98 09 Phyllomedusa distincta 126 Urussunga/ Santa Catarina 28°31’43.8‖S 49°20’23.7‖W 18.5 53.53 15 Phyllomedusa distincta 127 Urussunga/ Santa Catarina 28°31’43.8‖S 49°20’23.7‖W 18.3 48.15 15 Phyllomedusa distincta 128 Urussunga/ Santa Catarina 28°31’43.8‖S 49°20’23.7‖W 18.7 47.46 10 Phyllomedusa hypocondrialis 129 Porto Grande/Amapá 0°43’51.8‖N 51°33’60‖W 23.5 35.13 09 Phyllomedusa hypocondrialis 130 Porto Grande/Amapá 0°43’51.8‖N 51°33’60‖W 22.6 NA 65

30

Location in Brazil Geographical coordenates Temperature Body Size Number of Specie ID (City/State) (Latitude/Longitude) (°C) (mm) calls Phyllomedusa hypocondrialis 131 Porto Grande/Amapá 0°43’51.8‖N 51°33’60‖W 23.5 36.73 17 Phyllomedusa hypocondrialis 132 Porto Grande/Amapá 0°43’51.8‖N 51°33’60‖W 23.4 37.31 09 Phyllomedusa hypocondrialis 133 Porto Grande/Amapá 0°43’51.8‖N 51°33’60‖W 22.5 35.77 36 Phyllomedusa hypocondrialis 134 Porto Grande/Amapá 0°43’51.8‖N 51°33’60‖W 22.2 32.67 24 Phyllomedusa hypocondrialis 135 Porto Grande/Amapá 0°43’51.8‖N 51°33’60‖W 22.3 37.39 10 Phyllomedusa hypocondrialis 136 Porto Grande/Amapá 0°43’51.8‖N 51°33’60‖W 22.3 34.82 33 Phyllomedusa hypocondrialis 137 Porto Grande/Amapá 0°43’51.8‖N 51°33’60‖W 22.3 37.6 91 Phyllomedusa hypocondrialis 138 Porto Grande/Amapá 0°43’51.8‖N 51°33’60‖W 22.3 34.26 37 Phyllomedusa hypocondrialis 139 Porto Grande/Amapá 0°43’51.8‖N 51°33’60‖W 22.4 36.84 23 Phyllomedusa iheringii 140 Santa Maria/Rio Grande do Sul 29°43’5‖S 53°43’37‖W 15.5 55.78 26 Phyllomedusa iheringii 141 Santa Maria/Rio Grande do Sul 29°43’5‖S 53°43’37‖W 15.5 54.1 18 Phyllomedusa iheringii 142 Santa Maria/Rio Grande do Sul 29°43’5‖S 53°43’37‖W 14.9 51.18 15 Phyllomedusa iheringii 143 Santa Maria/Rio Grande do Sul 29°43’5‖S 53°43’37‖W 15 58.13 10 Phyllomedusa iheringii 144 Santa Maria/Rio Grande do Sul 29°43’5‖S 53°43’37‖W 15 55.3 16 Phyllomedusa iheringii 145 Santa Maria/Rio Grande do Sul 29°43’5‖S 53°43’37‖W 16.7 55.67 09 Phyllomedusa iheringii 146 São Sapé/ Rio Grande do Sul 30°15’5.6‖S 53°35’7.4‖W 16.5 49.69 70 Phyllomedusa rohdei 147 Ilhéus/Bahia 14°47’44.4‖S 39°10’21.7‖W 23.7 45.76 02 Phyllomedusa rohdei 148 Ilhéus/Bahia 14°47’44.4‖S 39°10’21.7‖W 23.7 45.68 16 Phyllomedusa rohdei 149 Ilhéus/Bahia 14°47’44.4‖S 39°10’21.7‖W 23.8 42.65 04 Phyllomedusa rohdei 150 Ilhéus/Bahia 14°47’44.4‖S 39°10’21.7‖W 23.5 41.63 04 Phyllomedusa rohdei 151 Ilhéus/Bahia 14°47’44.4‖S 39°10’21.7‖W 23.3 46.36 03 Phyllomedusa rohdei 152 Ilhéus/Bahia 14°47’44.4‖S 39°10’21.7‖W 23.4 45.14 06 Phyllomedusa rohdei 153 Ilhéus/Bahia 14°47’44.4‖S 39°10’21.7‖W 23.2 41.84 12 Phyllomedusa tetraploidea 154 Palmas/Paraná 26°25’50‖S 51°57’31‖W 16 64.02 15 Phyllomedusa tetraploidea 155 Francisco Beltrão/Paraná 26°4’50.6‖S 53°5’13.4‖W 20.6 65.48 21 Phyllomedusa tetraploidea 156 Francisco Beltrão/Paraná 26°4’50.6‖S 53°5’13.4‖W 20.3 59.29 21 Phyllomedusa tetraploidea 157 Francisco Beltrão/Paraná 26°4’50.6‖S 53°5’13.4‖W 19.7 54.42 05 Phyllomedusa tetraploidea 158 Francisco Beltrão/Paraná 26°4’50.6‖S 53°5’13.4‖W 19.4 58.55 29 Phyllomedusa tetraploidea 159 Francisco Beltrão/Paraná 26°4’50.6‖S 53°5’13.4‖W 18.5 55.31 15 Phyllomedusa tetraploidea 160 Francisco Beltrão/Paraná 26°4’50.6‖S 53°5’13.4‖W 18.3 55.31 15 Phyllomedusa vaillantii 161 Porto Grande/ Amapá 0°57’51‖N 50°36’38‖W 23 51.9 03 Phyllomedusa vaillantii 162 Porto Grande/ Amapá 0°57’51‖N 50°36’38‖W 25 47.08 02 Phyllomedusa vaillantii 163 Porto Grande/ Amapá 0°57’51‖N 50°36’38‖W 22 49.21 04 Phyllomedusa vaillantii 164 Porto Grande/ Amapá 0°57’51‖N 50°36’38‖W 22.2 50.84 03

31

Location in Brazil Geographical coordenates Temperature Body Size Number of Specie ID (City/State) (Latitude/Longitude) (°C) (mm) calls Phyllomedusa burmeisteri 165 Carlos Chagas/ Minas Gerais 17°49’27.5‖S 40°55’25‖W 25.7 6.3 05 Phyllomedusa megacephala 166 Jaboticatubas/ Minas Gerais 19°8’26‖S 43°37’22‖W 23 38.56 14 Phyllomedusa megacephala 167 Jaboticatubas/ Minas Gerais 19°8’26‖S 43°37’22‖W 23 38.41 06 Phyllomedusa ayeaye 168 Poços de Caldas/ Minas Gerais 21°53’51‖S 46°32’42‖W 17.6 40.63 12 Phyllomedusa ayeaye 169 Poços de Caldas/ Minas Gerais 21°53’51‖S 46°32’42‖W 17.6 37.97 12 Phyllomedusa ayeaye 170 Poços de Caldas/ Minas Gerais 21°53’51‖S 46°32’42‖W 17.6 41.43 44 Phyllomedusa ayeaye 171 Poços de Caldas/ Minas Gerais 21°53’51‖S 46°32’42‖W 17.6 41.25 08 Phyllomedusa ayeaye 172 Poços de Caldas/ Minas Gerais 21°53’51‖S 46°32’42‖W 17.6 41.17 20 Phyllomedusa oreades 173 Minaçu/Goiás 13°47’07‖S 48°17’35‖W NA NA 60 Phyllomedusa oreades 174 Minaçu/Goiás 13°47’07‖S 48°17’35‖W NA NA 05 Phyllomedusa oreades 175 Minaçu/Goiás 13°47’07‖S 48°17’35‖W NA NA 05 Phyllomedusa oreades 176 Minaçu/Goiás 13°47’07‖S 48°17’35‖W NA NA 18 Phyllomedusa oreades 177 Minaçu/Goiás 13°47’07‖S 48°17’35‖W NA NA 41 Phyllomedusa oreades 178 Minaçu/Goiás 13°47’07‖S 48°17’35‖W NA NA 51 Phyllomedusa oreades 179 Minaçu/Goiás 13°47’07‖S 48°17’35‖W NA NA 20 Phyllomedusa centralis 180 Congonhas/Minas Gerais 15°31’23‖S 55°53’34‖W NA NA 31 Phyllomedusa centralis 181 Congonhas/Minas Gerais 15°31’23‖S 55°53’34‖W NA NA 10 Phyllomedusa centralis 182 Congonhas/Minas Gerais 15°31’23‖S 55°53’34‖W NA NA 28 Phyllomedusa centralis 183 Congonhas/Minas Gerais 15°31’23‖S 55°53’34‖W NA NA 25 Phyllomedusa centralis 184 Congonhas/Minas Gerais 15°31’23‖S 55°53’34‖W NA NA 28 Phyllomedusa centralis 185 Congonhas/Minas Gerais 15°31’23‖S 55°53’34‖W NA NA 28 Phyllomedusa centralis 186 Congonhas/Minas Gerais 15°31’23‖S 55°53’34‖W NA NA 43 Phyllomedusa centralis 187 Congonhas/Minas Gerais 15°31’23‖S 55°53’34‖W NA NA 17 Phyllomedusa centralis 188 Congonhas/Minas Gerais 15°31’23‖S 55°53’34‖W NA NA 05

32

Figure S1: Spectrogram (above) and ocillogram (below) for a sample advertisement call from all species of Phyllomedusa recorded.

33

Figure S1 (continued): Spectrogram (above) and ocillogram (below) for a sample advertisement call from all species of Phyllomedusa recorded.

34

Figure S1 (continued): Spectrogram (above) and ocillogram (below) for a sample advertisement call from all species of Phyllomedusa recorded.

35

Figure S2: Phylogenetic tree based on Pyron & Wiens (2011) including all species of Phyllomedusa recorded and a representation of their advertisement call (ocillogram)

36

CAPÍTULO 02

Habitat Dependet Variation in the Advertisement Call of Phyllomedusa nordestina

(HYLIDAE: ANURA)

David Lucas Röhr, Felipe Camurugi, Pablo Ariel Martinez, Flora Acuña Juncá &

Adrian Antonio Garda

Abstract

The Acoustic Adaptation Hypothesis (AAH) predicts that acoustic signals should be adapted to propagate more efficiently in the habitat through which they are normally transmitted. This hypothesis is fairly well tested for birds and primates.

However, the few studies on anurans indicate that this selective pressure may not be so important for frogs. Herein, we compare advertisement calls of Phyllomedusa nordestina from two contrasting habitats (Atlantic Rainforest and Caatinga) and test the influence of the amount of vegetation around calling sites on measured acoustic parameters. Our results indicate that different acoustic parameters from the same species advertisement call present diverging evolutionary paths: while the interval between pulses and the call rate are adapted to the environment of occurrence, individuals appear to be adapted to show flexible responses according to the amount of vegetation around calling site by changing their dominant frequency and number of pulses.

Keywords: Acoustic Communication; Acoustic Adaptation Hypothesis; Sound

Propagation; Anura; Evolution

37

Introduction

The efficiency of an acoustic signal is highly dependent on the environment where it is emitted, received and through which it propagates (Morton, 1975; Gehardt &

Huber, 2002). The acoustic environment may vary in biotic and abiotic background noise, presence and abundance of sound-guided predators and parasites, climatic conditions and presence and number of propagation barriers (Wiley & Richards, 1978;

Ryan & Tuttle, 1983; Brumm, 2013). Knowledge on the role of the acoustic environment on the evolution of an acoustic signal is still incipient and few studies have addressed how it is associated to present intra and inter signal variation (Wilkins et al.,

2013). The Acoustic Adaptation Hypothesis (AAH) predicts that acoustic signals should be adapted to propagate more efficiently in the habitat through which they are normally transmitted. Individuals whose sexual display signals will attenuate and degrade less and therefore be heard and recognized at farther distances will increase their probability of attracting a mate, leading to assortative mating and evolution through natural selection (Morton, 1975; Wiley & Richards, 1978; Ey & Fischer, 2009).

Acoustic signals are characterized by different spectral and temporal parameters.

Physics theories and experimental data predict that the efficiency of signal propagation depends on the values of these acoustic parameters and on habitat characteristics, indicating that transmission efficiency of different signals varies among contrasting habitats (Morton, 1975; Wiley & Richards, 1978; Kime et al., 2000). Traditionally, these predictions have been tested comparing signal characteristic and their efficiencies among habitats with different vegetation coverage (e.g. open vs. closed habitats), considering their clear difference in patterns of sound absorption, refraction, reflection, and scattering (Wiley & Richards, 1978). Although the theory of how these parameters

38 should respond to these habitats is well established, empirical data are scarce and diverging results for different clades have been recovered (Ey & Fischer, 2009).

Among the three highly vocal vertebrate clades, studies on birds and mammals highly outnumber those on anurans. A meta-analysis and other reviews show the importance of the AAH for the evolution of bird and mammals vocalizations

(Boncoraglio & Saino, 2007; Ey & Fischer 2009). However, results diverge between studies and there is a tendency for birds to have spectral parameters adaptations while temporal adjustments are more common for mammals (Ey & Fischer 2009). The few studies addressing anurans in which acoustic signals of species from contrasting environments were compared or where propagation efficiencies were experimentally tested failed to find clear evidences of the AAH (Zimmerman, 1983; Penna & Solís,

1998; Kime et al., 2000; Castellano et al., 2003; Bosch & de La Riva, 2004).

Nevertheless, a recent review (Erdtmann & Lima, 2013) discusses whether these results reflect that this selective pressure is not important for anurans and suppressed by other evolutionary forces or methodological weaknesses of the comparative and/or experimental designs used in such studies. Erdtmann & Lima (2013) argue that studies should include better vegetation quantifications, broader sampling covarege (avoiding pseudoreplications from the inclusion of many individuals from the same population), and adequate control for body size and phylogenetic relationships. Furthermore, most studies compare the vocalization from all species with available data from contrasting environments (Zimmerman, 1983; Penna & Solís, 1998; Kime et al., 2000; Bosch & de

La Riva, 2004), and it may be argued that the AAH may act as a micro-evolutionary process and, considering the many other possible selective forces, may be better detected using more restrictive monophyletic clades (Kime et al., 2000). Indeed, the single evidence for the AAH in anurans comes from the comparison of call

39 characteristics and propagation efficiency test between two closely related species, however lacking replicates (Ryan et al., 1990; Ryan & Wilczynski, 1991).

Additionally, plastic responses to the momentary propagation scenario should also be considered and studies should focus on intra-specific variation and include precise vegetation measures around calling sites. Acoustic environments are constantly changing and are expected to respond to these changes. While long-term changes in the environment should lead to adaptive responses, short-term alteration in the environment is expected to elicit plastic responses (Brumm, 2013). The vegetation between contrasting environments such as and more open areas can be considered as constantly different, however the amount of propagation barriers around a calling individual also varies within one habitat, especially considering changes in calling sites. According to the AAH, acoustic signals are fixed attributes and the selective pressure for propagation effectiveness should lead to long-term adaptive responses, guiding differences in signal design between populations and enabling sound-mediated speciation (Morton, 1975; Wiley & Richards, 1978). Still, frogs have been shown to use flexible responses to deal with the acoustic environment (Lardner & bin Lakin, 2002). For example, individuals of Hypsiboas pulchellus seem to perceive the amount of vegetation around their calling site and adjust temporal parameters for a more effective sound transmission (Ziegler et al., 2011).

Herein, we test the following hypotheses: 1) acoustic parameters are selected by the environment of occurrence according to the AAH; 2) frogs respond in a more flexible manner according to the amount of local vegetation around the individual. For this purpose, we studied intra-specific variation in the advertisement call of

Phyllomedusa nordestina. This tree-frog is widespread along Northeastern Brazil and occurs in two contrasting environments: Atlantic Rainforest and Caatinga. We recorded

40 the advertisement call of 101 individuals from 14 different localities, seven located in the Atlantic Rainforest and seven in the Caatinga dry forest (Figure 1) and analyzed

2227 calls. We measured the vegetation around 85 individuals and tested if spectral and temporal acoustic parameters are influenced by the habitat of occurrence and if they are correlated with the amount of vegetation around the frog, considering spatial distribution, body size, and environmental temperature.

Material and Methods

Organism

Phyllomedusa nordestina is a charismatic tree frog widespread along

Northeastern Brazil. It reproduces in small, and generally ephemeral ponds. Males call from perches in the vegetation where the amplexus takes place and eggs are laid in leaf- nests. When the eggs hatch, tadpoles fall into the pond where they develop until metamorphosis. The advertisement call of P. nordestina has been previously described

(Vilaça et al., 2011).

Study Sites

Recordings of calling males were made in 14 localities throughout Northeastern

Brazil, ranging from the northerly state of Rio Grande do Norte to the state of Bahia, in the south (Figure 1) (See Table S1 for details on each recording), covering most of the species distribution. Seven localities were in the Brazilian Atlantic Rainforest, and the remaining in the Caatinga, a semi-arid scrub and woodland characterized by low air humidity, and sparse irregular precipitation. Although its vegetation varies considerably, there is a predominance of shrubs, herbaceous plants, cacti, and sparse small trees (Leal et al., 2003). The Brazilian Atlantic Rainforest is the second largest rain forest from the American continent occupying most of Brazil's coast and reaching

41

Paraguay and Argentina at the southern part of its extension. It is characterized by high levels of precipitation and its vegetation is mostly composed of densely distributed high trees creating a vertical stratification (Tabarelli et al., 2005).

Field recordings

All recordings were made using a Marantz PMD 660 digital recorder with a sampling rate of 48 kHz and 16 bit resolution, connected to a Sennheiser ME66 directional microphone. Acoustic parameters were measured in Raven Pro 1.4 and spectograms produced as follows: FFT window width = 256; Frame = 100; Overlap =

50%. All recordings were of about five minutes and all calls of the focal individual were analyzed. For statistical analyzes the average value for each individual was used for all acoustic parameters. After each recording, environmental temperature was measured and snout-vent length (SVL) of the frog was taken in order to control for its effect on call structure (e.g. Sullivan, 1982). No frog was recorded more than once. The exact calling site was marked for vegetation measures that were taken on the following day.

Habitat characteristics

We took three different vegetation measures in each calling site. First, we measured the distance from the calling site to the nearest tree with a diameter at breast height larger than 30 cm. Two other measurements were taken at the exact calling site and along three random directions at distances of 1, 2, 4, 8, 16, and 32 m. In all 21 points we counted the number of woody plants inside a one-meter diameter circle and estimated canopy coverage using a 1 x 1 m square grid divided into 25 squares of 20 x

20 cm, placed above the head. To estimate coverage the numbers of squares with more than 50% coverage were counted.

Data Analysis

42

From all acoustic variables measured we chose four independent parameters identified after a correlation analysis and which have clear predictions in the AAH: 1) dominant frequency; 2) interval between pulses; 3) call rate; 4) number of pulses. In closed forest vegetation vocalizations are expected to be deeper, with longer intervals between call elements, and more redundant (higher call rate and longer) (Ey & Fischer,

2009). One of the main assumptions of most statistical analysis is the independence among observations. However, we sampled groups of individuals from various geographical localities, scenario which makes spatial autocorrelation very probable.

Data with spatial autocorrelation generates a super estimated number of independent observations, enhancing the probability of a false significant relationship between the explanatory and response variable, increasing the chances of type I error (Peres-Neto,

2009). We tested for spatial autocorrelation for each acoustic parameter (response variables) with Moran´s I test with the SAM 4.0 software (Rangel et al., 2006), considering that if the response variables do not present spatial autocorrelation the significance of the model would not be affected (Legendre et al., 2002). Considering the different statistical approaches that correct for spatial autocorrelation, the Generalized

Least Squares (GLS), which include spatial independence in the model error, has shown a good performance (Beale et al., 2010). For acoustic parameters with significant spatial dependence we used a GLS with an exponential function for the correlation matrix of the errors to test the influence of habitat and vegetation around calling site on call structure For the spatial independent parameters we used ordinary least squares (OLS) analyses. In every model we included body size (SVL) and environmental temperature as explanatory variables. The analyses were done using the nlme package (Pinheiro et al., 2007) in the R 3.1 environment.

43

For each acoustic parameter we ran two models, one including the habitat of occurrence (Atlantic Rainforest and Caatinga) and one including the vegetation coverage around each individual. Because many vegetation measurements were highly dependent, we did a Principal Components Analyses (PCA) based on a correlation matrix. In our analyses we included the two first components, which account for more than 42% of the variation (Figure S2). Finally, we analyzed spatial autocorrelation

(Moran´s I) for the residuals of the GLS models with SAM 4.0 software (See Figure S2 for autocorrelation diagnostics).

Results

Our results show that the environment has a significant influence on spectral and temporal acoustic characteristics of the advertisement call of P. nordestina, with different acoustic parameters being affected by habitat of occurrence and by the amount of vegetation around calling sites. Models testing habitat effect showed that frogs from the Atlantic Rainforest produce calls with longer interval between pulses (df = 90; F=

8.81; p = 0.004) and a slower call rate (df = 90; F= 5.98; p = 0.016) (Figure 2A,B).

Dominant frequency was influenced by body size (df = 90; F= 21.36; p < 0.001) but not by other variables. Number of pulses was not significantly affected by any of the variables (Table 1).

Models testing the influence of the amount of vegetation around calling site revealed the importance of this variable for dominant frequency and number of pulses.

The dominant frequency is strongly affected by the PC1 (Figure 3A) and also influenced by PC2 and body size, while the number of pulses was only influenced by

PC2 (Figure 3B). The correlation matrix between these acoustic parameters and all the vegetation variables measured indicate that when surrounded by denser coverage males

44 tend to use lower pitches and more pulse. Interval between pulses and call rate are not significantly influenced by any of the variables of these models (Table 2).

Discussion

Different acoustic parameters from the same call may present diverging evolutionary paths to cope with sound transmission. Two acoustic parameters were significantly affected by the habitat of occurrence, indicating that selective pressures differ between Atlantic Rainforest and Caatinga and are somehow driving the evolution of the advertisement call of Phyllomedusa nordestina. At the same time, two other parameters are correlated to the amount of vegetation around the calling site, indicating that individuals of this species have the ability to adjust their vocalization to different micro-habitats, presumably for more efficient sound propagation.

Pulse interval and call rate were significantly affected by the habitat of occurrence, indicating an adaptive response, yet only pulse interval varied accordingly to the AAH. As expected, individuals of P. nordestina from Atlantic Rainforest populations have advertisement calls with longer intervals between pulses.

Vocalizations with rapid amplitude modulations, where intervals between call elements are smaller, should suffer more sound degradation in closed vegetation habitats due the higher amount of reverberation in such habitats. At the same time, irregular amplitude fluctuations associated with wind and temperature gradients that characterize open areas should favor the propagation of fast amplitude modulated signals with smaller interval between elements (Morton, 1975; Richards & Wiley, 1980).

Conversely, call rate was affected by habitat contrary to expectations of the

AAH because individuals from the Caatinga called more frequently than those from the

Atlantic Forest. In forests it is predicted that animals would use acoustic signals at

45 higher rates, enhancing signal detection probability (Ey et al., 2009). We propose that this result is related to climatic differences between these environments and breeding characteristics of these frogs. The rainy season in the Caatinga is highly unpredictable and considerably shorter in comparison to the Atlantic Rainforest (Leal et al., 2003;

Tabarelli et al., 2005). Phyllomedusa nordestina relies on temporary puddles for tadpole development, and these habitats are much more ephemeral in the Caatinga, leading to shorter breeding periods. Production of advertisement calls requires an enormous amount of energetic expenditure for anurans, up to 25 times more than resting (Bevier,

1995). Therefore, populations from areas with shorter breeding period should increase calling effort.

While pulse interval and call rate seem adapted to habitat of occurrence, males of P. nordestina seem to respond with call flexibility to the amount of vegetation around calling site, altering dominant frequencies and number of pulses. Active alteration of call properties is well documented for anurans, however it is generally associated to changes in the social context where males are calling (Bee et al., 2000). Only two studies found evidences of advertisement call flexibility for more efficient acoustic propagation (Lardner & bin Lakim, 2002; Ziegler et al 2011). Ziegler et al. (2011) found a significant correlation between temporal parameters of the advertisement call of

Hypsiboas pulchellus and the amount of vegetation around each individual from a single population. Using an experimental approach, they found that some individuals alter temporal call parameters after being enclosed by artificial propagation barriers, indicating signal plasticity. Herein, we found that males of P. nordestina surrounded by higher vegetation densities emit advertisement calls with a higher number of pulses.

Calls with more pulses are more suitable in dense vegetation because longer calls have a higher probability of being detected (Ey & Fischer, 2009). This result endorses the

46 change in temporal acoustic parameters as a way of frogs to deal with different vegetation coverages (Ziegler et al., 2011). Increases in call duration in forests habitats have also been demonstrated for other vertebrates, such as primates (Ey et al., 2009).

The dominant frequency of anuran advertisement call is known to be under strong morphological constrains, where larger frogs have lower pitches. During territorial encounters, males of several species actively lower the pitch of their call

(Davies & Halliday, 1978). This acoustic parameter is also important in sexual selection for many species, where females prefer low or median frequencies (Ryan, 1980).

Although low frequencies suffer less excess attenuation, especially in closed habitats, tests of the AAH have failed to show adaptive responses to more efficient propagation in this parameter for anurans (Zimmerman, 1983; Bosch & de La Riva, 2004).

However, males of Metaphrynella sundana apparently adjust call frequency to explore the resonance effect of tree holes where they reproduce, enhancing propagation distance

(Lardner & bin Lakim, 2002). We found that the dominant frequency of the advertisement call of P. nordestina is affected by the amount of vegetation around each calling individual, having a stronger influence than body size.

The advertisement call of P. nordestina is strongly influenced by the environment in which it is emitted, as all acoustic parameters tested where somehow affected, two of them by the habitat type and two by the amount of vegetation around calling sites. These results contrast with most tests of the AAH for anurans, which fail to detect its importance on acoustic variation. The significant influence of the amount of vegetation around calling site underscores the importance of studies testing flexible responses for more efficient propagation and the evolution of vocal plasticity in vertebrates. We believe future studies should focus on other restricted groups, testing variation in single species or strongly related monophyletic clades, having adequate

47 number of replicates and using phylogenetic comparative methods which also account for the intra-specific variation.

Acknowledgements

We thank Márcio Zikan Cardoso and Renata Sousa-Lima for suggestions on the manuscript and fruitful discussions. AAG and FAJ thank CNPq for financial support

(Universal # 473503/2012-3 and #305704/2013-3, respectively).

References

Beale, C. M., J. J. Lennon, J. M. Yearsley, M. J. Brewer, and D. A. Elston. 2010.

Regression analysis of spatial data. Ecology Letters 12:246-264.

Bee, M. A. and H. C. Gerhardt. 2001. Neighbour-stranger discrimination by territorial male bullfrogs (Rana catesbeiana): I. Acoustic basis. Animal Behaviour

62:1129-1140.

Boncoraglio, G. and N. Saino. 2007. Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Functional

Ecology 21:134-142.

Bosch, J. and I. De La Riva. 2004. Are frog calls modulated by the environment?

An analysis with anuran species from Bolivia. Canadian Journal of Zoology 82:880-

888.

Brumm, H. 2013. Animal Communication and Noise. Springer, Heidelberg,

New York.

Castellano, S., C. Giacoma, and M. J. Ryan. 2003. Call degradation in diploid and tetraploid green toads. Biological Journal of the Linnean Society 78:11-26.

48

Davies, N. B. and T. R. Halliday. 1978. Deep croaks and fighting assessment in toads Bufo bufo. Nature 274:683-685.

Erdtmann, L. K. and A. P. Lima. 2013. Environmental effects on anuran call design: what we know and what we need to know. Ethology Ecology & Evolution 25:1-

11.

Ey, E. and J. Fischer. 2009. The ―acoustic adaptation hypothesis‖ - a review of the evidence from birds, anurans and mammals. Bioacoustics 19:21-48.

Ey, E., C. Rahn, K. Hammerschmidt, and J. Fischer. 2009. Wild female olive baboons adapt their grunt vocalizations to environmental conditions. Ethology 115:493-

503.

Kime, N. M., W. R. Turner, and M. J. Ryan. 2000. The transmission of advertisement calls in Central American frogs. Behavioral Ecology 11:71-83.

Lardner, B. and M. bin Lakim. 2002. Tree-hole frogs exploit resonance effects.

Nature 420:475.

Leal, I. R., M. Tabarelli, and J. M. C. Da Silva. 2003. Ecologia e conservação da

Caatinga. Editora Universitária UFPE, Recife.

Legendre, P., M. R. Dale, M. J. Fortin, J. Gurevitch, M. Hohn, and D. Myers.

2002. The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25:601-615.

Morton, E. S. 1975. Ecological sources of selection on avian sounds. American

Naturalist 109:17-34.

49

Peres-Neto, P. R. 2009. A unified strategy for estimating and controlling spatial, temporal and phylogenetic autocorrelation in ecological models. Oecologia Australis

10:105-119.

Penna, M. and R. Solís. 1998. Frog call intensities and sound propagation in the

South American temperate forest region. Behavioral Ecology & Sociobiology 42:371-

381.

Pinheiro, J., D. Bates, S. DebRoy, and D. Sarkar. 2007. Linear and nonlinear mixed effects models. R package version 0.5 3:57.

Rangel, T. F., J. A. F. Diniz-Filho, and L. M. Bini. 2006. SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:46-50.

Ryan, M. J. 1980. Female mate choice in a neotropical frog. Science 209:523-

525.

Ryan, M. J. and M. D. Tuttle. 1983. The ability of the frog-eating bat to discriminate among novel and potentially poisonous frog species using acoustic cues.

Animal Behaviour 31:827-833.

Ryan, M. J. and W. Wilczynski. 1991. Evolution of intraspecific variation in the advertisement call of a cricket frog (Acris crepitans, Hylidae). Biological Journal of the

Linnean Society 44:249-271.

Ryan, M. J., R. B. Cocroft, and W. Wilczynski. 1990. The role of environmental selection in intraspecific divergence of mate recognition signals in the Cricket Frog,

Acris crepitans. Evolution 44:1869-1872.

50

Sullivan, B. K. 1982. Significance of size, temperature and call attributes to sexual selection in Bufo woodhousei australis. Journal of Herpetology 16:103-106.

Tabarelli, M., L. P. Pinto, J. M. C. Silva, M. M. Hirota, and L. C. Bedê. 2005.

Desafios e oportunidades para a conservação da biodiversidade na Mata Atlântica brasileira. Megadiversidade 1:132-138.

Vilaça, T. R. A., J. R. S. Silva, and M. Solé. 2011. Vocalization and territorial behaviour of Phyllomedusa nordestina Caramaschi, 2006 (Anura: Hylidae) from southern Bahia, Brazil. Journal of Natural History 45:1823-1834.

Wiley, R. H. and D. G. Richards. 1978. Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behavioral Ecology and Sociobiology 3:69-94.

Wilkins, M. R., N. Seddon, and R. J. Safran. 2013. Evolutionary divergence in acoustic signals: causes and consequences. Trends in Ecology & Evolution 28:156-166.

Ziegler, L., M. Arim, and P. M. Narins. 2011. Linking call structure to the environment: the interplay between phenotypic flexibility and individual attributes. Behavioral Ecology 22:520-526.

Zimmerman, B. L. 1983. A comparison of structural features of calls of open and forest habitat frog species in the central Amazon. Herpetologica 39:235-246.

51

Figure 1: Geographic distribution of the recorded individuals of Phyllomedusa nordestina along Northeaster Brazil from the Caatinga (red squares) and Atlantic

Rainforest (green circle). The number beside each locality represents the number of individuals recorded from this population.

52

Figure 2: Difference between the advertisement call from Phyllomedusa nordestina from the Atlantic Rainforest (MA) and Caatinga (CA). A) Interval between pulses (PI). B) Call Rate (CR).

53

Figure 3: Influence of the amount of vegetation (represented by the two components with highest explanatory power after a principal component analyses: PC1;

PC2) surrounding the calling site of Phyllomedusa nordestina on its advertisement call.

A) Dominant frequency (DF). B) Number of pulses.

54

Table 1. Influence of habitat of occurrence (HB), body size (BS) and environmental temperature (TE) on the acoustic parameters of Phyllomedusa nordestina: dominant frequency (DF); number of pulses (NP); interval between pulses

(PI); and call rate (CR). For acoustic parameters with significant spatial correlation

(Moran’s I) we used generalized least squares (GLS) model and for the other ordinary least squares (OLS).

Parameter Spatial Correlation Variable df F-value p-value DF Yes HB 90 1.108 0.295 BS 90 21.362 <0.001 TE 90 2.205 0.141 NP No HB 90 0.016 0.899 BS 90 3.78 0.054 TE 90 2.89 0.093 PI Yes HB 90 8.813 0.004 BS 90 0.852 0.356 TE 90 0.695 0.407 CR Yes HB 90 5.987 0.016 BS 90 1.726 0.192 TE 90 0.009 0.923

55

Table 2. Influence of the amount of vegetation around calling site (represented by the two components with highest explanatory power after a principal component analyses: PC1; PC2), body size (BS), and environmental temperature (TE) on the acoustic parameters of Phyllomedusa nordestina: dominant frequency (DF); number of pulses (NP); interval between pulses (PI); and call rate (CR). For acoustic parameters with significant spatial correlation (Moran’s I) we used generalized least squares (GLS) model and for the other ordinary least squares (OLS).

Parameter Spatial Correlation Variable df beta p-value DF Yes PC1 76 -503.54 0.002 PC2 76 153.51 0.371 BS 76 -18.4 0.021 TE 76 5.58 0.539 NP No PC1 76 -1.01 0.137 PC2 76 -1.53 0.040 BS 76 0.04 0.221 TE 76 -0.08 0.035 -7.38E- PI Yes PC1 75 06 0.942 -9.43E- PC2 75 05 0.385 BS 75 4.45E-08 0.993 -9.72E- TE 75 06 0.121 CR Yes PC1 76 -0.06 0.358 PC2 76 0.014 0.848 BS 76 0.004 0.219 TE 76 0.003 0.419

56

Supplementary Material

Figure S1: Principal component analysis for the vegetation measured around each calling male of Phyllomedusa nordestina at different distances (0, 1, 2, 4, 8, 16, 32m). Number of woody plants in a one meter radius (NT); canopy coverage (CD); distance to the closest tree (DA).

57

Figure S2: Spatial autocorrelation analysis (Moran´s I) for the acoustic parameters of Phyllomedusa nordestina (left). For all parameters with a strong spatial dependence we performed a generalized least squares model (GLS) and tested the spatial autocorrelation of the models residuals (right).

58

Table S1: Detailed information in each individual of Phyllomedusa nordestina recorded throughout Northeastern Brazil

Location in Brazil Geographical coordenates Temperature Body Size Number of Species ID (City/State) (Latitude/Longitude) (°C) (mm) calls Phyllomedusa nordestina 1 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 19.7 35.19 36 Phyllomedusa nordestina 2 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 19.3 34.55 35 Phyllomedusa nordestina 3 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 19.7 36 39 Phyllomedusa nordestina 4 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 19.1 32.45 39 Phyllomedusa nordestina 5 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 19.1 33.42 56 Phyllomedusa nordestina 6 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 21.1 34.34 11 Phyllomedusa nordestina 7 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 21.1 32.94 12 Phyllomedusa nordestina 8 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 19.5 34.05 08 Phyllomedusa nordestina 9 Bezerros/ Pernambuco 8°17’27‖S 35°45’36‖W 19.8 38.12 16 Phyllomedusa nordestina 10 Cuité/Paraíba 6°29’28.4‖S 36°9’28.1‖W 21 31.27 10 Phyllomedusa nordestina 11 Cuité/Paraíba 6°29’28.4‖S 36°9’28.1‖W 21.4 32.35 24 Phyllomedusa nordestina 12 Cuité/Paraíba 6°29’28.4‖S 36°9’28.1‖W 21.4 36.6 24 Phyllomedusa nordestina 13 Cuité/Paraíba 6°29’28.4‖S 36°9’28.1‖W 20.7 30.3 11 Phyllomedusa nordestina 14 Cuité/Paraíba 6°29’28.4‖S 36°9’28.1‖W 20.7 32.45 14 Phyllomedusa nordestina 15 Cuité/Paraíba 6°29’28.4‖S 36°9’28.1‖W 20.3 32.69 07 Phyllomedusa nordestina 16 Cuité/Paraíba 6°29’28.4‖S 36°9’28.1‖W 20.3 35.41 13 Phyllomedusa nordestina 17 Estância/Sergipe 11°14’45‖S 37°27’49‖W 22.2 29.78 27 Phyllomedusa nordestina 18 Estância/Sergipe 11°14’45‖S 37°27’49‖W 23.2 34.93 19 Phyllomedusa nordestina 19 Estância/Sergipe 11°14’45‖S 37°27’49‖W 22.4 35.42 07 Phyllomedusa nordestina 20 Estância/Sergipe 11°14’45‖S 37°27’49‖W 22 35.16 04 Phyllomedusa nordestina 21 Igarassu/Pernambuco 7°49’1.2‖S 34°57’19.2‖W 23.7 35.74 05 Phyllomedusa nordestina 22 Igarassu/Pernambuco 7°49’1.2‖S 34°57’19.2‖W 21.1 37.28 04 Phyllomedusa nordestina 23 Igarassu/Pernambuco 7°49’1.2‖S 34°57’19.2‖W 21.2 36.74 07 Phyllomedusa nordestina 24 Igarassu/Pernambuco 7°49’1.2‖S 34°57’19.2‖W 21 36.02 02 Phyllomedusa nordestina 25 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 21.3 NA 15 Phyllomedusa nordestina 26 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 21.3 35.69 50 Phyllomedusa nordestina 27 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 19 NA 20 Phyllomedusa nordestina 28 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 19 35.39 16

59

Location in Brazil Geographical coordenates Temperature Body Size Number of Specie ID (City/State) (Latitude/Longitude) (°C) (mm) calls Phyllomedusa nordestina 29 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 18.5 33.37 20 Phyllomedusa nordestina 30 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 21.1 37.99 56 Phyllomedusa nordestina 31 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 21 32.86 23 Phyllomedusa nordestina 32 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 20.5 33.96 12 Phyllomedusa nordestina 33 Igrapiúna/Bahia 13°47’45.5‖S 39°10’3.3‖W 18.8 32.09 37 Phyllomedusa nordestina 34 Jaguaquara/Bahia 13°28’28‖S 39°55’10.5‖W 20.5 40.28 34 Phyllomedusa nordestina 35 Jaguaquara/Bahia 13°28’28‖S 39°55’10.5‖W 20.5 35.82 24 Phyllomedusa nordestina 36 Jaguaquara/Bahia 13°28’28‖S 39°55’10.5‖W 19.5 37.13 60 Phyllomedusa nordestina 37 Jaguaquara/Bahia 13°28’28‖S 39°55’10.5‖W 19.5 38.69 15 Phyllomedusa nordestina 38 Jaguaquara/Bahia 13°28’28‖S 39°55’10.5‖W 19.5 40.01 24 Phyllomedusa nordestina 39 Jaguaquara/Bahia 13°28’28‖S 39°55’10.5‖W 18 36.31 19 Phyllomedusa nordestina 40 Jaguaquara/Bahia 13°28’28‖S 39°55’10.5‖W 18 35.02 25 Phyllomedusa nordestina 41 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 24.5 32.54 39 Phyllomedusa nordestina 42 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 24.6 30.8 40 Phyllomedusa nordestina 43 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 24.3 32.13 18 Phyllomedusa nordestina 44 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 24.4 30.97 16 Phyllomedusa nordestina 45 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 24 NA 33 Phyllomedusa nordestina 46 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 24 32.73 63 Phyllomedusa nordestina 47 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 23.1 34.95 44 Phyllomedusa nordestina 48 João Câmara/ Rio Grande do Norte 5°31’23.7‖S 41°49’17.7‖W 23.1 34.57 23 Phyllomedusa nordestina 49 Mamanguape/Paraíba 6°56’35.6‖S 35°7’23.7‖W 22.5 35.54 22 Phyllomedusa nordestina 50 Mamanguape/Paraíba 6°56’35.6‖S 35°7’23.7‖W 22 34.3 26 Phyllomedusa nordestina 51 Mamanguape/Paraíba 6°56’35.6‖S 35°7’23.7‖W 21 38.33 05 Phyllomedusa nordestina 52 Mamanguape/Paraíba 6°56’35.6‖S 35°7’23.7‖W 20 33.93 06 Phyllomedusa nordestina 53 Mamanguape/Paraíba 6°56’35.6‖S 35°7’23.7‖W 21.5 32.34 14 Phyllomedusa nordestina 54 Mamanguape/Paraíba 6°56’35.6‖S 35°7’23.7‖W 21.3 33.08 24 Phyllomedusa nordestina 55 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 18.8 37.87 30 Phyllomedusa nordestina 56 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 18 36.48 04 Phyllomedusa nordestina 57 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 18 36.4 32 Phyllomedusa nordestina 58 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 18 36.77 56 Phyllomedusa nordestina 59 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 18 35.8 37 Phyllomedusa nordestina 60 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 18 34.94 26 Phyllomedusa nordestina 61 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 16.8 35.16 04 Phyllomedusa nordestina 62 Mata de São João/Bahia 12°29’53.6‖S 38°18’35‖W 16.3 32.55 34

60

Location in Brazil Geographical coordenates Temperature Body Size Number of Specie ID (City/State) (Latitude/Longitude) (°C) (mm) calls Phyllomedusa nordestina 63 Paripiranga/ Bahia 10°41’22‖S 37°52’59.3‖W 20 34.27 21 Phyllomedusa nordestina 64 Paripiranga/ Bahia 10°41’22‖S 37°52’59.3‖W 20 40.31 10 Phyllomedusa nordestina 65 Paripiranga/ Bahia 10°41’22‖S 37°52’59.3‖W 20 36.07 44 Phyllomedusa nordestina 66 Paripiranga/ Bahia 10°41’22‖S 37°52’59.3‖W 20 39.14 36 Phyllomedusa nordestina 67 Paripiranga/ Bahia 10°41’22‖S 37°52’59.3‖W 20 36.78 20 Phyllomedusa nordestina 68 Paripiranga/ Bahia 10°41’22‖S 37°52’59.3‖W 20 NA 20 Phyllomedusa nordestina 69 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 22.1 33.31 11 Phyllomedusa nordestina 70 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 22.9 30.02 18 Phyllomedusa nordestina 71 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 21 31.01 41 Phyllomedusa nordestina 72 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 21 30.49 18 Phyllomedusa nordestina 73 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 19.5 34.35 51 Phyllomedusa nordestina 74 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 19.7 30.24 15 Phyllomedusa nordestina 75 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 19.7 29.57 20 Phyllomedusa nordestina 76 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 19.5 30.92 26 Phyllomedusa nordestina 77 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 19.5 31.25 38 Phyllomedusa nordestina 78 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 18.6 30.43 09 Phyllomedusa nordestina 79 São José da Tapera/ Alagoas 9°33’32.7‖S 37°23’25.9‖W 18.6 35.06 24 Phyllomedusa nordestina 80 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 25.4 35.77 20 Phyllomedusa nordestina 81 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 25.4 35.47 19 Phyllomedusa nordestina 82 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 25.4 34.45 16 Phyllomedusa nordestina 83 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 25.4 34.77 11 Phyllomedusa nordestina 84 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 25.4 34.12 05 Phyllomedusa nordestina 85 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 19.3 32.75 07 Phyllomedusa nordestina 86 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 19.3 33.16 19 Phyllomedusa nordestina 87 São Miguel dos Campos/ Alagoas 9°46’2.2‖S 36°2’19.5‖W 19.3 34.34 46 Phyllomedusa nordestina 88 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 19.4 33.16 07 Phyllomedusa nordestina 89 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 19.4 33.62 08 Phyllomedusa nordestina 90 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 19.3 32.98 21 Phyllomedusa nordestina 91 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 19.3 32.65 09 Phyllomedusa nordestina 92 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 18.7 33.56 07 Phyllomedusa nordestina 93 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 18 36.35 21 Phyllomedusa nordestina 94 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 17.4 NA 20 Phyllomedusa nordestina 95 Taquaritinga do Norte/ Pernambuco 7°46’54‖S 36°14’0.5‖W 17.8 NA 25 Phyllomedusa nordestina 96 Taquaritinga do Norte/ Pernambuco 7°53’21.4‖S 36°3’45‖W 17 33.32 32

61

Location in Brazil Geographical coordenates Temperature Body Size Number of Specie ID (City/State) (Latitude/Longitude) (°C) (mm) calls Phyllomedusa nordestina 97 Taquaritinga do Norte/ Pernambuco 7°53’21.4‖S 36°3’45‖W 17.4 35.94 14 Phyllomedusa nordestina 98 Taquaritinga do Norte/ Pernambuco 7°53’21.4‖S 36°3’45‖W 17 33.48 05 Phyllomedusa nordestina 99 Taquaritinga do Norte/ Pernambuco 7°53’21.4‖S 36°3’45‖W 16 35.51 12 Phyllomedusa nordestina 100 Taquaritinga do Norte/ Pernambuco 7°53’21.4‖S 36°3’45‖W 16 30.97 09

62

CAPÍTULO 3

Background Noise as a Selective Pressure: Stream-breeding

Anurans Call at Higher Frequencies

David Lucas Röhr* a, Gustavo Brant Paterno a, Felipe Camurugi b, Flora

Acuña Juncá c, and Adrian Antonio Garda a

a Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do

Norte, Lagoa Nova, 59072–970, Natal, RN, Brazil. b Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Departamento de

Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, 58059–900, PB, Brazil c Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, BR

116, Km 03, Campus Universitário, 44031–460, Feira de Santana, Bahia, Brazil.

*Corresponding author: [email protected]

Running Headline: Stream Noise and Frog Advertisement Calls

63

Summary

Acoustic signals are an important part in the behaviour of many species and may play a key role in speciation. However, little is known about the importance of natural selection on the evolution of such signals. Background noise from streams is a constant source of masking interference for anuran species reproducing in these environments.

Herein, we test if the noise of flowing water habitats has favoured advertisement calls with higher dominant frequencies in frogs. Phylogenetic generalized least square model analysis revealed a significant influence of reproductive environment and body size on dominant frequency, with no significant interaction between habitat and body size.

While stream breeders call at higher dominant frequency, this acoustic parameter decreases with body size in both environments. We discuss the biological consequences of long-term adaptive shift in this acoustic parameter and possible trade-offs with other evolutionary forces.

Key-words: Acoustic Communication; Advertisement Call; Comparative Methods;

Evolution; Masking Interference.

64

Introduction

Acoustic signals are a fundamental part in the communication system of many species, having evolved independently several times in different clades (Gerhardt & Huber

2002). Stochastic processes, pleiotropic effects, and sexual and natural selection may drive the evolution of sound communication in animals (Wilkins, Seddon & Safran

2013). The role of stochastic evolution has been quantified contrasting molecular and acoustic variation with the aid of recent phylogenetic hypotheses (Goicoechea, De La

Riva & Padial 2010). Morphological and physiological constrains affect signal characteristics, and selective pressures on these may lead to pleiotropic signal divergence (Podos 2001). Sexual selection is the best-studied evolutionary force shaping acoustic signal evolution. Females may show strong preference for specific acoustic parameters, resulting in differential mating success (Ritchie 1996) and ultimately leading to species divergence. In contrast, much less is known about the role of natural selection on acoustic signal evolution (Wilkins, Seddon & Safran 2013).

Background noise is one of the main constraints on acoustic communication, limiting the active space of every natural communication system (Brumm 2013). Short duration noise is circumvented by plastic responses, whereas more predictable and constant noise should result in long-term adaptive processes (Brumm 2013). While short-term plastic responses to background noise have been fairly well studied, less is known about long- term adaptive processes in constantly noisy environments (Brumm & Slabbekoorn

2005).

Stream noise is characterized by constancy, often high intensities, and emphasized energy in low frequency bands (Goutte, Dubois & Legendre 2013) that overlap with low frequency anuran vocalizations (Wells 2007). Hence, higher frequencies should be favoured in stream breeders by reducing the energy expenditure needed to diminish

65 interference by increasing intensity. Indeed, flowing water noise pressure level is one of the best predictors of anuran community composition in the vicinity of streams (Goutte,

Dubois & Legendre 2013) and communicating in high frequencies near streams improves signal detection and discrimination (Boonman & Kurniati 2011). Still, the role of flowing water noise as a selective pressure on anuran advertisement calls is contentious (Boeckle, Preininger & Hödl 2009; Hoskin, James & Grigg 2009). One analysis using 110 species in five families found that stream species use slightly higher dominant frequencies, but this trend vanished in analyses controlling for body size and phylogeny (Vargas-Salinas & Amezquita 2014).

Herein, we test if masking interference from low frequency noise of streams has favoured advertisement calls with higher dominant frequencies in frogs reproducing near these environments. To do so, we gathered information on calls of 509 species from 31 frog families in all biogeographic realms. We test this hypothesis using phylogenetic comparative methods controlling for adult male body sizes.

Materials and methods

Database was constructed composed of mean advertisement call dominant frequencies

(the frequency band with the greatest amount of energy) and maximum male body sizes

(snout-vent length – SVL) reported for each species from data available in the literature.

Only species reproducing exclusively in flowing or still waters (leaving out species that use both habitats and species which reproduce independently from water bodies) and that were also included in the phylogeny proposed by Pyron and Wiens (2011) were included. In order to achieve a large data set, practical and pre-established criteria were used for data inclusion, where for multiple literature hits on the same species the most recently reported mean dominant frequency and the overall largest male body size was

66 used. However, to ensure that these criteria do not include a bias in the analyses, a random subset of the data was tested demonstrating that there is no significant difference in dominant frequency between older and recent publications and that maximum and mean SVL are highly correlated (more than 98%) (Supporting

Information Sections 2.4 & 2.5) For a few species where authors reported a dominant frequency range, the average between maximum and minimum values was used. In rare cases where the publication did not report values for dominant frequency but included a spectrogram with a straight and clearly identifiable emphasized spectrum, a visual estimation of this parameter was included.

The phylogenetic signal of our data set was evaluated using Blomberg’s K, which varies from zero to infinity and indicates the strength of phylogenetic signal under Brownian motion model of evolution ((Blomberg, Garland & Ives 2003). Next, a phylogenetic generalized least square model (PGLS) was used, which takes into account the non- independence of observations due to phylogeny and assumes a Brownian motion model of evolution (Freckleton et al., 2002). The dominant frequency was included as the response variable and reproduction habitat (still/flowing) and SVL as the explanatory variables to test if dominant frequency was affected by reproduction environment.

Dominant frequencies and body sizes were log transformed (natural logarithm) before the analysis. To optimize branch length transformation, the lambda value was set by maximum likelihood (Orme et al. 2012). All statistical analyses were performed in R

3.1.2 using the packages Caper (Orme et al. 2012) and Picante (Kembel et al. 2010).

Results

A dataset of 509 species was compiled representing 31 of the 54 currently recognized anuran families (See Supporting Information Section 2 for phylogenetic tree and dataset; see Appendix 1 for complete table with references). Stream reproducing species

67

(N=177) have a mean dominant frequency of 3.37 ± 2.04 kHz (range 0.42–15.97) and a mean SVL of 41.7 ± 20 mm (range 20–138), while still water reproducing species

(N=332) average dominant frequency and SVL were 2.18 ± 1.26 kHz (range 0.18–9.17) and 51.2 ± 29.3 mm (range 15–245), respectively.

Dominant frequency (K = 0.37, Z variance = -4.16, p < 0.001) and SVL (K = 0.44, Z variance = -4.45, p < 0.001; Table 1) presented a significant phylogenetic signal. PGLS analysis revealed a strong influence of reproductive environment and body size on dominant frequency (R2 = 0.38), with no significant interaction between habitat and body size (Table 2; Fig. 1; see Section 4.5 in Supporting Information for model diagnostic). While stream breeders call with higher frequencies than still water species, dominant frequency decreases with body size in both environments (ß = -0.874, standard error = 0.052). Model residuals showed a non-significant phylogenetic signal

(K = 0.055, Z variance = 1.301, p = 0.888).

Discussion

As predicted, frogs reproducing in streams use higher dominant frequencies, suggesting that these species have evolved to diminish masking interference from background noise caused by flowing waters by using higher frequencies. This hypothesis was previously corroborated in studies on a single community (Preininger, Boeckle & Hödl

2007) and one specific family (Boeckle, Preininger & Hödl 2009), but also contradicted in another analysis (Hoskin, James & Grigg 2009), all of which used a limited taxonomic sampling and did not account for phylogeny. Conversely, an analysis including a wider taxonomic sampling (110 species from five families) and controlling for phylogenetic relationships recovered significant effects of body size but not of environment on advertisement calls (Vargas-Salinas & Amezquita 2014).

68

The authors suggest that habitat filtering, through restrictions imposed by ambient noise on the communication of large bodied frogs, would be responsible for the differences in dominant frequencies between environments. Our data shows that when a more comprehensive taxonomic coverage is considered, body size alone cannot account for all the variation observed in dominant frequencies, and differences in frequencies between environments are likely to have evolved in response to long-term exposure of frogs to ambient noise. Although Vargas-Salinas and Amezquita (2014) found different results, they only included about one fifth of the species used in our analysis. More importantly, the fact that their analysis failed to detect a significant environment effect might be related to the restricted number of families used in the study (five), highly diminishing the number of phylogenetic contrasts in the analyses (monophyletic clades with species from both habitats) and hindering extrapolation to all anurans.

Furthermore, when only the three most representative families with species from both habitats are tested separately, the habitat effect is not significant for one family and the size effect is very different between the two others (Supporting Information Section 4.7)

Although environmental influence on dominant frequency is highly significant in our analysis, its effect is small when compared to body size (Table 2). This is expected considering the inverse relationship between vocal apparatus mass and call frequency

(Martin, 1971), which makes the variation in this acoustic parameter limited by morphological constraints. Indeed, our complete PGLS model accounts for about 40% of the variation in this parameter and other selective forces might be important (see discussion below). Moreover, the importance of environmental noise can vary among different anuran clades and future studies should focus on more restrictive groups (such as a single family) with better representation of its species and accurate measures of sound pressure levels. Even though the environment is not the main driver of dominant

69 frequency variation, there is a mean difference of nearly 1200 Hz between environments. Thus, considering the importance of this parameter for anuran reproduction (Gerhardt & Huber 2002), its biological relevance should not be overlooked.

In large species, the increase in dominant frequency within physical constraints on sound production mechanisms may not overcome the emphasized spectrum from background stream noise. Furthermore, because advertisement calls are crucial for anuran reproductive behaviour, other evolutionary forces besides pleiotropic effects of body size and noise interference might be involved in the establishment of dominant frequency differences. For instance, some species/clades may evolve different strategies to cope with such interference, such as visual communication (Hödl & Amézquita

2001). Therefore, complex trade-offs may also be involved because of the pervasive role of this vocalization in anuran biology.

Attractiveness and detectability may be selected by opposing forces in streams. During aggressive acoustic encounters dominant frequency might be determinant for the outcome (Davies & Halliday, 1978), and territorial males may lower call frequency in the presence of intruders (Wagner, 1989) (Bee & Bowling 2002). Meanwhile, females may show increased phonotaxis for low or median values of dominant frequency, leading to directional or stabilizing selection (Gerhardt 1991), but see Gerhardt and

Schwartz (2001) for further discussion on female preference for dominant frequency.

Hence, males near streams may face a trade-off between the need to increase call frequency to enhance signal detection at the expense of reducing attractiveness.

Furthermore, a trade-off between sound propagation and detectability in forested stream environments is also expected. Low frequency calls are more efficient in habitats with many physical barriers compared to higher frequencies (Ey & Fischer 2009). Therefore,

70 species reproducing in forest streams should face opposite selective pressures, where low dominant frequencies suffer less attenuation and degradation but high dominant frequencies experience less masking interference. Furthermore, community composition may promote additional limits and selective pressures by driving the evolution of anuran advertisement call dominant frequencies in two distinct manners. First, the presence of sympatric phylogenetically related taxa with similar vocalizations may lead to sexual character displacement to decrease hybridization probability (Lemmon 2009).

Second, in highly diverse acoustic habitats calls may evolve to fill different acoustic niches and spectral silent windows should be favoured (Chek, Bogart & Lougheed

2003). In either case, dominant frequency changes favoured by these scenarios could reinforce or counterbalance the selective forces of flowing water masking interference.

Although background noise is probably the main difference in the acoustic scenario between still and flowing water habitats, these environments also vary in a myriad of other factors that might affect its acoustic community and should be considered in future studies, such as: 1) community of sound-guided predators; 2) vegetation coverage which might act as propagation barriers; 3) sympatric species with prominent acoustic signals; 4) tadpole development environment leading to differences in adult body size and steroid hormones.

Finally, even with this complex evolutionary scenario we found a significant trend for anuran species calling near streams to use higher dominant frequencies. Other advertisement call characteristics may respond similarly. For example, sound intensity and call rate are expected to be higher in frogs reproducing in such habitats and using dominant frequencies similar to local noise. Patterns for other variables, such as call duration and complexity, are less clear. Testing predictions for these variables, however, is much harder because of the lack of appropriate descriptions of these parameters in the

71 literature. Background noise from streams is clearly determinant for the evolution of anuran advertisement calls and future work should explore the generality of these results for other groups of animals.

Acknowledgements

We thank Carlos Roberto Fonseca, Alex Pyron, Pablo Martinz, Marcelo Gehara, and

Frank Burbrink for suggestions on the manuscript and fruitful discussions. AAG and

FAJ thank CNPq for financial support (Universal # 473503/2012-3 and #305704/2013-

3, respectively).

References

Bee, M.A. & Bowling, A.C. (2002) Socially mediated pitch alteration by territorial male

Bullfrogs, Rana catesbeiana. Journal of Herpetology, 36, 140-143.

Blomberg, S.P., Garland, T. & Ives, A.R. (2003) Testing for phylogenetic signal in

comparative data: Behavioral traits are more labile. Evolution, 57, 717-745.

Boeckle, M., Preininger, D. & Hödl, W. (2009) Communication in noisy environments

I: acoustic signals of Staurois latopalmatus Boulenger 1887. Herpetologica, 65,

154-165.

Boonman, A. & Kurniati, H. (2011) Evolution of high-frequency communication in

frogs. Evolutionary Ecology Research, 13, 197-207.

Brumm, H. (2013) Animal Communication and Noise. Springer, Heidelberg

New York

72

Dordrecht

London.

Brumm, H. & Slabbekoorn, H. (2005) Acoustic communication in noise. Advances in

the Study of Behavior, 35, 151-209.

Chek, A.A., Bogart, J.P. & Lougheed, S.C. (2003) Mating signal partitioning in multi-

species assemblages: a null model test using frogs. Ecology Letters, 6, 235-247.

Ey, E. & Fischer, J. (2009) The ―acoustic adaptation hypothesis‖ - a review of the

evidence from birds, anurans and mammals. Bioacoustics, 19, 21-48.

Gerhardt, H.C. (1991) Female mate choise in treefrogs: static and dynamic acoustic

criteria. Animal Behaviour, 42, 615-635.

Gerhardt, H.C. & Huber, F. (2002) Acoustic communication in insects and anurans:

common problems and diverse solutions. University of Chicago Press, Chicago.

Goicoechea, N., De La Riva, I. & Padial, J.M. (2010) Recovering phylogenetic signal

from frog mating calls. Zoologica Scripta, 39, 141-154.

Goutte, S., Dubois, A. & Legendre, F. (2013) The importance of ambient sound level to

characterise anuran habitat. Plos One, 8, e78020.

Hödl, W. & Amézquita, A. (2001) Visual signaling in anuran amphibians. Anuran

Communication (ed. M.J. Ryan), pp. 121-141. Smithsonian Institution Press,

Washington.

Hoskin, C.J., James, S. & Grigg, G.C. (2009) Ecology and taxonomy-driven deviations

in the frog call-body size relationship across the diverse Australian frog fauna.

Journal of Zoology, 278, 36-41.

Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly,

D.D., Blomberg, S.P. & Webb, C.O. (2010) Picante: R tools for integrating

phylogenies and ecology. Bioinformatics, 26, 1463-1464.

73

Lemmon, E.M. (2009) Diversification of conspecific signals in sympatry: geographic

overlap drives multidimensional reproductive character displacement in frogs.

Evolution, 63, 1155-1170.

Orme, C.D.L., Freckleton, R.P., Thomas, G.H., Petzoldt, T., Fritz, S.A., Isaac, N. &

Pearse, W. (2012) Caper: comparative analyses of phylogenetics and evolution

in R. R package version 0.5.

Podos, J. (2001) Correlated evolution of morphology and vocal signal structure in

Darwin's Finches. Nature, 409, 185-188.

Preininger, D., Boeckle, M. & Hödl, W. (2007) Comparison of anuran acoustic

communities of two habitat types in the Danum Valley Conservation Area,

Sabah, Malaysia. Salamandra, 43, 129-138.

Pyron, R.A. & Wiens, J.J. (2011) A large-scale phylogeny of Amphibia including over

2800 species, and a revised classification of extant frogs, salamanders, and

caecilians. Molecular Phylogenetics and Evolution, 61, 543-583.

Ritchie, M.G. (1996) The shape of female mating preferences. Proceedings of the

National Academy of Sciences, 93, 14628-14631.

Vargas-Salinas, F. & Amezquita, A. (2014) Abiotic noise, call frequency and stream-

breeding anuran assemblages. Evolutionary Ecology, 28, 341-359.

Wells, K.D. (2007) The Ecology and Behavior of Amphibians. University of Chicago

Press, Chicago.

Wilkins, M.R., Seddon, N. & Safran, R.J. (2013) Evolutionary divergence in acoustic

signals: causes and consequences. Trends in Ecology & Evolution, 28, 156-166.

74

Table 1. Phylogenetic signal for dominant frequency (DF) and body size (SLV) calculated through Blomberg’s K (Blomberg, Garland & Ives 2003Blomberg, Garland

& Ives 2003).

Source K PIC.mean PIC.rdn.mean P

logDF 0.3660 0.00754 0.02918 0.001

logSVL 0.4387 0.00321 0.01501 0.001

Residuals 0.1002 0.00013 0.00016 0.173

Table 2. Anova table for the phylogenetic generalized least square model {log(DF) ~ habitat * log(SLV)} evaluating the effects of body size (SVL) and habitat on advertisement call dominant frequencies.

Source df SQ MSQ F P

Habitat 1 0.0764 0.0764 33.0 < 0.001

SVL 1 0.6461 0.6461 279.4 < 0.001

Habitat*SVL 1 0.0008 0.0008 0.3 0.5674

Residuals 505 1.1675 0.0023 — —

75

Figure 1. Relationship between dominant frequency and body size (SVL) for species calling in still and flowing waters (n = 509). Lines represent PGLS regressions.

76

ELETRONIC SUPPLEMENTARY MATERIAL Background Noise as a Selective Pressure: Stream- breeding Anurans Call at Higher Frequencies

David Lucas Röhr; Gustavo B. Paterno; Felipe Camurugi; Flora A. Juncá; Adrian A. Garda;

May, 2015

This doccument follows the principles of reproducible research (Peng, 2011). All Data and code required to repeat the analysis bellow are linked at Github. To dowanload the source code used to generate all figures, tables and analysis in the paper, please see: source code. This documment was generated in R studio with kintr package.

1. Packages versions: We used R version 3.2.0 (2015-04-16) and the following packages: library(ape);library(caper);library(knitr) library(dplyr);library(ggplot2);library(picante);library(gridExtra)

Please check the Packages versions, for details.

2. Data structure: 2.1 Species data

• To download raw data: link.

• See Appendix 1 to download complete table with references used.

The species dataset contains six variables (see Methods for detailed information on data collection). variable discription fam family sp species name environment Reproductive environment (still or flowing) DF Dominant frequency (hertz) SVL snout-vent length (mm) logDF log of dominant frequency (DF) logSVL log of snout vent length (SVL)

77

Last six rows of the species dataset:

environme SV fam sp nt DF L logDF logSVL 50 Rhacophorid Rhacophorus_schle still 190 43 7.5496 3.7612 4 ae gelii 0 09 00 50 Rhinophrynid Rhinophrynus_dors still 152 75 7.3297 4.3174 5 ae alis 5 50 88 50 Scaphiopodid Scaphiopus_couchii still 165 72 7.4085 4.2766 6 ae 0 31 66 50 Scaphiopodid Scaphiopus_holbro still 142 78 7.2619 4.3567 7 ae okii 5 27 09 50 Scaphiopodid Scaphiopus_hurterii still 150 67 7.3132 4.2046 8 ae 0 20 93 50 Scaphiopodid Spea_multiplicata still 130 49 7.1701 3.8918 9 ae 0 20 20 2.2 Phylogentic tree The phylogenetic tree used in this paper was pruned from: Pyron and Wiens (2011) anura super tree. * To dowanload the pruned tree with study species (509): Study Tree.

## ## Phylogenetic tree with 509 tips and 508 internal nodes. ## ## Tip labels: ## Hadromophryne_natalensis, Heleophryne_purcelli, Heleophryne_regis, Calyptocephallela_gayi, Neobatrachus_pelobatoides, Neobatrachus_sudell i, ... ## Node labels: ## 209.59, 206.29, 195.63, 151.99, 47.93, 9.02, ... ## ## Rooted; includes branch lengths.

78

Figure S1: Phylogeny for 509 anuran species sampled in this study extracted from Pyron and Wiens (2011) original tree. Black circles represent pond-breeding species (N = 332) and red circles stream-breeding species (N= 177)

2.3 Summary metrics for Dominant frequency and Sout- vent length environment meanDF sdDF meanSVL sdSVL flowing 3377.322 2036.938 41.70932 20.03995 still 2180.557 1263.536 51.27440 29.35337

79

Figure S2: Distribution histograms for Dominant Frequency (log) and Snout-vent length (log) 2.4 Testing for bias in Dominant Frequency between old and new publications To construct a large data set, we difened some practical, pre-established criteria of data inclusion that enabled us to use more than 500 species. We agree that the most recent publication is not always the best, however the recent improvement of recording equipment and sound analysis software is unquestionable. Furthermore, judging the merit of multiple papers takes a large amount of time because factors such as the number of individuals recorded, geographical location of individuals included and recording equipment used must be considered. We believe that in multiple occasions these decisions can be subjective, leading to uncertainty about possible bias in the resulting dataset. Our pre-established criterion explicitly avoids this, leaving no space to speculations about such biases. To be sure, we collected data on dominant frequency from different papers for 30 randomly-selected species from our dataset and found no significant differences between the most recent compared to the older data:

## ## Paired t-test ## ## data: DFpaired.data[, 1] and DFpaired.data[, 2] ## t = 1.0339, df = 31, p-value = 0.3092 ## alternative hypothesis: true difference in means is not equal to 0 ## 95 percent confidence interval: ## -101.573 310.448 ## sample estimates: ## mean of the differences ## 104.4375

This provides strong evidence that our criterion does not affect our results and conclusions.

80

2.5 Testing correlation between mean and maximum SVL In large comparative studies it is always hard to choose the best approach to represent species, however, we do not believe that the choice of using maximum body size affected the results presented in the manuscript.

1. The decision to use maximum SVL was a pre-established criterion applied to all species, thus we find very unlikely that this choice could cause any non-random tendency in our analysis.

2. We decided to use maximum SVL because data for most species was available in multiple publications and it would therefore be hard to calculate a mean value from many sources. It would be possible to calculate the weighted mean among publications, however this approach would be unpractical considering the number of species included (509). Furthermore, we could also use the mean value provided from one specific publication, however, this could include subjectivity to the analysis, diminishing its reproducibility. Thus, choosing the maximum value among papers excludes bias and represents the adult potential size of species considering multiple publications. 3. Finally, in order to consider the concerns about our choice of maximum SVL: 1. Re-collected data for maximum and mean SVL for 30 random species of our previous survey.

2. Performed a Pearson's correlation analysis between maximum and mean SVL (see results below).

SVL_m ax SVL_me an SVL_max 1.0000000 0.9817694 SVL_mean 0.9817694 1.0000000 The correlation coefficient between maximum and mean SVL values was higher than 0.95, thus we truly believe that our choice of maximum SVL by no means affected any aspect of our main results or final conclusions.

3. Phylogenetic signal 3.1 Domiant Frequency and Snout-vent length We used K statistics to test the phylogentic signal for Dominant Frequency (logDF) and Snout- vent length(logSVL)(for details about the method, see Blomberg et al (2003)). k.signal <- multiPhylosignal(select(comp.data$data,logDF,logSVL),comp. data$phy,reps=999) kable(k.signal)

K PIC.variance.o PIC.variance.rnd.me PIC.variance PIC.variance

81

bs an .P .Z logDF 0.366009 0.0075415 0.0292139 0.001 -4.246941 9 logSV 0.438748 0.0032133 0.0149448 0.001 -4.609946 L 0 Dominant Frequency and Snout-Vent Length show significant phylogenetic signal, however, K values are low. 3.2 Checking the phylogenetic signal of the residuals from stantard OLS regression In order to check the need to include the phylogeny in our analysis, first it is important to check if there is phylogenetic signal in the residuals of an Ordinary Least Square regression (OSL) (Kamilar & Cooper, 2013; Freckleton, 2009). mod.osl <- lm(logDF ~ environment*logSVL,anura.data) # Extracting residuals from the model: comp.data$data$lm.res <- residuals(mod.osl) osl.resi.sig <- phylosignal(comp.data$data$lm.res,reps=999,comp.data$p hy) kable(osl.resi.sig)

K PIC.variance.obs PIC.variance.rnd.mean PIC.variance.P PIC.variance.Z 0.1166795 0.0103429 0.0146007 0.01 -1.617337 Because the residuals from OSL regression show phylogenetic signal k = 0.12, it is necessary to correct for phylogenetic non-independence in data.

4. Data analysis We used a phylogenetic generalized least square model (PGLS) with dominant frequency as the response variable and reproduction habitat (lentic/lotic) and SVL as the explanatory variables to test if dominant frequency was affected by reproduction environment. Dominant frequencies and body sizes were log transformed before the analysis. To optimize branch length transformation, the lambda value was set by maximum likelihood (see Freckleton et al., 2002; Orme et al., 2013 for details). PGLS analysis were performed with the function pgls from the package caper. 4.1 Data preparation: Using the function comparative.data we combined our phylogenie with the species dataset comp.data <- comparative.data(phy=study.tree,data=anura.data,names.col ="sp",vcv=T,vcv.dim=3)

4.2 Phylogenetic generalized least square model (PGLS) Fitting pgls model with with lambda adjusted by maximum likelihood:

82 mod.pgls <- pgls(logDF ~ environment*logSVL, data=comp.data,lambda="ML ") summary(mod.pgls) ## ## Call: ## pgls(formula = logDF ~ environment * logSVL, data = comp.data, ## lambda = "ML") ## ## Residuals: ## Min 1Q Median 3Q Max ## -0.169581 -0.034834 -0.003471 0.024159 0.162009 ## ## Branch length transformations: ## ## kappa [Fix] : 1.000 ## lambda [ ML] : 0.889 ## lower bound : 0.000, p = < 2.22e-16 ## upper bound : 1.000, p = < 2.22e-16 ## 95.0% CI : (0.823, 0.933) ## delta [Fix] : 1.000 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 11.222857 0.439315 25.5462 <2e-16 *** ## environmentstill -0.420810 0.399058 -1.0545 0.2922 ## logSVL -0.918595 0.093136 -9.8630 <2e-16 *** ## environmentstill:logSVL 0.060128 0.104687 0.5744 0.5660 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.04808 on 505 degrees of freedom ## Multiple R-squared: 0.3825, Adjusted R-squared: 0.3788 ## F-statistic: 104.3 on 3 and 505 DF, p-value: < 2.2e-16 4.3 ANOVA table Df Sum Sq Mean Sq F value Pr(>F) environment 1 0.0763674 0.0763674 33.0318903 0.0000000 logSVL 1 0.6460504 0.6460504 279.4422042 0.0000000 environment:logSVL 1 0.0007571 0.0007571 0.3274965 0.5673916 Residuals 505 1.1675238 0.0023119 NA NA 4.4 Lambda estimation profile.lambda <- pgls.profile(mod.pgls) plot(profile.lambda)

83

Figure S3: Confidence interval for lambda estimation

84

4.5 Model diagnostic 4.5.1 Diagnostic graphs

Figure S4: Standard graphic methods for model diagnostics

Residulas do not show any tendency.

4.5.2 Phylogenetic signal of model residuals After performing PGLS analysis it is important to check the phylogenetic signal of model residuals. k.residuals <- phylosignal(mod.pgls$phyres,reps=999,comp.data$phy) kable(k.residuals)

K PIC.variance.obs PIC.variance.rnd.mean PIC.variance.P PIC.variance.Z 0.1054035 0.0001429 0.0001544 0.395 -0.4206921 Results above shows that the residuals do not present significant phylogenetic signal.

85

4.6 Model comparison: OSL vs PGLS kable(AIC(mod.osl,mod.pgls))

df AIC mod.osl 5 671.3566 mod.pgls 4 485.3776 AIC comparison shows that PGLS model has much lower AIC value (485) tham OSL model (671). Thus, PGLS model is a better fit for the data. 4.7 Phylogenetic generalized least square model (PGLS) within families To test if the environment effect on Dominant Frequency is independent of taxonomic group, we performed pgls models for the three families in this dataset with more tham 30 species (Bufonidae, Ranidae and Hylidae).

4.7.1 Bufonidae: Fitting pgls model with with lambda adjusted by maximum likelihood: mod.pgls.bufo <- pgls(logDF ~ environment*logSVL, data=comp.data.bufo, lambda="ML") kable(anova(mod.pgls.bufo))

Df Sum Sq Mean Sq F value Pr(>F) environment 1 0.0017044 0.0017044 0.6756231 0.4154320 logSVL 1 0.1610608 0.1610608 63.8456240 0.0000000 environment:logSVL 1 0.0029574 0.0029574 1.1723362 0.2846895 Residuals 45 0.1135197 0.0025227 NA NA

4.7.2 Ranidae: Fitting pgls model with with lambda adjusted by maximum likelihood: mod.pgls.rani <- pgls(logDF ~ environment*logSVL, data=comp.data.rani, lambda="ML") kable(anova(mod.pgls.rani))

Df Sum Sq Mean Sq F value Pr(>F) environment 1 0.1111967 0.1111967 30.416038 0.0000037 logSVL 1 0.0044243 0.0044243 1.210182 0.2790242 environment:logSVL 1 0.0094783 0.0094783 2.592628 0.1166087 Residuals 34 0.1242992 0.0036559 NA NA

86

4.7.2 Hylidae: Fitting pgls model with with lambda adjusted by maximum likelihood: mod.pgls.hyli <- pgls(logDF ~ environment*logSVL, data=comp.data.hyli, lambda="ML") kable(anova(mod.pgls.hyli))

Df Sum Sq Mean Sq F value Pr(>F) environment 1 0.0196581 0.0196581 7.828985 0.0057858 logSVL 1 0.1412524 0.1412524 56.254873 0.0000000 environment:logSVL 1 0.0003487 0.0003487 0.138868 0.7099115 Residuals 157 0.3942170 0.0025109 NA NA

Figure S5: Regression plots for three anura families (Hylidae, Ranidae, Bufonidae).

5. References

1. Pyron, A. R., & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61(2), 543-583.

2. Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57(4), 717-745.

87

3. Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N. and Pearse, W. (2013). caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 0.5.2. http://CRAN.R-project.org/package=caper

4. Kamilar, J. M., & Cooper, N. (2013). Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1618), 20120341.

5. Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist, 160(6), 712-726.

6. Freckleton, R. P. (2009). The seven deadly sins of comparative analysis. Journal of Evolutionary Biology, 22(7), 1367-1375.

When using the data available in this paper, please cite the original publication. Contact [email protected] for any further information.

88

Appendix1. Dominant frequencies, snout-vent length (SVL) and literature sources for

species included in the analysis. Asterisk indicates stream-breeding species.

Taxa SVL (mm) DF (Hz) Source Allophrynidae Allophryne ruthveni 20.6 4645 (Lynch & Freeman, 1966; Lescure & Marty, 2000) nodosus* 75.85 1140 (Penna et al., 1983; Palma, 2013) Alytidae Alytes cisternasii* 41 1491 (Márquez, 1995) Arthroleptidae Cardioglossa occidentalis* 27.3 4100 (Blackburn et al., 2008) Leptopelis argenteus 45 1750 (Channing, 2001) Leptopelis bocagii 52 600 (Channing & Howell, 2006) Leptopelis concolor 34 1750 (Schiøtz, 1999) Leptopelis kivuensis 37 1480 (Roelke et al., 2011) antartandica 36.7 1951 (Penna & Solis, 1998; Penna & Meier, 2011) Hylorina sylvatica 56 1252 (Barrio, 1967; Penna & Veloso, 1990) Bufonidae Ansonia hanitschi* 32 5700 (Malkmus et al., 2002) Ansonia leptopus* 40 3933 (Matsui, 1982a; Wood Jr. et al., 2008) Ansonia longidigita* 50 3500 (Malkmus et al., 2002) Ansonia platysoma* 25 8000 (Malkmus et al., 2002) chiriquiensis* 34 2025 (Lötters et al., 1999; Savage, 2002) Atelopus flavescens* 30 2725 (Lescure & Marty, 2000) Atelopus franciscus* 21 3320 (Lescure & Marty, 2000) Atelopus peruensis* 38.5 1950 (Lötters et al., 1999; Coloma et al., 2000) Atelopus pulcher* 29.3 2429 (Lötters et al., 2002) Atelopus spumarius* 29 3375 (Cocroft et al., 1990; Lima et al., 2006) Atelopus varius* 41 2350 (Savage, 1972; Cocroft et al., 1990) Atelopus zeteki* 40 1820 (Cocroft et al., 1990; Savage, 2002) Bufo arenarum 112 1100 (Straneck et al., 1993) Bufo asper* 100 1031 (Inger & Bacon Jr, 1968; Preininger et al., 2007) Bufo beebei 51 3150 (Gallardo, 1965; Tárano, 2010) Bufo brauni* 65 1120 (Channing & Howell, 2006) Bufo calamita 71 1477 (Arak, 1988) Bufo castaneoticus 37.7 1650 (Köhler & Lötters, 1999b) Bufo coccifer 62 2512 (Mendelson III et al., 2005) Bufo cognatus 103 2307 (Wright & Wright, 1949; Cocroft & Ryan, 1995) Bufo empusus 76 1549 (Schawrtz, 1972; Alonso & Rodríguez, 2003) Bufo granulosus 70 2906 (Lima et al., 2006; São-Pedro et al., 2011) Bufo gundlachi 34 2669 (Schawrtz, 1972; Alonso & Rodríguez, 2003)

89

Taxa SVL (mm) DF (Hz) Source Bufo gutturalis 90 1150 (Channing, 2001; Harper et al., 2010) Bufo houstonensis 77 2151 (Dodd Jr., 2013) Bufo ibarrai 82 1700 (Porter, 1966; Mendelson III et al., 2005) Bufo juxtasper* 138 718 (Inger, 1964; Matsui, 1982b) Bufo longinasus* 29 2329 (Schawrtz, 1972; Alonso & Rodríguez, 2003) Bufo luetkenii 96 1700 (Porter, 1966; Savage, 2002) Bufo marmoreus* 83 1825 (Porter, 1966; Suazo-Ortuño et al., 2007) Bufo melanochlorus* 65 1700 (Savage, 2002) Bufo nebulifer 98 1475 (Blair, 1956; Dodd Jr., 2013) Bufo ocellatus 53 1378 (Caldwell & Shepard, 2007) Bufo pantherinus 91 2500 (Channing, 2001) Bufo pardalis 110 650 (Cherry & Francillon-Vieillot, 1992; Cherry & Grant, 1994) Bufo quercicus 32 4750 (Dodd Jr., 2013) Bufo raddei 67 1513 (Kuzmin & Ischenko, 1997; Stöck et al., 2000) Bufo retiformis 47 3113 (Bogert, 1962; Sullivan et al., 2000) Bufo schneideri 180 700 (Norman, 1994; Köhler et al., 1997) Bufo siculus 86.6 1600 (Stöck et al., 2008; Lo Valvo & Giacalone, 2013) Bufo speciosus 78 2621 (Wright & Wright, 1949; Cocroft & Ryan, 1995) Bufo steindachneri 48.3 2142 (Largen et al., 1978) Bufo taladai* 138 768 (Schawrtz, 1959; Alonso & Rodríguez, 2003) Bufo terrestris 82 2000 (Wright & Wright, 1949; Leary, 2001) Bufo valliceps 77.8 1480 (Sullivan & Wagner Jr., 1988; Wagner Jr. & Sullivan, 1995) Dendrophryniscus minutus 17 3900 (Lescure & Marty, 2000; Lima et al., 2006) Pedostibes tuberculosus* 38 3782 (Gururaja & Ramachandra, 2006) Pelophryne misera 21 4000 (Malkmus et al., 2002) Schismaderma carens 88 450 (Channing & Howell, 2006) Calyptocephalellidae Calyptocephallela gayi 120 866 (Penna & Veloso, 1990) Centrolenidae buckleyi* 34.7 2500 (Bernal et al., 2004; Guayasamin et al., 2006) Centrolene daidaleum* 24.1 6120 (Ruiz-Carranza & Lynch, 1991; Cardozo-Urdaneta & Señaris, 2012) Centrolene geckoideum* 77 3828 (Lynch et al., 1983; Grant et al., 1998) Centrolene hesperium* 27.3 3630 (Cadle & McDiarmid, 1990) Centrolene peristictum* 20.6 6878 (Lynch & Duellman, 1973; Maldonado, 2012) Centrolene savagei* 24.1 6214 (Díaz-Gutiérrez et al., 2013) Centrolene venezuelense* 33.8 4050 (Señaris & Ayarzagüena, 2005; Guayasamin et al., 2009) euknemos* 25 4200 (Savage, 2002) Cochranella granulosa* 29 4250 (Savage, 2002) * 24 5410 (Guayasamin & Bonaccorso, 2004; Ortega-Andrade et al., 2013) Espadarana prosoblepon* 28 5758 (Jacobson, 1985; Savage, 2002) Hyalinobatrachium carlesvilai* 23.6 4838 (Castroviejo-Fisher et al., 2009) Hyalinobatrachium 27 4500 (Starrett & Savage, 1973; Savage, 2002) colymbiphyllum*

90

Taxa SVL (mm) DF (Hz) Source Hyalinobatrachium 24 4300 (Myers & Donnelly, 1997) crurifasciatum* Hyalinobatrachium eccentricum* 23 4160 (Myers & Donnelly, 2001) Hyalinobatrachium fleischmanni* 25.5 5395 (Kime et al., 2000; Savage, 2002) Hyalinobatrachium fragile* 24.5 3846 (Guayasamin et al., 2009; Wen et al., 2012) Hyalinobatrachium iaspidiense* 20.1 4940 (Lescure & Marty, 2000) Hyalinobatrachium ignioculus* 23 4920 (Noonan & Bonett, 2003; Barrio-Amorós & Castroviejo-Fisher, 2008) Hyalinobatrachium mondolfii* 22.5 5106 (Señaris & Ayarzagüena, 2001) Hyalinobatrachium orientale* 24.5 4819 (Cannatella & Lamar, 1986; Castroviejo-Fisher et al., 2008) Hyalinobatrachium orocostale* 25.5 3435 (Castroviejo-Fisher et al., 2008; Guayasamin et al., 2009) Hyalinobatrachium pallidum* 22.4 3259 (Cardozo-Urdaneta & Señaris, 2012; Rojas-Runjaic et al., 2012) Hyalinobatrachium pellucidum* 21.4 5039 (Castroviejo-Fisher et al., 2009; Wen et al., 2012) Hyalinobatrachium taylori* 21.6 4495 (Lescure & Marty, 2000) Hyalinobatrachium valerioi* 24 7250 (Starrett & Savage, 1973; Savage, 2002) Nymphargus griffithsi* 24.2 4107 (Hutter & Guayasamin, 2012) Nymphargus pluvialis* 26.5 3941 (Catenazzi et al., 2009) Rulyrana spiculata* 27.7 4639 (Catenazzi et al., 2009) Teratohyla midas* 26.8 4680 (Zimmerman, 1983; Guayasamin et al., 2009) Teratohyla pulverata* 29 5950 (Savage, 2002) Teratohyla spinosa* 20 7000 (Savage, 2002) Vitreorana antisthenesi* 27 5432 (Guayasamin et al., 2009; Wen et al., 2012) Vitreorana eurygnatha* 22.5 4850 (Heyer et al., 1990) Vitreorana gorzulae* 22.5 4787 (Kok & Castroviejo-Fisher, 2008; Castroviejo-Fisher et al., 2009) Vitreorana helenae* 20.4 4495 (Señaris & Ayarzagüena, 2005; Guayasamin et al., 2009) Ceratophryidae Ceratophrys cornuta 72 2176 (Duellman & Lizana, 1994; Marquez et al., 1995) Ceratophrys cranwelli 130 1715 (Valetti et al., 2013) Ceratophrys ornata 125.8 2000 (Basso, 1990; Salas et al., 1998) Chacophrys pierottii 53.1 4357 (Lascano, 2011) Cycloramphidae Cycloramphus boraceiensis* 51.3 1950 (Heyer et al., 1990) Thoropa miliaris* 71.5 600 (Heyer et al., 1990) Dicroglossidae Euphlyctis cyanophlyctis 45 1651 (Roy & Elepfandt, 1993) Euphlyctis ehrenbergii 66 937 (Roy & Elepfandt, 1993; Khan, 1997) Fejervarya limnocharis 43 2119 (Prakash, 1988; Márquez & Eekhout, 2006) Fejervarya sakishimensis 55.5 1030 (Matsui et al., 2007) Fejervarya syhadrensis 29.3 3350 (Kuramoto et al., 2007) Hoplobatrachus occipitalis 104 1250 (van den Elzen & Kreulen, 1979; Rödel, 2000) Hoplobatrachus tigerinus 120 520 (Roy & Elepfandt, 1993; Glaw & Vences, 2007) Limnonectes arathooni* 42 3380 (Smith, 1927; Brown & Iskandar, 2000) Limnonectes blythii* 105.4 428 (Matsui, 1995) Limnonectes gyldenstolpei* 53 1085 (Garcia-Rutledge & Narins, 2001) Limnonectes microdiscus* 48.6 875 (Inger, 1954; Kurniati et al., 2010)

91

Taxa SVL (mm) DF (Hz) Source Paa spinosa* 101 834 (Yu & Zheng, 2009) Sphaerotheca breviceps 48 1950 (Minton, 1966; Kanamadi et al., 1994) Heleophrynidae Hadromophryne natalensis* 45 1500 (Channing, 2001) Heleophryne purcelli* 47 2250 (Channing, 2001) Heleophryne regis* 43 1800 (Channing, 2001) Hylidae annae* 73.9 1165 (Duellman, 1970) 59 2006 (Duellman & Pyles, 1983; Savage, 2002) Agalychnis litodryas 72.2 1664 (Duellman, 1970) Agalychnis saltator 54 1800 (Duellman & Pyles, 1983; Leenders, 2001) Agalychnis spurrelli 75.6 893 (Ortega-Andrade, 2008) Aplastodiscus albofrenatus* 40 2500 (Lutz, 1973; Heyer et al., 1990) Aplastodiscus albosignatus* 52 2630 (Lutz, 1973; Abrunhosa et al., 2005) Aplastodiscus arildae* 41.6 2847 (Heyer et al., 1990; Carvalho Jr et al., 2006) Aplastodiscus callipygius* 50.7 1040 (Cruz & Peixoto, 1985; Abrunhosa et al., 2005) Argenteohyla siemersi 70 1882 (Cei, 1980; Cajade et al., 2010) circumdata* 70 1460 (Lutz, 1973; Carvalho et al., 2012) Bokermannohyla hylax* 61.5 2000 (Heyer et al., 1990; Carvalho et al., 2012) Cyclorana brevipes 45 1930 (Tyler & Martin, 1977) Cyclorana cryptotis 41 1060 (Tyler & Martin, 1977) Cyclorana cultripes 52 1879 (Tyler & Martin, 1977) Cyclorana manya 29.9 2500 (Van Beurden & McDonald, 1980) Dendropsophus allenorum 21.4 3430 (Duellman, 2005) Dendropsophus anceps 40 3244 (Lutz, 1973; Gomes & Martins, 2006) Dendropsophus berthalutzae 21 4041 (Lutz, 1973; Forti et al., 2012) Dendropsophus bifurcus 28 2958 (Duellman, 1978; Márquez et al., 1993) Dendropsophus bipunctatus 25 5426 (Lutz, 1973; Wogel & Pombal Jr, 2007) Dendropsophus brevifrons 22 4254 (Duellman, 1978; Duellman & Pyles, 1983) Dendropsophus carnifex 27.7 2490 (Duellman, 1969; De la Riva et al., 1997) Dendropsophus ebraccatus 27.8 2577 (Duellman & Pyles, 1983) (Duellman, 1970) Dendropsophus elegans 29.6 3500 (Lutz, 1973; Bastos & Haddad, 1995) Dendropsophus giesleri 25 3300 (Heyer, 1980; Weygoldt & Peixoto, 1987) Dendropsophus koechlini 24 4500 (Duellman, 2005) Dendropsophus labialis 43 1750 (Amézquita, 1999; Guarnizo, 2011) Dendropsophus leali 23 6200 (Duellman, 2005) Dendropsophus leucophyllatus 36 2482 (Márquez et al., 1993; Rodríguez & Duellman, 1994) Dendropsophus marmoratus 44 1514 (Duellman & Pyles, 1983; Rodríguez & Duellman, 1994) Dendropsophus microcephalus 24.5 6210 (Duellman, 1970; Tárano, 2010) Dendropsophus minusculus 20.6 9186 (Duellman & Pyles, 1983; Duellman, 1997) Dendropsophus nanus 22 4200 (Lutz, 1973; Nunes et al., 2007) Dendropsophus rhodopeplus 24.2 5670 (Duellman, 2005) Dendropsophus riveroi 20 5314 (Márquez et al., 1993; Rodríguez & Duellman, 1994)

92

Taxa SVL (mm) DF (Hz) Source Dendropsophus robertmertensi 26.4 5388 (Duellman & Fouquette, 1968; Duellman, 1970) Dendropsophus rubicundulus 28.3 3500 (Cardoso & Vielliard, 1985; Napoli & Caramaschi, 1999) Dendropsophus sanborni 17 5100 (Lutz, 1973; Martins & Jim, 2003) Dendropsophus sarayacuensis 29 2990 (Duellman & Pyles, 1983; Rodríguez & Duellman, 1994) Dendropsophus sartori 26 3217 (Duellman & Fouquette, 1968; Duellman, 1970) Dendropsophus seniculus 37.7 3969 (Heyer et al., 1990; Hepp et al., 2012) Dendropsophus triangulum 28 2298 (Duellman & Pyles, 1983; Rodríguez & Duellman, 1994) Duellmanohyla rufioculis* 30 2320 (Duellman, 1970) Exerodonta melanomma* 29.9 2336 (Duellman, 1970) Exerodonta sumichrasti* 27.7 2510 (Duellman, 1970) Hyla andersonii 51 1100 (Gerhardt, 1974; Conant & Collins, 1998) Hyla arborea 50 2122 (Castellano et al., 2002; Arnold, 2003) Hyla chinensis 32 4000 (Kuramoto, 1980; Fei et al., 1999) Hyla chrysoscelis 51 2400 (Wright & Wright, 1949; Gerhardt, 2005) Hyla femoralis 37 2600 (Wright & Wright, 1949; Blair, 1958b) Hyla gratiosa 68 1840 (Wright & Wright, 1949; Oldham & Gerhardt, 1975) Hyla intermedia 50 2388 (Castellano et al., 2002; Arnold, 2003) Hyla meridionalis 50 2750 (Oliveira et al., 1991; Arnold, 2003) Hyla molleri 45 2750 (Schneider, 1974) Hyla squirella 36 3344 (Wright & Wright, 1949; Taylor et al., 2007) Hyla versicolor 51 2200 (Wright & Wright, 1949; Gerhardt, 2005) Hylomantis granulosa* 45.8 1828 (Pimenta et al., 2007) Hylomantis lemur 40.8 2396 (Duellman, 1970) Hyloscirtus armatus* 68.5 3600 (Duellman, 1997) Hyloscirtus colymba* 37 3520 (Duellman, 1970; 1972b) Hyloscirtus lindae* 68.1 1553 (Duellman & Altig, 1978; Coloma et al., 2012) Hyloscirtus pacha* 60.8 1854 (Duellman & Hillis, 1990; Coloma et al., 2012) Hyloscirtus palmeri* 45 2500 (Duellman, 1970; Ibáñez et al., 1999) Hyloscirtus pantostictus* 63 1570 (Duellman & Berger, 1982; Coloma et al., 2012) Hyloscirtus phyllognathus* 34 2588 (Duellman, 1972b) Hyloscirtus tapichalaca* 63.8 1469 (Kizirian et al., 2003; Coloma et al., 2012) Hypsiboas albopunctatus 60 2168 (Lutz, 1973; Kwet et al., 2002) Hypsiboas bischoffi 46.1 1750 (Marcelino et al., 2009; Pombal Jr., 2010) Hypsiboas cinerascens 44 1390 (Duellman & Pyles, 1983; Rodríguez & Duellman, 1994) Hypsiboas ericae* 34 2700 (Caramaschi & Cruz, 2000; Garcia & Haddad, 2008) Hypsiboas fasciatus 40.3 2530 (Lescure & Marty, 2000; Duellman, 2005) Hypsiboas joaquini* 56.4 1700 (Garcia et al., 2003) Hypsiboas microderma* 34 3300 (Pyburn, 1977; Rodríguez & Duellman, 1994) Hypsiboas ornatissimus 31 2855 (Lutz, 1973; Lescure & Marty, 2000) Hypsiboas pardalis 69 1133 (Lutz, 1973; Rodrigues, 2009) Hypsiboas pellucens 61.6 800 (Cochran & Goin, 1970; Duellman, 1971) Hypsiboas roraima* 44.9 2616 (Barrio-Amorós et al., 2011) Hypsiboas rufitelus 49.2 1600 (Duellman, 1970)

93

Taxa SVL (mm) DF (Hz) Source Hypsiboas semiguttatus* 46.1 2450 (Garcia et al., 2007) Hypsiboas semilineatus 51 1014 (Lingnau & Bastos, 2003; Lisboa et al., 2011) Isthmohyla pseudopuma 41.4 956 (Duellman, 1970) Isthmohyla rivularis* 34 2420 (Duellman, 1970) Isthmohyla tica* 34.1 2228 (Duellman, 1970) Litoria gracilenta 38 2750 (Peters, 1869; Günther & Richards, 2000) Litoria impura 42 1240 (Peters & Doria, 1878; Kraus & Allison, 2004) Litoria inermis 33 3800 (Davies et al., 1983) Litoria latopalmata 39 2900 (Davies et al., 1983) Litoria leucova* 35.4 4500 (Johnston & Richards, 1994) Litoria pallida 34 1963 (Davies et al., 1983) Litoria raniformis 79.9 900 (Ford, 1989; Hamer & Organ, 2008) Litoria rheocola* 35.5 2500 (Hoskin & Goosem, 2010) Litoria spartacus* 37.5 2919 (Richards & Oliver, 2006) Litoria thesaurensis 65 1774 (Tyler & Davies, 1978; Kraus & Allison, 2004) Litoria tornieri 33 2725 (Doughty, 2011) Litoria wollastoni* 42.7 2950 (Menzies & Zweifel, 1974) Myersiohyla kanaima* 37.8 3600 (Goin & Woodley, 1969) Nyctimystes cheesmani* 40 1900 (Kraus, 2012) Osteocephalus taurinus 85 1501 (Trueb & Duellman, 1971; De la Riva et al., 1995) Osteopilus septentrionalis 89 2300 (Blair, 1958a; Savage, 2002) Pachymedusa dacnicolor 82.6 1727 (Duellman, 1970) Phyllomedusa atelopoides 37.4 1150 (Duellman et al., 1988) Phyllomedusa azurea 43.46 2333 (Guimarães et al., 2001; Álvares, 2008) Phyllomedusa bahiana 74.5 960 (Pombal Jr. & Haddad, 1992; Silva & Juncá, 2006) Phyllomedusa bicolor 103 940 (Zimmerman, 1983; Lima et al., 2006) Phyllomedusa burmeisteri 75.8 1500 (Pombal Jr. & Haddad, 1992; Abrunhosa & Wogel, 2004) Phyllomedusa camba 74 860 (Duellman, 2005; Rodrigues et al., 2011) Phyllomedusa centralis* 42 1451 (Bokermann, 1965; Brandão et al., 2009) Phyllomedusa distincta 66 1250 (Haddad et al., 1994) Phyllomedusa duellmani 54.2 950 (Cannatella, 1982) Phyllomedusa hypochondrialis 43.73 2047 (De la Riva et al., 1995; Álvares, 2008) Phyllomedusa megacephala* 43.2 1722 (Caramaschi, 2006; Giaretta et al., 2007) Phyllomedusa neildi 63.8 762 (Barrio-Amoros, 2006) Phyllomedusa nordestina 42.1 2076 (Caramaschi, 2006; Vilaça et al., 2011) Phyllomedusa palliata 43.8 1500 (Duellman, 1974; Zimmerman, 1983) Phyllomedusa sauvagii 89.2 2000 (Halloy & Espinosa, 2000; Rodrigues et al., 2007) Phyllomedusa tarsius 90 870 (Zimmerman, 1983; Lima et al., 2006) Phyllomedusa tetraploidea 63.8 1700 (Pombal Jr. & Haddad, 1992) Phyllomedusa tomopterna 54 1790 (Zimmerman, 1983; Lima et al., 2006) Phyllomedusa trinitatis 81 800 (Barrio-Amoros, 2006) Plectrohyla cyclada* 39.5 2072 (Duellman, 1970) Pseudacris brachyphona 32 2394 (Wright & Wright, 1949; Cocroft & Ryan, 1995)

94

Taxa SVL (mm) DF (Hz) Source Pseudacris clarkii 29 3072 (Duellman, 1970; Cocroft & Ryan, 1995) Pseudacris feriarum 27.3 2977 (Schawrtz, 1957; Cocroft & Ryan, 1995) Pseudacris fouquettei 29.8 3138 (Lemmon et al., 2008) Pseudacris illinoensis 43 2168 (Tucker, 1998; Owen & Tucker, 2006) Pseudacris kalmi 38.1 2972 (Harper, 1955; Cocroft & Ryan, 1995) Pseudacris nigrita 28 3149 (Wright & Wright, 1949; Cocroft & Ryan, 1995) Pseudacris ornata 39 2651 (Cocroft & Ryan, 1995; Lannoo, 2005) Pseudacris triseriata 32 2776 (Wright & Wright, 1949; Cocroft & Ryan, 1995) Pseudis bolbodactyla 45 1937 (Caramaschi & Cruz, 1998; Vaz-Silva et al., 2007) Ptychohyla euthysanota* 37.3 3100 (Duellman, 1970) Ptychohyla leonhardschultzei* 35.6 2750 (Duellman, 1970) Ptychohyla spinipollex* 41.2 4300 (Duellman, 1970) Scinax berthae 22.2 4886 (Faivovich, 2005; Pereyra et al., 2012) Scinax boesemani 31.1 1420 (Duellman & Pyles, 1983; Duellman, 1997) Scinax boulengeri 48.7 1615 (Duellman, 1970) (Duellman & Pyles, 1983) Scinax crospedospilus 33.3 1350 (Heyer et al., 1990) Scinax cruentommus 28 3300 (Duellman, 1972a; 1978) Scinax fuscovarius 47.1 855 (De la Riva, 1993; Fonte, 2010) Scinax nasicus 37 1064 (Lutz, 1973; Fonte, 2010) Scinax proboscideus 39.8 2012 (Duellman, 1972b; Lima et al., 2004) Scinax rostratus 45.7 3050 (Duellman, 1970; 1972b) Scinax ruber 41.2 700 (Duellman & Wiens, 1993; Bernal et al., 2004) Scinax staufferi 29 3056 (León, 1969; Duellman, 1970) Scinax sugillatus 42 2023 (Duellman, 1973) Scinax uruguayus 25.8 4350 (Langone, 1990; Lingnau, 2009) Scinax x-signatus 42.5 1110 (Heyer et al., 1990; Tárano, 2010) Smilisca baudinii 76 350 (Duellman, 1970) Smilisca fodiens 62.6 2230 (Duellman, 1970) Smilisca phaeota 65.5 372 (Duellman, 1970) Smilisca puma 38.1 740 (Duellman, 1970) Smilisca sordida* 45 2695 (Duellman, 1970) Sphaenorhynchus lacteus 41.5 2240 (Duellman, 2005) Sphaenorhynchus orophilus 32 2350 (Heyer et al., 1990) Tlalocohyla loquax 44.7 2323 (Duellman, 1970) Tlalocohyla picta 21.4 2661 (Duellman, 1970) Trachycephalus coriaceus 63 2090 (Rodríguez & Duellman, 1994; De la Riva et al., 1995) Trachycephalus mesophaeus 85 1014 (Lutz, 1973; Prado et al., 2003) Trachycephalus nigromaculatus 86 1990 (Cochran, 1955; Abrunhosa et al., 2001) Triprion petasatus 60.8 2096 (Duellman, 1970) caramaschii* 25.8 5000 (Bastos & Pombal, 1995) Crossodactylus schmidti* 30 3306 (Caldart et al., 2011) dactylocinus* 27 2973 (Pavan et al., 2001)

95

Taxa SVL (mm) DF (Hz) Source Hylodes meridionalis* 37.5 4400 (Pombal Jr. et al., 2002; Lingnau et al., 2013) Hylodes perplicatus* 39.8 3400 (Haddad et al., 2003) Hylodes phyllodes* 31.4 5000 (Heyer & Cocroft, 1986) Hylodes sazimai* 28.5 4750 (Heyer, 1982; Haddad & Pombal Jr, 1995) delicatus 22.2 4525 (Pickersgill, 2005) Afrixalus dorsalis 28 3587 (Schiøtz, 1999; Köhler et al., 2005) Afrixalus fornasini 38 2450 (Channing, 2001) Afrixalus knysnae 25 3800 (Schiøtz, 1999; Channing, 2001) Afrixalus laevis* 23 3000 (Schiøtz, 1999) Afrixalus paradorsalis 34 2864 (Schiøtz, 1999; Köhler et al., 2005) Afrixalus stuhlmanni 21.1 4650 (Pickersgill, 2005) Heterixalus andrakata 29 3200 (Glaw & Vences, 1991; 2007) Heterixalus betsileo 28 3000 (Glaw & Vences, 1993; 2007) Heterixalus boettgeri 25 2850 (Glaw & Vences, 1993; 2007) Heterixalus carbonei 26.4 3200 (Vences et al., 2000) Heterixalus luteostriatus 28 3500 (Andreone et al., 1994; Glaw & Vences, 2007) Heterixalus madagascariensis 35 3375 (Glaw & Vences, 1993; 2007) Heterixalus tricolor 26 3000 (Glaw & Vences, 1993; 2007) Heterixalus variabilis 31 3500 (Glaw & Vences, 1993; 2007) alticola* 33 2250 (Schiøtz, 1999) Hyperolius argus 34 2000 (Schiøtz, 1999) Hyperolius baumanni 30 3000 (Schiøtz, 1999) Hyperolius cinnamomeoventris 28 3246 (Schiøtz, 1999; Sinsch et al., 2012) Hyperolius cystocandicans 28 2813 (Schiøtz, 1999; Köhler et al., 2005) Hyperolius guttulatus* 35 2000 (Schiøtz, 1999) Hyperolius kivuensis 33 2649 (Schiøtz, 1999; Sinsch et al., 2012) Hyperolius montanus 28 2750 (Schiøtz, 1999) Hyperolius phantasticus 37 2529 (Schiøtz, 1999; Köhler et al., 2005) Hyperolius picturatus* 31 3850 (Schiøtz, 1999) Hyperolius puncticulatus 33 2000 (Channing & Howell, 2006) Hyperolius pusillus 21 4950 (Channing, 2001) Hyperolius torrentis* 38 3500 (Schiøtz, 1999) Hyperolius viridiflavus* 30 4250 (van den Elzen & Kreulen, 1979; Schiøtz, 1999) Kassina maculata 65 1700 (Channing, 1976; Schiøtz, 1999) Kassina senegalensis 49 1000 (Channing & Howell, 2006) Phlyctimantis verrucosus 52 1600 (Schiøtz, 1999) (Channing & Howell, 2006) Semnodactylus wealii 44 2000 (Schiøtz, 1999) perezi 30.2 2700 (Duellman, 2005) coloradorum 24.1 1060 (Cannatella & Duellman, 1984; Ryan & Drewes, 1990) Engystomops guayaco 19.4 2114 (Ron et al., 2005) Engystomops pustulatus 29.9 947 (Ryan & Drewes, 1990; Ron et al., 2004)

96

Taxa SVL (mm) DF (Hz) Source Engystomops pustulosus 34 546 (Ryan, 1983; Kime et al., 2000) Engystomops randi 18.56 1116 (Ron et al., 2004) Eupemphix nattereri 42.7 710 (Silva et al., 2008) bufonius 53.6 1500 (Heyer, 1978) Leptodactylus chaquensis 99.7 365 (Heyer & Giaretta, 2009) Leptodactylus didymus 46.7 780 (Heyer et al., 1996; Köhler & Lötters, 1999b) Leptodactylus diedrus 40.4 820 (Heyer, 1994; 1998) Leptodactylus elenae 45.2 1160 (Heyer, 1978; Heyer et al., 1996) Leptodactylus fuscus 52.1 560 (Bernal et al., 2004) Leptodactylus gracilis 47.8 1970 (Heyer, 1978; Köhler & Lötters, 1999a) Leptodactylus griseigularis 51 2770 (Heyer, 1994; Heyer & de Carvalho, 2000) Leptodactylus knudseni 159 500 (Heyer, 2005) Leptodactylus labyrinthicus 170 391 (Zina & Haddad, 2005) Leptodactylus leptodactyloides 48 1200 (Heyer, 1994; Duellman, 2005) Leptodactylus longirostris 40 2315 (Heyer, 1978; Lescure & Marty, 2000) Leptodactylus melanonotus 46 1840 (Heyer, 1970; Heyer & de Carvalho, 2000) 52.2 1056 (Heyer et al., 1996) Leptodactylus mystacinus 65 2275 (Heyer et al., 2003) Leptodactylus notoaktites 50.8 1230 (Heyer, 1978; Heyer et al., 1996) Leptodactylus ocellatus 120 175 (Heyer et al., 1990; Salas et al., 1998) Leptodactylus pentadactylus 177 545 (Kime et al., 2000; Savage, 2002) Leptodactylus podicipinus 44.7 1970 (Silva et al., 2008) Leptodactylus rhodonotus 79 2000 (Heyer, 1979; Duellman, 2005) Leptodactylus spixi 43 1634 (Heyer, 1983; Bilate et al., 2006) Leptodactylus vastus 180.3 430 (Heyer, 2005) Lithodytes lineatus 47 2600 (Duellman, 2005) Paratelmatobius cardosoi 17.9 2550 (Pombal & Haddad, 1999) Physalaemus albonotatus 32.4 2399 (Marquez et al., 1995; Rodrigues et al., 2004) Physalaemus barrioi 29.45 2265 (Provete et al., 2012) Physalaemus biligonigerus 45 568 (Lynch, 1970; Marquez et al., 1995) Physalaemus cuvieri 25.9 690 (Heyer et al., 1990) Physalaemus ephippifer 28 840 (Martins, 1998; Kaefer et al., 2011) Physalaemus signifer 25.9 1210 (Wogel et al., 2002) Pleurodema bibroni 38 1960 (Duellman & Veloso, 1977; Kolenc et al., 2009) Pleurodema brachyops 49 732 (Duellman & Veloso, 1977; Kime et al., 2000) Limnodynastidae Neobatrachus pelobatoides 39.6 816 (Roberts et al., 1991) Neobatrachus pictus 55 1300 (Roberts, 1997b) Neobatrachus sudelli 40 1509 (Roberts, 1997a) Aglyptodactylus laticeps 45.4 2350 (Glaw et al., 1998) Blommersia blommersae 21.3 6000 (Glaw & Vences, 2002) Blommersia domerguei 17 4350 (Vences et al., 2002; Glaw & Vences, 2007)

97

Taxa SVL (mm) DF (Hz) Source Blommersia kely 15.9 4700 (Vences et al., 2002) Blommersia sarotra 16.8 4592 (Vences et al., 2002) boehmei* 30 2500 (Glaw & Vences, 2007) Boophis goudotii 70 750 (Glaw & Vences, 2007) Boophis luteus* 40 3250 (Glaw & Vences, 1992; 2007) Boophis marojezensis* 27 5583 (Glaw et al., 2001) Boophis rappiodes* 25.1 3000 (Vences & Glaw, 2002) Boophis sibilans* 32.5 3300 (Glaw & Thiesmeier, 1993) Boophis vittatus* 25.5 7250 (Glaw et al., 2001) Boophis xerophilus 38.7 2700 (Glaw & Vences, 1997) Guibemantis tornieri 49 1850 (Glaw et al., 2000; Glaw & Vences, 2007) Mantella viridis* 25 4350 (Glaw & Vences, 2007) Mantidactylus argenteus* 27 4250 (Vejarano et al., 2006; Glaw & Vences, 2007) Mantidactylus charlotteae* 26.2 2900 (Vences & Glaw, 2004) Mantidactylus opiparis* 26.1 3150 (Vences & Glaw, 2004) Megophyidae Leptobrachium gunungense* 65 1200 (Malkmus et al., 2002; Malkmus, 2006) Leptobrachium montanum* 62.7 800 (Malkmus et al., 2002) Leptolalax arayai* 29.6 5588 (Matsui, 1997) Leptolalax oshanensis* 30.7 4512 (Jiang et al., 2002; Ohler et al., 2011) Leptolalax pictus* 36 7000 (Malkmus et al., 2002) Megophrys nasuta* 105 2250 (Malkmus et al., 2002) Oreolalax omeimontis* 58.4 1071 (Jiang et al., 2002; Nguyen et al., 2013) Xenophrys minor* 32 3456 (Stejneger, 1926; Jiang et al., 2002) Calluella guttulata 49 1950 (Parker, 1934; Heyer, 1971) hudsoni 17 3795 (Parker, 1940; Rodrigues et al., 2008) Chiasmocleis shudikarensis 24.5 3565 (Lescure & Marty, 2000; Peloso & Sturaro, 2008) Dermatonotus muelleri 62.4 1758 (Giaretta et al., 2013) Elachistocleis ovalis 36 3838 (Lavilla et al., 2003; Thomé & Brasileiro, 2007) elegans 25.8 3100 (Nelson, 1963; Nelson, 1973) Gastrophryne olivacea 30.8 4420 (Nelson, 1973; Loftus-Hills & Littlejohn, 1992) Glyphoglossus molossus 77 700 (Parker, 1934; Heyer, 1971) Hamptophryne boliviana 35 2208 (Hödl, 1990; De la Riva et al., 1996) Hypopachus variolosus 48 2750 (Parker, 1934; Lee, 2000) Kaloula pulchra 70 2500 (Malkmus et al., 2002) Microhyla butleri 26 2850 (Parker, 1934; Heyer, 1971) Microhyla pulchra 35 1750 (Parker, 1934; Heyer, 1971) Micryletta inornata 30 5450 (Parker, 1934; Heyer, 1971) Phrynomantis bifasciatus 53 1800 (Channing & Howell, 2006) Phrynomantis microps 47.3 1260 (Grafe, 1999; Rödel, 2000) Scaphiophryne boribory 60 700 (Vences et al., 2003; Glaw & Vences, 2007) Scaphiophryne gottlebei 30 950 (Andreone et al., 2005; Glaw & Vences, 2007)

98

Taxa SVL (mm) DF (Hz) Source Scaphiophryne madagascariensis 49 1000 (Vences et al., 2002; Vences et al., 2003) Scaphiophryne menabensis 42 850 (Glos et al., 2005) Scaphiophryne spinosa 48 800 (Vences et al., 2003; Glaw & Vences, 2007) Myobatrachidae Crinia riparia* 25.2 2735 (Littlejohn & Martin, 1965; Odendaal et al., 1983) Geocrinia victoriana 27 2676 (Littlejohn & Harrison, 1985) Pseudophryne bibronii 30 2640 (Chambers et al., 2006; Byrne, 2008) Uperoleia laevigata 35 2260 (Robertson, 1986) Nyctibatrachidae Nyctibatrachus major* 55 1250 (Boulenger, 1882; Kuramoto & Joshy, 2001) Odontophrynidae Macrogenioglottus alipioi 100 515 (Abravaya & Jackson, 1978; Dixo & Verdade, 2006) Odontophrynus achalensis* 49.4 933 (Salas & Di Tada, 1988; Rosset et al., 2007) Odontophrynus americanus 58 1035 (Martino & Sinsch, 2002) Odontophrynus cultripes 60 660 (Caramaschi & Napoli, 2012) Odontophrynus occidentalis* 60 820 (Martino & Sinsch, 2002) Proceratophrys avelinoi* 29.2 1600 (Kwet & Faivovich, 2001; Kwet & Baldo, 2003) Proceratophrys bigibbosa* 43.8 1050 (Kwet & Faivovich, 2001) Proceratophrys 57.1 818 (Santana et al., 2010) concavitympanum* Proceratophrys cristiceps* 50.2 940 (Nunes & Juncá, 2006; Cruz et al., 2012) Proceratophrys cururu* 43.1 800 (Eterovick & Sazima, 1998) Proceratophrys goyana* 46.5 1006 (Martins & Giaretta, 2013) Proceratophrys melanopogon* 49.9 1179 (Prado & Pombal Jr, 2008; Mângia et al., 2010) Pelobatidae Pelobates cultripes 85 1075 (Lizana et al., 1994) Petropedetidae Petropedetes yakusini* 73 1300 (Channing & Howell, 2006) Phrynobatrachidae Phrynobatrachus acridoides 28 2000 (Channing, 2001) Phrynobatrachus dendrobates* 31 3800 (Channing & Howell, 2006) Pipidae Xenopus ruwenzoriensis 44 1500 (Channing & Howell, 2006) Ptychadenidae Hildebrandtia ornata 65 1400 (Channing, 2001) Ptychadena anchietae 51 1750 (van den Elzen & Kreulen, 1979; Harper et al., 2010) Ptychadena mahnerti 42 3000 (Perret, 1996) Ptychadena oxyrhynchus 53 1715 (Rödel, 2000; Bwong et al., 2009) Ptychadena porosissima 44.1 4091 (Sinsch et al., 2012; Dehling & Sinsch, 2013) Ptychadena taenioscelis 35 2450 (Bwong et al., 2009; Harper et al., 2010) Pyxicephalidae Cacosternum boettgeri 19 4500 (Boulenger, 1882; Channing et al., 2013) Cacosternum capense 31.5 2300 (Channing, 2001; Channing et al., 2013) Cacosternum nanum 15 3600 (Channing et al., 2013)

99

Taxa SVL (mm) DF (Hz) Source Microbatrachella capensis 15 4900 (Boulenger, 1910; Channing, 2001) Poyntonia paludicola* 30 2200 (Channing & Boycott, 1989; Channing, 2001) Pyxicephalus adspersus 245 225 (Du Preez, 1996; Boeckle et al., 2009) Pyxicephalus edulis 120 525 (Channing et al., 1994; Rödel, 2000) Strongylopus grayii 35 2300 (Channing, 2001) Tomopterna cryptotis 45 3450 (Channing, 2001) Tomopterna delalandii 44.8 2500 (Passmore & Carruthers, 1975) Tomopterna krugerensis 44.8 2500 (Passmore & Carruthers, 1975) Tomopterna tuberculosa 40 2600 (Channing, 2001) Ranidae Amnirana galamensis 78 2500 (Channing, 2001) chunganensis* 39 3425 (Matsui et al., 1993; Liu et al., 2000) Amolops larutensis* 30 5033 (Van Kampen, 1923; Matsui et al., 1993) Amolops panhai* 34 6500 (Matsui & Nabhitabhata, 2006) Amolops wuyiensis* 47 2232 (Zhang et al., 2013) Huia cavitympanum* 52 15966 (Inger & Stuebing, 2005; Arch et al., 2008) Huia masonii* 37.8 12000 (Stuart & Chan-Ard, 2005; Boonman & Kurniati, 2011) Hylarana nicobariensis 46.2 1825 (Inger, 1954; Jehle & Arak, 1998) Meristogenys jerboa* 44 5650 (Inger & Gritis, 1983; Matsui et al., 1993) Meristogenys orphnocnemis* 37.3 7205 (Matsui, 1986; Preininger et al., 2007) Odorrana schmackeri* 46 3479 (Liu, 1950; Zhou et al., 2014) Odorrana tormota* 33 7000 (Feng et al., 2002) Rana adenopleura 51 650 (Matsui & Utsunomiya, 1983) Rana amamiensis* 69 2850 (Matsui, 1994) Rana baramica 55.6 2000 (Leong et al., 2003; Zainudin et al., 2010) Rana curtipes 51.4 1222 (Krishna & Krishna, 2005) Rana dalmatina 59 682 (Lesbarrères & Lodé, 2002; Hettyey et al., 2005) Rana erythraea 48 2459 (Brown & Alcala, 1970; Roy et al., 1995) Rana forreri 90 850 (Frost, 1982; Savage, 2002) Rana glandulosa 55 1380 (Brown, 1902; Grafe et al., 2008) Rana hosii* 68 4950 (Manthey & Grossmann, 1997; Kurniati et al., 2010) Rana laterimaculata* 39 3245 (Leong et al., 2003) Rana lessonae 57 1831 (Wycherley et al., 2002) Rana livida* 54 5250 (Ao et al., 2003; Shen et al., 2011) Rana luctuosa 68 1500 (Kueh et al., 2010; Zainudin et al., 2010) Rana nigromaculata 81 2043 (Mu & Zhao, 1990; Khonsue et al., 2001) Rana picturata* 54 2500 (Zainudin et al., 2010; Zainudin & Sazali, 2012) Rana plancyi 50 1840 (Lue, 1990; Ueda, 1994) Rana pretiosa 75 1000 (Briggs, 1987; Cushman & Pearl, 2007) Rana septentrionalis 63.1 605 (Leclair & Laurin, 1996; Bevier et al., 2004) Rana supranarina* 76.8 1840 (Matsui, 1994) Rana taylori 78 1350 (Savage, 2002) Rana temporalis* 55.3 3100 (Kadadevaru et al., 2000; Hampson & Bennett, 2002)

100

Taxa SVL (mm) DF (Hz) Source Rana utsunomiyaorum* 48.1 2326 (Matsui, 1994) Staurois latopalmatus* 47.7 5149 (Boeckle et al., 2009) (Boeckle et al., 2009) Staurois natator* 35.5 4746 (Emerson, 1997; Preininger et al., 2007) Staurois parvus* 23.6 5578 (Matsui et al., 2007; Grafe et al., 2012) Staurois tuberilinguis* 30.2 5240 (Matsui et al., 2007; Boeckle et al., 2009) Buergeria robusta* 52 1850 (Kuramoto, 1986; Huang et al., 2001) doriae 26.5 4300 (Aowphol et al., 2013) Chiromantis rufescens 49 1650 (Channing & Howell, 2006) Chiromantis vittatus 25.2 3900 (Aowphol et al., 2013) Chiromantis xerampelina 75 1700 (Channing & Howell, 2006) Ghatixalus variabilis* 48 3135 (Bossuyt & Dubois, 2001; Kanamadi et al., 2001) Kurixalus idiootocus 24.9 2300 (Kuramoto & Wang, 1987) leucomystax 63 1528 (Sheridan et al., 2010) Polypedates maculatus 57 1550 (Kanamadi et al., 1993; Daniel, 2002) arboreus 60 1400 (Kasuya et al., 1992; Wilkinson, 2003) Rhacophorus chenfui 41 2329 (Matsui & Wu, 1994; Wang et al., 2012) Rhacophorus dennysi 96 1321 (Wang et al., 2012) Rhacophorus dugritei 40.8 1600 (Matsui & Wu, 1994; Ohler et al., 2000) Rhacophorus kio 79.1 890 (Ohler & Delorme, 2006; Wildenhues et al., 2011) Rhacophorus malabaricus 48.3 1260 (Das, 2000; Hampson & Bennett, 2002) Rhacophorus omeimontis 70 972 (Matsui & Wu, 1994; Liao & Lu, 2011) Rhacophorus reinwardtii 52.5 1300 (Ohler & Delorme, 2006; Kurniati et al., 2010) Rhacophorus schlegelii 43 1900 (Maeda & Matsui, 1990; Matsui & Wu, 1994) Rhinophrynidae Rhinophrynus dorsalis 75 1525 (Savage, 2002) Scaphiopodidae Scaphiopus couchii 72 1650 (Capranica & Moffat, 1975; Vásquez & Pfennig, 2007) Scaphiopus holbrookii 78 1425 (Blair, 1958b; Dodd Jr., 2013) Scaphiopus hurterii 67 1500 (Strecker, 1910; Awbrey, 1968) Spea multiplicata 49 1300 (Pfennig, 2000; Pfennig & Pfennig, 2005)

101

References

Abravaya, J.P. & Jackson, J.F. 1978. Reproduction in Macrogenioglottus alipioi

Carvalho (Anura, Leptodactylidae). Natural History Museum of Los Angeles

County, Contributions to Science 298: 1-9.

Abrunhosa, P.A., Wogel, H. & Pombal Jr., J.P. 2001. Vocalização de quatro espécies de

anuros do estado do Rio de Janeiro, sudeste do Brasil (Amphibia, Hylidae,

Leptodactylidae). Boletim do Museu Nacional do Rio de Janeiro 472: 1-12.

Abrunhosa, P.A. & Wogel, H. 2004. Breeding behavior of the leaf-frog Phyllomedusa

burmeisteri (Anura : Hylidae). Amphibia-Reptilia 25: 125-135.

Abrunhosa, P.A., Pimenta, B.V.S., Cruz, C.A.G. & Haddad, C.F.B. 2005.

Advertisement calls of species of the Hyla albosignata group (Amphibia, Anura,

Hylidae). Arquivos do Museu Nacional 63: 275-282.

Alonso, R. & Rodríguez, A. 2003. Advertisement calls of Cuban toads of the genus

Bufo (Anura, Bufonidae). Phyllomedusa 2: 75-82.

Álvares, G.F.R. 2008. Taxonomia, distribuição geográfica potencial e conservação das

espécies de Phyllomedusa do grupo hypochondrialis, Universidade de Brasilia.

Master: 95.

Amézquita, A. 1999. Color pattern, elevation and body size in the high Andean frog

Hyla labialis. Revista de la Academia Colombiana de Ciencias Exactas Fisicas

y Naturales 23: 231-238.

Andreone, F., Piazza, R. & Vallan, D. 1994. Evidence for the specific validity and

resurrection of Heterixalus luteostriatus (Andersson, 1910) (Anura:

Hyperoliidae). Bollettino del Museo regionale di Scienze Naturali Torino 12:

391-400.

102

Andreone, F., Mattioli, F. & Mercurio, V. 2005. The call of Scaphiophryne gottlebei, a

microhylid frog from the Isalo Massif, southcentral Madagascar. Current

Herpetology 24: 33-35.

Ao, J.M., Bordoloi, S. & Ohler, A. 2003. Amphibian fauna of Nagaland with nineteen

new records from the state including five new records for India. Zoos’ Print

Journal 18: e1117-1125.

Aowphol, A., Rujirawan, A., Taksintum, W., Arsirapot, S. & McLeod, D.S. 2013. Re-

evaluating the taxonomic status of Chiromantis in Thailand using multiple lines

of evidence (Amphibia: Anura: Rhacophoridae). Zootaxa 3702: 101-123.

Arak, A. 1988. Female mate selection in the natterjack toad: active choice or passive

atraction? Behavioral Ecology and Sociobiology 22: 317-327.

Arch, V.S., Grafe, T.U. & Narins, P.M. 2008. Ultrasonic signalling by a Bornean frog.

Biology Letters 4: 19-22.

Arnold, E.N. 2003. Reptiles and amphibians of Europe. Princeton University Press,

Princeton.

Awbrey, F.T. 1968. Call discrimination in female Scaphiopus couchii and Scaphiopus

hurterii. Copeia 1968: 420-423.

Barrio-Amoros, C.L. 2006. A new species of Phyllomedusa (Anura : Hylidae :

Phyllomedusinae) from northwestern . Zootaxa 1309: 55-68.

Barrio-Amorós, C.L. & Castroviejo-Fisher, S. 2008. Comments on the distribution,

taxonomy and advertisement call of the Guyanan Hyalinobatrachium

ignioculus (Anura: Centrolenidae). Salamandra 44: 235-240.

Barrio-Amorós, C.L., Señaris, J.C., Macculloch, R.D., Lathrop, A., Guayasamin, J.M.

& Duellman, W.E. 2011. Distribution, vocalization and taxonomic status of

103

Hypsiboas roraima and H. angelicus (Amphibia: Anura: Hylidae). Papéis

Avulsos de Zoologia (São Paulo) 51: 21-28.

Barrio, A. 1967. Observaciones etoecologicas sobre Hylorina sylvatica Bell (Anura,

Leptodactylidae). Physis 27: 153-157.

Basso, N.G. 1990. Estrategias adaptivas en una comunidad subtropical de anuros.

Cuadernos de Herpetologia 1: 1-70.

Bastos, R.P. & Haddad, C.F.B. 1995. Vocalizações e interações acústicas de Hyla

elegans (Anura: Hylidae) durante a atividade reprodutiva. Naturalia 20: 165-

176.

Bastos, R.P. & Pombal, J.P. 1995. New species of Crossodactylus (Anura:

Leptodactylidae) from the Atlantic rain forest of southeastern Brazil. Copeia

1995: 436-439.

Bernal, M.H., Montealegre, D.P. & Páez, C.A. 2004. Estudio de la vocalización de trece

especies de anuros del municipio de Ibagué, . Revista de la Academia

Colombiana de Ciencias Exactas Fisicas y Naturales 28: 385-390.

Bevier, C.R., Larson, K., Reilly, K. & Tat, S. 2004. Vocal repertoire and calling activity

of the mink frog, Rana septentrionalis. Amphibia-Reptilia 25: 255-264.

Bilate, M., Wogel, H., Weber, L.N. & Abrunhosa, P.A. 2006. Vocalizações e girino de

Leptodactylus spixi Heyer, 1983 (Amphibia, Anura, Leptodactylidae). Arquivos

do Museu Nacional 63: 235-245.

Blackburn, D.C., Kosuch, J., Schmitz, A., Burger, M., Wagners, P., Gonwouo, L.N.,

Hillers, A. & Roedel, M.-O. 2008. A new species of Cardioglossa (Anura :

Arthroleptidae) from the Upper Guinean forests of West . Copeia 2008:

603-612.

104

Blair, W.F. 1956. Call difference as an isolation mechanism in south-western toads

(genus Bufo). Texas Journal of Science 8: 87-106.

Blair, W.F. 1958a. Call structure and species groups in US treefrogs (Hyla). The

Southwestern Naturalist 3: 77-89.

Blair, W.F. 1958b. Mating call in the speciation of anuran amphibians. American

Naturalist 92: 27-51.

Boeckle, M., Preininger, D. & Hödl, W. 2009. Communication in noisy environments I:

acoustic signals of Staurois latopalmatus Boulenger 1887. Herpetologica 65:

154-165.

Bogert, C.M. 1962. Isolation mechanisms in toads of the Bufo debilis group in Arizona

and western Mexico. American Museum Novitates 2100: 1-37.

Bokermann, W.C.A. 1965. Três novos batráquios da região central de Mato Grosso,

Brasil (Amphibia, Salientia). Revista Brasileira de Biologia 25: 257-264.

Boonman, A. & Kurniati, H. 2011. Evolution of high-frequency communication in

frogs. Evolutionary Ecology Research 13: 197-207.

Bossuyt, F. & Dubois, A. 2001. A review of the frog genus Philautus Gistel, 1848

(Amphibia, Anura, Ranidae, ). Zeylanica 6: 1-112.

Boulenger, G.A. 1882. Catalogue of the Batrachia Salientia s. Ecaudata in the

collection of the British Museum. Collection of the British Museum (Natural

History), London.

Boulenger, G.A. 1910. A revised list of the South African reptiles and batrachians, with

synoptic tables, special reference to the specimens in the South African

Museum, and descriptions of new species. South African Museum 5: 455-538.

105

Brandão, R.A., Álvares, G.F., Crema, A. & Zerbini, G.J. 2009. Natural history of

Phyllomedusa centralis Bokermann 1965 (Anura: Hylidae: Phyllomedusinae):

tadpole and calls. South American Journal of Herpetology 4: 61-68.

Briggs, J.L. 1987. Breeding biology of the Cascade frog, Rana cascadae, with

comparisons to R. aurora and R. pretiosa. Copeia 1987: 241-245.

Brown, A.E. 1902. A collection of reptiles and batrachians from Borneo and the Loo

Choo Islands. Proceedings of the Academy of Natural Sciences of Philadelphia

54: 175-186.

Brown, R.M. & Iskandar, D.T. 2000. Nest site selection, larval hatching, and

advertisement calls, of Rana arathooni from southwestern Sulawesi (Celebes)

Island, Indonesia. Journal of Herpetology 34: 404-413.

Brown, W.C. & Alcala, A.C. 1970. Population ecology of the frog Rana erythraea in

Southern Negros, Philippines. Copeia 1970: 611-622.

Bwong, B.A., Chira, R., Schick, S., Veith, M. & Lötters, S. 2009. Diversity of ridged

frogs (Ptychadenidae: Ptychadena) in the easternmost remnant of the Guineo-

Congolian rain forest: an analysis using morphology, bioacoustics and molecular

genetics. Salamandra 45: 129-146.

Byrne, P.G. 2008. Strategic male calling behavior in an Australian Terrestrial Toadlet

(Pseudophryne bibronii). Copeia 1: 57-63.

Cadle, J.E. & McDiarmid, R.W. 1990. Two new species of Centrolenella (Anura:

Centrolenidae) from northwestern . Proceedings of the Biological Society of

Washington 103: 746-768.

Cajade, R., Federico Schaefer, E., Ines Dure, M., Ignacio Kehr, A. & Marangoni, F.

2010. Reproductive biology of Argenteohyla siemersi pederseni Williams and

106

Bosso, 1994 (Anura: Hylidae) in northeastern Argentina. Journal of Natural

History 44: 1953-1978.

Caldart, V.M., Iop, S. & Cechin, S.Z. 2011. Vocalizations of Crossodactylus schmidti

Gallardo, 1961 (Anura, Hylodidae): advertisement call and aggressive call.

North-Western Journal of Zoology 7: 118-124.

Caldwell, J.P. & Shepard, D.B. 2007. Calling site fidelity and call structure of a

neotropical toad, Rhinella ocellata (Anura : Bufonidae). Journal of Herpetology

41: 611-621.

Cannatella, D.C. 1982. Leaf-frogs of the Phyllomedusa perinesos group (Anura:

Hylidae). Copeia 1982: 501-513.

Cannatella, D.C. & Duellman, W.E. 1984. Leptodactylid frogs of the Physalaemus

pustulosus group. Copeia 1984: 902-921.

Cannatella, D.C. & Lamar, W.W. 1986. Synonymy and distribution of Centrolenella

orientalis with notes on its life history (Anura: Centrolenidae). Journal of

Herpetology 20: 307-317.

Capranica, R.R. & Moffat, A.J. 1975. Selectivity of the peripheral auditory system of

spadefoot toads (Scaphiopus couchi) for sounds of biological significance.

Journal of Comparative Physiology 100: 231-249.

Caramaschi, U. & Cruz, C.A.G. 1998. Notas taxonômicas sobre Pseudis fusca Garman

e P. bolboactyla A. Lutz, com a descrição de uma nova espécie correlata (Anura,

Pseudidae). Revista Brasileira de Biologia 15: 929-944.

Caramaschi, U. & Cruz, C.A.G. 2000. Duas espécies novas de Hyla Laurenti, 1768 do

estado de Goiás, Brasil (Amphibia, Anura, Hylidae). Boletim do Museu

Nacional do Rio de Janeiro, Nova Série, Zoologia 422: 1-12.

107

Caramaschi, U. 2006. Redefinição do grupo de Phyllomedusa hypochondrialis, com

redescrição de P. megacephala (Miranda-Ribeiro, 1926), revalidação de P.

azurea Cope, 1862 e descrição de uma nova espécie (Amphibia, Anura,

Hylidae). Arquivos do Museu Nacional 64: 159-179.

Caramaschi, U. & Napoli, M.F. 2012. Taxonomic revision of the Odontophrynus

cultripes species group, with description of a new related species (Anura,

Cycloramphidae). Zootaxa 3155: 1-20.

Cardoso, A.J. & Vielliard, J.M. 1985. Caracterização bio-acústica da população

topotípica de Hyla rubicundula (Amphibia, Anura). Revista Brasileira de

Zoologia 2: 423-426.

Cardozo-Urdaneta, A. & Señaris, J.C. 2012. Vocalización y biología reproductiva de las

ranas de cristal Hyalinobatrachium pallidum y Centrolene daidaleum (Anura,

Centrolenidae) en la sierra de Perijá, Venezuela. Memoria de la Fundación La

Salle de Ciencias Naturales 70: 87-105.

Carvalho Jr, R.R., Galdino, C.A. & Nascimento, L.B. 2006. Notes on the courtship

behavior of Aplastodiscus arildae (Cruz and Peixoto, 1985) at an urban forest

fragment in Southeastern Brazil (Amphibia, Anura, Hylidae). Arquivos do

Museu Nacional 64: 247-254.

Carvalho, T.R., Giaretta, A.A. & Magrini, L. 2012. A new species of the

Bokermannohyla circumdata group (Anura: Hylidae) from southeastern Brazil,

with bioacoustic data on seven species of the genus. Zootaxa 3321: 37-55.

Castellano, S., Cuatto, B., Rinella, R., Rosso, A. & Giacoma, C. 2002. The

advertisement call of the European treefrogs (Hyla arborea): A multilevel study

of variation. Ethology 108: 75-89.

108

Castroviejo-Fisher, S., Señaris, J.C., Ayarzagüena, J. & Vilà, C. 2008. Resurrection of

Hyalinobatrachium orocostale and notes on the Hyalinobatrachium orientale

species complex (Anura: Centrolenidae). Herpetologica 64: 472-484.

Castroviejo-Fisher, S., Padial, J.M., Chaparro, J.C., Aguayo, R. & De la Riva, I. 2009.

A new species of Hyalinobatrachium (Anura: Centrolenidae) from the

Amazonian slopes of the central Andes, with comments on the diversity of the

genus in the area. Zootaxa 2143: 24-44.

Catenazzi, A., Rodríguez, L.O. & Donnelly, M.A. 2009. The advertisement calls of four

species of glassfrogs (Centrolenidae) from southeastern Peru. Studies on

Neotropical Fauna and Environment 44: 83-91.

Cei, J.M. 1980. Amphibians of Argentina. Monitore Zoologico Italiano 2: 1-609.

Chambers, J., Wilson, J.C. & Williamson, I. 2006. Soil pH influences embryonic

survival in Pseudophryne bibronii (Anura : Myobatrachidae). Austral Ecology

31: 68-75.

Channing, A. 1976. Pre-mating isolation in the genus Kassina (Amphibia, Anura,

Rhacophoridae) in southern Africa. Journal of Herpetology 10: 19-23.

Channing, A. & Boycott, R.C. 1989. A new frog genus and species from the mountains

of the southwestern Cape, South Africa (Anura: Ranidae). Copeia 1989: 467-

471.

Channing, A., Dupreez, L. & Passmore, N. 1994. Status, vocalization and breeding

biology of two species of African bullfrogs (Ranidae: Pyxicephalus). Journal of

Zoology 234: 141-148.

Channing, A. 2001. Amphibians of Central and Southern Africa. Cornell University

Press., Ithaca, NY.

109

Channing, A. & Howell, K. 2006. Amphibians of East Africa. Cornell University Press

Ithaca, NY.

Channing, A., Schmitz, A., Burger, M. & Kielgast, J. 2013. A molecular phylogeny of

African Dainty Frogs, with the description of four new species (Anura:

Pyxicephalidae: Cacosternum). Zootaxa 3701: 518-550.

Cherry, M.I. & Francillon-Vieillot, H. 1992. Body size, age and reproduction in the

leopard toad, Bufo pardalis. Journal of Zoology 228: 41-50.

Cherry, M.I. & Grant, W.S. 1994. Phylogenetic relationships and call structure in four

African bufonid species. South African Journal of Zoology 29: 1-10.

Cochran, D.M. 1955. Frogs of Southeastern Brazil. United States National Museum

Bulletin 206: 1-423.

Cochran, D.M. & Goin, C.J. 1970. Frogs of Colombia. Smithisonian Institute Press,

Washington.

Cocroft, R.B., McDiarmid, R.W., Jaslow, A.P. & Ruiz-Carranza, P.M. 1990.

Vocalizations of eight species of Atelopus (Anura: Bufonidae) with comments

on communication in the genus. Copeia 1990: 631-643.

Cocroft, R.B. & Ryan, M.J. 1995. Patterns of advertisement call evolution in toads and

chorus frogs. Animal Behaviour 49: 283-303.

Coloma, L.A., Lötters, S. & Salas, A.W. 2000. Taxonomy of the Atelopus ignescens

complex (Anura : Bufonidae): Designation of a neotype of Atelopus ignescens

and recognition of Atelopus exiguus. Herpetologica 56: 303-324.

Coloma, L.A., Carvajal-Endara, S., Duenas, J.F., Paredes-Recalde, A., Morales-Mite,

M., Almeida-Reinoso, D., Tapia, E.E., Hutter, C.R., Toral, E. & Guayasamin,

J.M. 2012. Molecular phylogenetics of stream treefrogs of the Hyloscirtus

110

larinopygion group (Anura: Hylidae), and description of two new species from

Ecuador. Zootaxa 3364: 1-78.

Conant, R. & Collins, J.T. 1998. A field guide to reptiles and amphibians of Eastern and

Central North America. Horton Mifflin Company, Boston.

Cruz, C.A.G. & Peixoto, O.L. 1985. Espécies verdes de Hyla: o complexo

―albosignata‖ (Amphibia, Anura, Hylidae). Arquivos da Universidade Federal

Rural do Rio de Janeiro 7: 31-47.

Cruz, C.A.G., Nunes, I. & Juncá, F.A. 2012. Redescription of Proceratophrys cristiceps

(Müller, 1883) (Amphibia, Anura, Odontophrynidae), with description of two

new species without eyelid appendages from Northeastern Brazil. South

American Journal of Herpetology 7: 110-122.

Cushman, K.A. & Pearl, C.A. 2007. A conservation assessment for the Oregon spotted

frog (Rana pretiosa), USDA Forest Service and USDI Bureau of Land

Management. Oregon.

Daniel, J.C. 2002. The book of Indian reptiles and amphibians Oxford University Press,

Mumbai.

Das, I. 2000. Nomenclatural history and rediscovery of Rhacophorus lateralis

Boulenger, 1883 (Amphibia: Rhacophoridae). Current Herpetology 19: 35-40.

Davies, M., Martin, A.A. & Watson, G.F. 1983. Redefinition of the Litoria latopalmata

species group (Anura: Hylidae). Transactions of the Royal Society of South

Australia 107: 87-108.

De la Riva, I. 1993. A new species of Scinax (Anura, Hylidae) from Argentina and

Bolivia. Journal of Herpetology 27: 41-46.

De la Riva, I., Márquez, R. & Bosch, J. 1995. Advertisement calls of eight Bolivian

hylids (Amphibia, Anura). Journal of Herpetology 29: 112-118.

111

De la Riva, I., Márquez, R. & Bosch, J. 1996. Advertisement calls of four microhylid

frogs from Bolivia (Amphibia, Anura). American Midland Naturalist 136: 418-

422.

De la Riva, I., Márquez, R. & Bosch, J. 1997. Description of the advertisement calls of

some South American Hylidae (Amphibia: Anura): taxonomic and

methodological consequences. Bonner Zoologische Beiträege 47.

Dehling, J.M. & Sinsch, U. 2013. Diversity of Ridged Frogs (Anura: Ptychadenidae:

Ptychadena spp.) in wetlands of the upper Nile in : Morphological,

bioacoustic, and molecular evidence. Zoologischer Anzeiger 253: 143-157.

Díaz-Gutiérrez, N., Vargas-Salinas, F., Rivera-Correa, M., Andres Rojas-Morales, J.,

Escobar-Lasso, S., Velasco, J.A., Gutiérrez-Cárdenas, P.D.A. & Amézquita, A.

2013. Description of the previously unknown advertisement call and tadpole of

the Colombian endemic glassfrog Centrolene savagei (Anura: Centrolenidae).

Zootaxa 3686: 289-296.

Dixo, M. & Verdade, V.K. 2006. Herpetofauna de serrapilheira da Reserva Florestal de

Morro Grande, Cotia (SP). Biota Neotropica 6: 1-20.

Dodd Jr., C.K. 2013. Frogs of the United States and Canada. JHU Press, Baltimore.

Doughty, P. 2011. An emerging frog diversity hotspot in the northwest Kimberley of

Western Australia: another new frog species from the high rainfall zone.

Records of the Western Australian Museum 26: 209-216.

Du Preez, L.H. 1996. Field guide and key to the frogs and toads of the Free State.

University of the Orange Free State, Bloemfontein, South Africa.

Duellman, W.E. & Fouquette, M.J. 1968. Middle American frogs of the Hyla

microcephala group. University of Kansas Publications of the Museum of

Natural History 17: 517-557.

112

Duellman, W.E. 1969. A new species of frog in the Hyla parviceps group from

Ecuador. Herpetologica 25: 241-247.

Duellman, W.E. 1970. The Hylid Frogs of Middle America. Monograph of the Museum

of Natural History, Kansas.

Duellman, W.E. 1971. The identities of some Ecuadorian hylid frogs. Herpetologica

27: 212-227.

Duellman, W.E. 1972a. A review of the Neotropical frogs of the Hyla bogotensis group.

Occasional Papers of the Museum of Natural History, The University of Kansas

11: 1-31.

Duellman, W.E. 1972b. South American frogs of the Hyla rostrata group (Amphibia,

Anura, Hylidae). Zoologische Mededelingen 47: 177-192.

Duellman, W.E. 1973. Descriptions of new hylid frogs from Colombia and Ecuador.

Herpetologica 29: 219-227.

Duellman, W.E. 1974. Taxonomic notes on Phyllomedusa (Anura: Hylidae) from the

upper . Herpetologica 30: 105-112.

Duellman, W.E. & Veloso, A. 1977. Phylogeny of Pleurodema (Anura,

Leptodactylidae): a biogeographic model. Occasional Papers of the Museum of

Natural History, The University of Kansas 64: 1-46.

Duellman, W.E. 1978. The biology of an equatorial herpetofauna in Amazonian

Ecuador. Miscellaneous Publications of the University of Kansas Museum of

Natural History 65: 1-352.

Duellman, W.E. & Altig, R. 1978. New species of tree frogs (Family Hylidae) from the

Andes of Colombia and Ecuador. Herpetologica 34: 177-185.

Duellman, W.E. & Berger, T.J. 1982. A new species of Andean treefrog (Hylidae).

Herpetologica 38: 456-460.

113

Duellman, W.E. & Pyles, R.A. 1983. Acoustic resource partitioning in anuran

communities. Copeia 1983: 639-649.

Duellman, W.E., Cadle, J.E. & Cannatella, D.C. 1988. A new species of terrestrial

Phyllomedusa (Anura: Hylidae) from southern Peru. Herpetologica 44: 91-95.

Duellman, W.E. & Hillis, D.M. 1990. Systematics of the Hyla larinopygion group

Occasional Papers of the Museum of Natural History, The University of Kansas

134: 1–23.

Duellman, W.E. & Wiens, J.J. 1993. Hylid frogs of the genus Scinax Wagler, 1830, in

Amazonian Ecuador and Peru. Occasional Papers of the Museum of Natural

History, The University of Kansas 153: 1-57.

Duellman, W.E. & Lizana, M. 1994. Biology of a sit-and-wait predator, the

leptodactylid frog Ceratophrys cornuta. Herpetologica 50: 51-64.

Duellman, W.E. 1997. Amphibians of La Escalera Region, Southeastern Venezuela:

taxonomy, ecology, and biogeography. Scientific Papers Natural History

Museum, The University of Kansas 2: 1-52.

Duellman, W.E. 2005. Cusco Amazónico. Comstock Pub. Associates, Ithaca.

Emerson, S.B. 1997. Testis size variation in frogs: testing the alternatives. Behavioral

Ecology and Sociobiology 41: 227-235.

Eterovick, P.C. & Sazima, I. 1998. New species of Proceratophrys (Anura :

Leptodactylidae) from Southeastern Brazil. Copeia 1998: 159-164.

Faivovich, J. 2005. A new species of Scinax (Anura : Hylidae) from Misiones,

Argentina. Herpetologica 61: 69-77.

Fei, L., Ye, C.Y., Huang, Y.A. & Liu, M.Y. 1999. Atlas of Amphibians of China. Henan

Science and Technical Press, Zhengzhou, China.

114

Feng, A.S., Narins, P.M. & Xu, C.H. 2002. Vocal acrobatics in a Chinese frog, Amolops

tormotus. Naturwissenschaften 89: 352-356.

Fonte, L.F.M.D. 2010. Variação morfológica e na estrutura do canto em Scinax

granulatus (PETERS, 1871) (ANURA, HYLIDAE), Universidade Federal do

Rio Grande do Sul. Master: 76.

Ford, M.A. 1989. Vocalisations of the green frogs Litoria aurea and Litoria raniformis,

including species-specific male calls. New Zealand Journal of Zoology 16: 17-

23.

Forti, L.R., Miguel Martins, F.A. & Bertoluci, J. 2012. Advertisement call and

geographical variation in call features of Dendropsophus berthalutzae (Anura:

Hylidae) from the Atlantic Rainforest of southeastern Brazil. Zootaxa 3310: 66-

68.

Frost, J.S. 1982. Functional genetic similarity between geographically separated

populations of Mexican leopard frogs (Rana pipiens complex). Systematic

Zoology 31: 57-67.

Gallardo, J.M. 1965. The species Bufo granulosus Spix (Salientia: Bufonidae) and its

geographic variation. Bulletin of the Museum of Comparative Zoology 134: 107-

138.

Garcia-Rutledge, E.J. & Narins, P.M. 2001. Shared acoustic resources in an old world

frog community. Herpetologica 57: 104-116.

Garcia, P.C.A., Vinciprova, G. & Haddad, C.F.B. 2003. The taxonomic status of Hyla

pulchella joaquini (Anura : Hylidae) with description of its tadpole and

vocalization. Herpetologica 59: 350-363.

115

Garcia, P.C.A., Faivovich, J. & Haddad, C.F.B. 2007. Redescription of Hypsiboas

semiguttatus, with the description of a new species of the Hypsiboas pulchellus

group. Copeia 2007: 933-951.

Garcia, P.C.A. & Haddad, C.F.B. 2008. Vocalizations and comments on the

relationships of Hypsiboas ericae (Amphibia, Hylidae). Iheringia Serie Zoologia

98: 161-166.

Gerhardt, H.C. 1974. Behavioral isolation of the tree frogs, Hyla cinerea and Hyla

andersonii. American Midland Naturalist 91: 424-433.

Gerhardt, H.C. 2005. Advertisement-call preferences in diploid-tetraploid treefrogs

(Hyla chrysoscelis and Hyla versicolor): Implications for mate choice and the

evolution of communication systems. Evolution 59: 395-408.

Giaretta, A.A., de Oliveira Filho, J.C. & Kokubum, M.N.d.C. 2007. A new

Phyllomedusa Wagler (Anura, Hylidae) with reticulated pattern on flanks from

Southeastern Brazil. Zootaxa 1614: 31-41.

Giaretta, A.A., De Andrade, F.S., Haga, I.A. & Bernardes, C.D.S. 2013. On the

advertisement call of Dermatonotus muelleri (Boettger, 1885) (Anura,

Microhylidae). Zootaxa 3700: 593-596.

Glaw, F. & Vences, M. 1991. Ein neuer Heterixalus aus Madagaskar (Amphibia, Anura,

Hyperoliidae). Acta Biologica Benrodis 3: 197-201.

Glaw, F. & Vences, M. 1992. Zur Kenntnis der Gattungen Boophis, Aglyptodactylus

und Mantidactylus (Amphibia: Anura) aus Madagaskar, mit Beschreibung einer

neuen Art. Bonner Zoologische Beiträege 43: 45-77.

Glaw, F. & Thiesmeier, B. 1993. Bioakustische Differenzierung in der Boophis-luteus-

Gruppe (Anura: Rhacophoridae), mit Beschreibung einer neuen Art und einer

neuen Unterart. Salamandra 28: 258-269.

116

Glaw, F. & Vences, M. 1993. Zur Bioakustik, Biologie und Systematik der Gattung

Heterixalus aus Madagaskar (Anura: Hyperoliidae). Salamandra 29: 212-230.

Glaw, F. & Vences, M. 1997. New species of the Boophis tephraeomystax group

(Anura: Ranidae: Rhacophorinae) from arid Western Madagascar. Copeia 1997:

572-578.

Glaw, F., Vences, M. & Bohme, W. 1998. Systematic revision of the genus

Aglyptodactylus, Boulenger, 1919 (Amphibia : Ranidae), and analysis of its

phylogenetic relationships to other Madagascan ranid genera (Tomopterna,

Boophis, Mantidactylus, and Mantella). Journal of Zoological Systematics and

Evolutionary Research 36: 17-37.

Glaw, F., Vences, M. & Gossmann, V. 2000. A new species of Mantidactylus (subgenus

Guibemantis) from Madagascar, with a comparative survey of internal femoral

gland structure in the genus (Amphibia : Ranidae : Mantellinae). Journal of

Natural History 34: 1135-1154.

Glaw, F., Vences, M., Andreone, F. & Vallan, D. 2001. Revision of the Boophis majori

group (Amphibia : Mantellidae) from Madagascar, with descriptions of five new

species. Zoological Journal of the Linnean Society 133: 495-529.

Glaw, F. & Vences, M. 2002. A new sibling species of the anuran subgenus Blommersia

from Madagascar (Amphibia : Mantellidae : Mantidactylus) and its molecular

phylogenetic relationships. Herpetological Journal 12: 11-20.

Glaw, F. & Vences, M. 2007. A field guide to the amphibians and reptiles of

Madagascar. Verlag, Köln.

Glos, J., Glaw, F. & Vences, M. 2005. A new species of Scaphiophryne from Western

Madagascar. Copeia 2005: 252-261.

117

Goin, C.J. & Woodley, J.D. 1969. A new tree frog from . Zoological Journal of

the Linnean Society 48: 135-140.

Gomes, F.B.R. & Martins, I.A. 2006. Amphibia, Anura, Hylidae, Dendropsophus

anceps (Lutz, 1929): Filling gap, geographic distribution map and vocalization.

Check List 2: 22.

Grafe, T.U. 1999. A function of synchronous chorusing and a novel female preference

shift in an anuran. Proceedings of the Royal Society B-Biological Sciences 266:

2331-2336.

Grafe, T.U., Saat, H.B.M., Hagen, N., Kaluza, B., Berudin, Z.B.H. & Wahab, M.A.B.A.

2008. Acoustic localisation of frog hosts by blood-sucking flies Corethrella

Coquillet (Diptera: Corethrellidae) in Borneo. Australian Journal of Entomology

47: 350-354.

Grafe, T.U., Preininger, D., Sztatecsny, M., Kasah, R., Dehling, J.M., Proksch, S. &

Hödl, W. 2012. Multimodal communication in a noisy environment: a case

study of the Bornean rock frog Staurois parvus. Plos One 7: e37965.

Grant, T., Bolivar, W. & Castro, F. 1998. The advertisement call of Centrolene

geckoideum. Journal of Herpetology 32: 452-455.

Guarnizo, C.E. 2011. Effect of topography on genetic divergence and phenotypic traits

in tropical frogs, The University of Texas at Austin. PhD: 98.

Guayasamin, J.M. & Bonaccorso, E. 2004. A new species of glass frog (Centrolenidae :

Cochranella) from the lowlands of northwestern Ecuador, with comments on the

Cochranella granulosa group. Herpetologica 60: 485-494.

Guayasamin, J.M., Bustamante, M.R., Almeida-Reinoso, D. & Funk, W.C. 2006. Glass

frogs (Centrolenidae) of Yanayacu Biological Station, Ecuador, with the

118

description of a new species and comments on centrolenid systematics.

Zoological Journal of the Linnean Society 147: 489-513.

Guayasamin, J.M., Castroviejo-Fisher, S., Trueb, L., Ayarzagüena, J., Rada, M. & Vilà,

C. 2009. Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and

their sister taxon Allophryne ruthveni. Zootaxa 2100: 1-97.

Guimarães, L.D., Lima, L.P., Juliano, R.F. & Bastos, R.P. 2001. Vocalizações de

espécies de anuros (Amphibia) no Brasil Central. Boletim do Museu Nacional,

Nova Série, Zoologia 474: 1-14.

Günther, R. & Richards, S.J. 2000. A new species of the Litoria gracilenta group from

Irian Jaya (Anura: Hylidae). Herpetozoa 13: 27-43.

Gururaja, K.V. & Ramachandra, T.V. 2006. Pedostibes tuberculosus (Malabar tree

toad) Advertisement call and distribution. Herpetological Review 37: 75-76.

Haddad, C.F.B., Pombal, J.P. & Batistic, R.F. 1994. Natural hybridization between

diploid and tetraploid species of leaf-frogs, genus Phyllomedusa (Amphibia).

Journal of Herpetology 28: 425-430.

Haddad, C.F.B. & Pombal Jr, J.P. 1995. A new species of Hylodes from Southeastern

Brazil (Amphibia: Leptodactylidae). Herpetologica 51: 279-286.

Haddad, C.F.B., Garcia, P.C.A. & Pombal Jr, J.P. 2003. Redescrição de Hylodes

perplicatus (Miranda-Ribeiro, 1926) (Amphibia, Anura, Leptodactylidae).

Arquivos do Museu Nacional 61: 245-254.

Halloy, M. & Espinosa, R.E. 2000. Territorial encounters and threat displays in the

neotropical frog Phyllomedusa sauvagii (Anura: Hylidae). Herpetological

Natural History 7: 175-180.

119

Hamer, A.J. & Organ, A.K. 2008. Aspects of the ecology and conservation of the

growling grass frog Litoria raniformis in an urban-fringe environment, Southern

Victoria. Australian Zoologist 34: 393-407.

Hampson, K. & Bennett, D. 2002. Advertisement Calls of Amphibians at Lackunda

Estate, Coorg, Karnataka. In: Frogs of Coorg, Karnataka, India, Vol. 11 (D.

Bennett, ed., pp. 121-135. Viper Press.

Harper, E.B., Measey, G.J., Patrick, D.A., Menegon, M. & Vonesh, J.R. 2010. Field

guide to the amphibians of the Eastern Arc Mountains and Coastal Forests of

Tanzania and . Camerapix Publishers International, Nairobi, Kenya.

Harper, F.A. 1955. A new chorus frog (Pseudacris) from the eastern United States.

Natural History Miscellanea Chicago Academic Sciences 150: 1-6.

Hepp, F.S., Luna-Dias, C.D., Gonzaga, L.P. & Carvalho-E-Silva, S.P.D. 2012.

Redescription of the advertisement call of Dendropsophus seniculus (Cope,

1868) and the consequences for the acoustic traits of the Dendropsophus

marmoratus species group (Amphibia: Anura: Dendropsophini). South

American Journal of Herpetology 7: 165-171.

Hettyey, A., Török, J. & Hévizi, G. 2005. Male mate choice lacking in the agile frog,

Rana dalmatina. Copeia 2005: 403-408.

Heyer, M.M., Heyer, W.R., Spear, S. & De Sá, R.O. 2003. Leptodactylus mystacinus

(Burmeister) mustached frog. Catalogue of American Amphibians and Reptiles

767: 1-11.

Heyer, W.R. 1970. Studies on the frogs of the genus Leptodactylus (Amphibia:

Leptodactylidae). 6. Biosystematics of the melanonotus group. Contributions in

Science, Los Angelis County Museum 191: 1-48.

120

Heyer, W.R. 1971. Mating calls of some frogs from Thailand. Fieldiana Zoology 58:

61-82.

Heyer, W.R. 1978. Systematics of the fuscus group of the frog genus Leptodactylus

(Amphibia, Leptodactylidae). Natural History Museum of Los Angeles County

29: 1-85.

Heyer, W.R. 1979. Systematics of the pentadactylus species group of the frog genus

Leptodactylus (Amphibia, Leptodactylidae. Smithsonian Institution Press,

Washington, D.C.

Heyer, W.R. 1980. The calls and taxonomic positions of Hyla giesleri and Ololygon

opalina (Amphibia: Anura: Hylidae). Proceedings of the Biological Society of

Washington 93: 655-661.

Heyer, W.R. 1982. Two new species of the frog genus Hylodes from Caparaó, Minas

Gerais, Brasil (Amphibia: Leptodactylidae). Proceedings of the Biological

Society of Washington 95: 377-385.

Heyer, W.R. 1983. Clarification of the names Rana mystacea Spix, 1824, Leptodactylus

amazonicus Heyer, 1978 and a description of a new species, Leptodactylus spixi

(Amphibia: Leptodactylidae). Proceedings of the Biological Society of

Washington 96: 270-272.

Heyer, W.R. & Cocroft, R.B. 1986. Descriptions of two new species of Hylodes from

the Atlantic Forests of Brazil (Amphibia: Leptodactylidae). Proceedings of the

Biological Society of Washington 99: 100-109.

Heyer, W.R., Rand, A.S., Cruz, C.A.G., Peixoto, O.L. & Nelson, C.E. 1990. Frogs of

Boracéia. Arquivos de Zoologia 31: 231-410.

121

Heyer, W.R. 1994. Variation within the Leptodactylus podicipinus-wagneri complex of

frogs (Amphibia: Leptodactylidae). Smithsonian Institution Press, Washington,

D.C.

Heyer, W.R., García-Lopez, J.M. & Cardoso, A.J. 1996. Advertisement call variation in

the Leptodactylus mystaceus species complex (Amphibia: Leptodactylidae) with

a description of a new sibling species. Amphibia-Reptilia 17: 7-31.

Heyer, W.R. 1998. The relationships of Leptodactylus diedrus (Anura,

Leptodactylidae). Alytes 16: 1-24.

Heyer, W.R. & de Carvalho, C.M. 2000. Calls and calling behavior of the frog

Leptodactylus natalensis (Amphibia : Anura : Leptodactylidae). Proceedings of

the Biological Society of Washington 113: 284-290.

Heyer, W.R. 2005. Variation and taxonomic clarification of the large species of the

Leptodactylus pentadactylus species group (Amphibia: Leptodactylidae) from

Middle America, Northern , and Amazonia. Arquivos de

Zoologia 37: 269-348.

Heyer, W.R. & Giaretta, A.A. 2009. Advertisement calls, notes on natural history, and

distribution of Leptodactylus chaquensis (Amphibia: Anura: Leptodactylidae) in

Brasil. Proceedings of the Biological Society of Washington 122: 292-305.

Hödl, W. 1990. Reproductive diversity in Amazonian lowland frogs. Fortschritte der

Zoologie 38: 41-60.

Hoskin, C.J. & Goosem, M.W. 2010. Road impacts on abundance, call traits, and body

size of rainforest frogs in Northeast Australia. Ecology and Society 15: 63-70.

Huang, W.S., Lee, J.K. & Ho, C.H. 2001. Reproductive patterns of two sympatric

rhacophorid frogs, Buergeria japonica and B. robusta, with comments on anuran

breeding seasons in Taiwan. Zoological Science 18: 63-70.

122

Hutter, C.R. & Guayasamin, J.M. 2012. A new cryptic species of glassfrog

(Centrolenidae: Nymphargus) from Reserva Las Gralarias, Ecuador. Zootaxa

3257: 1-21.

Ibáñez, R., Rand, A.S. & Jaramillo, C.A. 1999. Los anfibios del Monumento Natural

Barro Colorado, Parque Nacional Soberanía y áreas adyacentes. Editorial

Mizrachi & Pujol, Panama.

Inger, R.F. 1954. Systematics and zoogeography of Philippine Amphibia. Fieldiana

Zoology 39: 183-531.

Inger, R.F. 1964. Two new species of frogs from Borneo. Fieldiana Zoology 44: 151-

159.

Inger, R.F. & Bacon Jr, J.P. 1968. Annual reproduction and clutch size in rain forest

frogs from Sarawak. Copeia 1968: 602-606.

Inger, R.F. & Gritis, P.A. 1983. Variation in Bornean frogs of the Amolops jerboa

species group, with description of two new species. Fieldiana Zoology 19: 1-13.

Inger, R.F. & Stuebing, R.B. 2005. A Field Guide to the Frogs of Borneo, Kota

Kinabalu, Borneo.

Jacobson, S.K. 1985. Reproductive behavior and male mating success in two species of

glass frogs (Centrolenidae). Herpetologica 41: 396-404.

Jehle, R. & Arak, A. 1998. Graded call variation in the Asian cricket frog Rana

nicobariensis. Bioacoustics 9: 35-48.

Jiang, J., Xie, F., Fei, L., Ye, C. & Zheng, M. 2002. Mating calls of six forms of

pelobatid in Wawu Mountain national forest park, Sichuan, China (Anura:

Pelobatidae). Zoological Research / " Dong wu xue yan jiu" bian ji wei yuan hui

bian ji 23: 89-94.

123

Johnston, G.R. & Richards, S.J. 1994. A new species of Litoria (Anura: Hylidae) from

New Guinea and a redefinition of Litoria leucova (Tyler, 1968). Memoirs of the

Queensland Museum 37: 273-279.

Kadadevaru, G.G., Kanamadi, R.D. & Schneider, H. 2000. Advertisement call of the

Indian Bronzed Frog, Rana temporalis (Gunther, 1864). Herpetological Bulletin

73: 8-9.

Kaefer, I.L., Erdtmann, L.K. & Lima, A.P. 2011. The advertisement call of

Physalaemus ephippifer (Anura: Leiuperidae) from Brazilian Amazonia.

Zootaxa 2929: 57-58.

Kanamadi, R.D., Schneider, H., Hiremath, C.R. & Jirankali, C.S. 1993. Vocalization of

the tree frog Polypedates maculatus (Rhacophoridae). Journal of Biosciences

18: 239-245.

Kanamadi, R.D., Hiremath, C.R. & Schneider, H. 1994. Advertisement calls of two

anuran amphibians, Rana tigrina and Tomopterna breviceps Journal of

Biosciences 10: 75-80.

Kanamadi, R.D., Kadadevaru, G.G. & Schneider, H. 2001. Calling behaviour,

bioacoustics and distribution of a rhacophorid frog, Philautus variabilis

(Gunther, 1858). Amphibia-Reptilia 22: 365-372.

Kasuya, E., Kumaki, T. & Saito, T. 1992. Vocal Repertoire of the Japanese Treefrog,

Rhacophorus arboreus (Anura: Rhacophoridae). Zoological Science 9: 469-473.

Khan, M.S. 1997. A new of common skittering frog Euphlyctis

cyanophlyctis (Schneider, 1799) from Balochistan, Pakistan. Pakistan Journal of

Zoology 29: 107-112.

124

Khonsue, W., Matsui, M., Hirai, T. & Misawa, Y. 2001. A comparison of age structures

in two populations of a pond frog Rana nigromaculata (Amphibia : Anura).

Zoological Science 18: 597-603.

Kime, N.M., Turner, W.R. & Ryan, M.J. 2000. The transmission of advertisement calls

in Central American frogs. Behavioral Ecology 11: 71-83.

Kizirian, D., Coloma, L.A. & Paredes-Recalde, A. 2003. A new treefrog (Hylidae :

Hyla) from southern Ecuador and a description of its antipredator behavior.

Herpetologica 59: 339-349.

Köhler, J., Reichle, S. & Peters, G. 1997. Advertisement calls of three species of Bufo

(Amphibia: Anura: Bufonidae) from lowland Bolivia. Stuttgarter Beiträger zur

Naturkunde, Serie A (Biologie) 562: 1-8.

Köhler, J. & Lötters, S. 1999a. Advertisement calls of two Bolivian Leptodactylus

(Amphibia : Anura : Leptodactylidae). Amphibia-Reptilia 20: 215-219.

Köhler, J. & Lötters, S. 1999b. Annotated list of amphibian records from the

Departamento Pando, Bolivia, with description of some advertisement calls.

Bonner Zoologische Beiträege 48: 259-273.

Köhler, J., Scheelke, K., Schick, S., Veith, M. & Lötters, S. 2005. Contribution to the

taxonomy of hyperoliid frogs (Amphibia : Anura : Hyperoliidae): advertisement

calls of twelve species from East and Central Africa. African Zoology 40: 127-

142.

Kok, P.J.R. & Castroviejo-Fisher, S. 2008. Glassfrogs (Anura : Centrolenidae) of

Kaieteur National Park, Guyana, with notes on the distribution and taxonomy of

some species of the family in the Guiana Shield. Zootaxa 1680: 25-53.

Kolenc, F., Borteiro, C., Baldo, D., Ferraro, D.P. & Prigioni, C. 2009. The tadpoles and

advertisement calls of Pleurodema bibroni Tschudi and Pleurodema kriegi

125

(Muller), with notes on their geographic distribution and conservation status

(Amphibia, Anura, Leiuperidae). Zootaxa 1969: 1-35.

Kraus, F. & Allison, A. 2004. Two new treefrogs from Normanby Island, Papua New

Guinea. Journal of Herpetology 38: 197-207.

Kraus, F. 2012. Identity of Nyctimystes cheesmani (Anura: Hylidae), with description of

two new related species. Zootaxa 3493: 1-26.

Krishna, S.N. & Krishna, S.B. 2005. Female courtship calls of the litter frog (Rana

curtipes) in the tropical forests of , South India. Amphibia-

Reptilia 26: 431-435.

Kueh, B.H., Ismail, N., Lau, C.E.S., Albert, J., Siwan, E.S. & Ngidang, V.B.A. 2010.

Rana Luctuosa (Mahogany Frog). Altitude and maximum size. Herpetological

Review 41: 341-342.

Kuramoto, M. 1980. Mating calls of treefrogs (genus Hyla) in the far east, with

description of a new species from Korea. Copeia 1980: 100-108.

Kuramoto, M. 1986. Call structures of the rhacophorid frogs from Taiwan. Scientific

Report of the Laboratory for Amphibian Biology, Hiroshima University 8: 45-

68.

Kuramoto, M. & Wang, C.S. 1987. A new rhacophorid treefrog from Taiwan, with

comparisons to Chirixalus eiffingeri (Anura, Rhacophoridae). Copeia 1987:

931-942.

Kuramoto, M. & Joshy, S.H. 2001. Advertisement call structures of frogs from

Southwestern India, with some ecological and taxonomic notes. Current

Herpetology 20: 85-95.

126

Kuramoto, M., Joshy, S.H., Kurabayashi, A. & Sumida, M. 2007. The genus Fejervarya

(Anura: Ranidae) in central Western Ghats, India, with descriptions of four new

cryptic species. Current Herpetology 26: 81-105.

Kurniati, H., Sumadijaya, A., Boonman, A. & Laksono, W.T. 2010. Ecology,

distribution and bio-acoustic of amphibians in degraded habitat, Indonesian

Institute of Science. Cibinong.

Kuzmin, S.L. & Ischenko, V.G. 1997. Skeletochronology of Bufo raddei from the Gobi

Desert. Journal of Herpetology 31: 306-309.

Kwet, A. & Faivovich, J. 2001. Proceratophrys bigibbosa species group (Anura :

Leptodactylidae), with description of a new species. Copeia 2001: 203-215.

Kwet, A., Solé, M., Miranda, T., Melchior, J., Naya, D. & Maneyro, R. 2002. First

record of Hyla albopunctata Spix, 1824 (Anura: Hylidae) in Uruguay, with

comments on the advertisement call. Boletín de la Asociación Herpetológica

Española 13: 15-19.

Kwet, A. & Baldo, D. 2003. Advertisement call of the leptodactylid frog

Proceratophrys avelinoi. Amphibia-Reptilia 24: 104-107.

Langone, J.A. 1990. Revalidación de Hyla uruguaya Schmidt, 1944 (Amphibia, Anura,

Hylidae). Comunicaciones Zoologicas del Museo de Historia Natural de

Montevideo 12: 1-9.

Lannoo, M. 2005. Amphibian declines: the conservation status of United States species.

University California Press, Berkeley.

Largen, M.J., Tandy, M. & Tandy, J. 1978. A new species of toad from the Rift Valley

of , with observations on the other species of Bufo (Amphibia Anura

Bufonidae) recorded from this country. Italian Journal of Zoology 1: 1-41.

127

Lascano, J.N. 2011. Description of the advertisement and distress call of Chacophrys

pierottii and comments on the advertisement call of Lepidobatrachus llanensis

(Anura: Ceratophryidae). Journal of Natural History 45: 2929–2938.

Lavilla, E.O., Vaira, M. & Ferrari, L. 2003. A new species of Elachistocleis (Anura :

Microhylidae) from the Andean Yungas of Argentina, with comments on the

Elachistocleis ovalis - E. bicolor controversy. Amphibia-Reptilia 24: 269-284.

Leary, C.J. 2001. Evidence of convergent character displacement in release

vocalizations of Bufo fowleri and Bufo terrestris (Anura; Bufonidae). Animal

Behaviour 61: 431-438.

Leclair, R. & Laurin, G. 1996. Growth and body size in populations of mink frogs Rana

septentrionalis from two latitudes. Ecography 19: 296-304.

Lee, J.C. 2000. A field guide to the amphibians and reptiles of the Maya world: the

lowlands of Mexico, Northern Guatemala, and Belize. Cornell University Press,

Ithaca.

Leenders, T. 2001. A guide to amphibians and reptiles of Costa Rica Zona Tropical,

Miami.

Lemmon, E.M., Lemmon, A.R., Collins, J.T. & Cannatella, D.C. 2008. A new North

American chorus frog species (Amphibia : Hylidae : Pseudacris) from the

South-central United States. Zootaxa 1675: 1-30.

León, J.R. 1969. The systematics of the frogs of the Hyla rubra group in Middle

America. University of Kansas Publications of the Museum of Natural History

18: 505-545.

Leong, T.M., Matsui, M., Yong, H.S. & Hamid, A.A. 2003. Revalidation of Rana

laterimaculata Barbour et Noble, 1916 from the synonymy of Rana baramica

Boettger, 1901. Current Herpetology 22: 17-27.

128

Lesbarrères, D. & Lodé, T. 2002. Variations in male calls and responses to an

unfamiliar advertisement call in a territorial breeding anuran, Rana dalmatina:

evidence for a "dear enemy" effect. Ethology Ecology & Evolution 14: 287-295.

Lescure, J. & Marty, C. 2000. Atlas des amphibiens de Guyane. Publications

Scientifiques du M.N.H.N., Paris.

Liao, W.B. & Lu, X. 2011. Male mating success in the Omei treefrog (Rhacophorus

omeimontis): the influence of body size and age. Belgian Journal of Zoology

141: 3-10.

Lima, A.P., Magnusson, W.E., Menin, M., Erdtmann, L.K., Rodrigues, D.J., Keller, C.

& Hödl, W. 2006. Guia de Sapos da Reserva Adolpho Ducke: Amazônia Central

Áttema Design Editorial, Manaus.

Lima, L.P., Bastos, R.P. & Giaretta, A.A. 2004. A new Scinax Wagler, 1830 of the S.

rostratus group from Central Brazil (Amphibia, Anura, Hylidae). Arquivos do

Museu Nacional 62: 505-512.

Lingnau, R. & Bastos, R.P. 2003. Vocalizações de duas espécies de anuros do sul do

Brasil (AMPHIBIA: HYLIDAE). Arquivos do Museu Nacional 61: 203-207.

Lingnau, R. 2009. Distribuição temporal, atividade reprodutiva e vocalizações em uma

assembleia de anfíbios anuros de uma Floresta Ombrófila Mista em Santa

Catarina, sul do Brasil, Pontifícia Universidade Católica do Rio Grande do Sul.

PhD: 94.

Lingnau, R., Zank, C., Colombo, P. & Kwet, A. 2013. Vocalization of Hylodes

meridionalis (Mertens 1927) (Anura, Hylodidae) in Rio Grande do Sul, Brazil,

with comments on nocturnal calling in the family Hylodidae. Studies on

Neotropical Fauna and Environment 48: 76-80.

129

Lisboa, E.B.F., Moura, G.J.B., Melo, I.V.C., Andrade, E.V.E. & Figuerêdo Jr., J.M.

2011. Aspectos ecológicos de Hypsiboas semilineatus (SPIX, 1824)

(AMPHIBIA, ANURA, HYLIDAE) em fragmento de Mata Atlântica, nordeste

do Brasil. Revista Ibero-Americana de Ciências Ambientais, Aquidabã 2: 21-30.

Littlejohn, M.J. & Martin, A.A. 1965. A new species of Crinia (Anura:

Leptodactylidae) from South Australia. Copeia 1965: 319-324.

Littlejohn, M.J. & Harrison, P.A. 1985. The functional significance of the diphasic

advertisement call of Geocrinia victoriana (Anura: Leptodactylidae). Behavioral

Ecology and Sociobiology 16: 363-373.

Liu, C.C. 1950. Amphibians of Western China. Chicago Natural History Museum,

Chicago.

Liu, W.Z., Yang, D.T., Ferraris, C. & Matsui, M. 2000. Amolops bellulus: A new

species of stream-breeding frog from western Yunnan, China (Anura : Ranidae).

Copeia 2000: 536-541.

Lizana, M., Marquez, R. & Martinsanchez, R. 1994. Reproductive biology of Pelobates

cultripes (Anura: Pelobatidae) in central Spain. Journal of Herpetology 28: 19-

27.

Lo Valvo, M. & Giacalone, G. 2013. Biometrical analyses of a Sicilian green toad, Bufo

siculus (Stock et al. 2008), population living in Sicily (Italy). International

Journal of Morphology 31: 681-686.

Loftus-Hills, J.J. & Littlejohn, M.J. 1992. Reinforcement and reproductive character

displacement in Gastrophryne carolinensis and G. olivacea (Anura:

Microhylidae): a reexamination. Evolution 46: 896-906.

130

Lötters, S., Glaw, F., Reichle, S., Köhler, J. & Meyer, E. 1999. Notes on vocalizations

in three species of Atelopus from Central and South America (Amphibia:

Anura). Herpetozoa 12: 79-83.

Lötters, S., Haas, W., Schick, S. & Böhme, W. 2002. On the systematics of the

harlequin frogs (Amphibia: Bufonidae: Atelopus) from Amazonia. II:

Redescription of Atelopus pulcher (Boulenger, 1882) from the eastern Andean

versant in Peru. Salamandra 38: 164-184.

Lue, K.Y. 1990. The amphibians and reptiles of Taiwan Society for Wildelife and

Nature, Taipei, Taiwan.

Lutz, B. 1973. Brazilian species of Hyla. University of Texas Press, Austin.

Lynch, J.D. & Freeman, H.L. 1966. Systematic status of a South American frog,

Allophryne ruthveni Gaige. University of Kansas Publications of the Museum of

Natural History 17: 493-502.

Lynch, J.D. 1970. Systematic status of the American leptodactylid frog genera

Engystomops, Eupemphix, and Physalaemus. Copeia 1970: 488-406.

Lynch, J.D. & Duellman, W.E. 1973. A review of the Centrolenid frogs of Ecuador,

with descriptions of new species. Occasional Papers of the Museum of Natural

History, The University of Kansas 16: 1-66.

Lynch, J.D., Ruiz, P.M. & Rueda, J.V. 1983. Notes on the distribution and reproductive

biology of Centrolene geckoideum Jimenez de la Espada in Colombia and

Ecuador (Amphibia: Centrolenidae). Studies on Neotropical Fauna and

Environment 18: 239-243.

Maeda, N. & Matsui, M. 1990. Frogs and Toads of Japan. Bun-Ichi Sogo Shuppan,

Tokyo.

131

Maldonado, A.L.S. 2012. Cuidado parental y selección sexual en Centrolene

peristictum (Anura: Centrolenidae) Pontificia Universidad Católica del Ecuador.

Master.

Malkmus, R., Manthey, U., Vogel, G., Hoffmann, P. & Kosuch, J. 2002. Amphibians &

reptiles of Mount Kinabalu (North Borneo). Koeltz Scientific Books, Berlin.

Malkmus, R. 2006. Leptobrachium gunungensis sp. n.(Anura: Pelobatidae) vom Mount

Kinabalu, Nord-Borneo. Mitteilungen aus dem Museum für Naturkunde in

Berlin. Zoologisches Museum und Institut für Spezielle Zoologie (Berlin) 72:

271-301.

Mângia, S., Santana, D.J. & Feio, R.N. 2010. Advertisement call of the cycloramphid

toad Proceratophrys melanopogon (Miranda-Ribeiro, 1926). South American

Journal of Herpetology 5: 127-131.

Manthey, U. & Grossmann, W. 1997. Amphibien und Reptilien Südostasiens. Natur und

Tier Verlag, Münster, Germany.

Marcelino, V.R., Haddad, C.F.B. & Alexandrino, J. 2009. Geographic distribution and

morphological variation of striped and nonstriped populations of the Brazilian

Atlantic Forest treefrog Hypsiboas bischoffi (Anura: Hylidae). Journal of

Herpetology 43: 351-361.

Marquez, R., De la Riva, I. & Bosch, J. 1995. Advertisement calls of Bolivian

Leptodactylidae (Amphibia, Anura). Journal of Zoology 237: 313-336.

Márquez, R., Delariva, I. & Bosch, J. 1993. Advertisement calls of Bolivian species of

Hyla (Amphibia, Anura, Hylidae). Biotropica 25: 426-443.

Márquez, R. 1995. Female choice in the midwife toads (Alytes obstetricans and A.

cisternasii). Behaviour 132: 151-161.

132

Márquez, R. & Eekhout, X.R. 2006. Advertisement calls of six species of anurans from

Bali, Republic of Indonesia. Journal of Natural History 40: 571-588.

Martino, A.L. & Sinsch, U. 2002. Speciation by polyploidy in Odontophrynus

americanus. Journal of Zoology 257: 67-81.

Martins, I.A. & Jim, J. 2003. Bioacoustic analysis of advertisement call in Hyla nana

and Hyla sanborni (Anura, Hylidae) in Botucatu, São Paulo, Brazil região de

Botucatu, Estado de São Paulo, Brasil. Brazilian Journal of Biology 63: 507-

516.

Martins, L.B. & Giaretta, A.A. 2013. Morphological and acoustic characterization of

Proceratophrys goyana (Lissamphibia: Anura: Odontophrynidae), with the

description of a sympatric and related new species. Zootaxa 3750: 301-320.

Martins, M. 1998. The frogs of the Ilha de Maracá. Maraca: The Biodiversity and

Emvironment of an Amazonian Rainforest. John Wiley & Sons Ltd., New York.

Matsui, M. 1982a. Call characteristics of several anuran species from East Kalimantan.

Contributions from the Biological Laboratory, Kyoto University 26: 131-139.

Matsui, M. 1982b. Amphibians from Sabah II. Acoustic characteristics of three

common anuran species. Contributions from the Biological Laboratory, Kyoto

University 26: 123-129.

Matsui, M. & Utsunomiya, T. 1983. Mating call characteristics of the frogs of the

subgenus Babina with reference to their relationship with Rana adenopleura.

Journal of Herpetology 17: 32-37.

Matsui, M. 1986. Three new species of Amolops from Borneo (Amphibia, Anura,

Ranidae). Copeia 1986: 623-630.

133

Matsui, M., Wu, G.F. & Yong, H.S. 1993. Acoustitic characteristics of three species of

the genus Amolops (Amphibia, Anura, Ranidae). Zoological Science 10: 691-

695.

Matsui, M. 1994. A taxonomic study of the Rana narina complex, with description of

three new species (Amphibia: Ranidae). Zoological Journal of the Linnean

Society 111: 385-415.

Matsui, M. & Wu, G.F. 1994. Acoustic characteristics of treefrogs from Sichuan, China,

with comments on systematic relationship of Polypedates and Rhacophorus

(Anura, Rhacophoridae). Zoological Science 11: 485-490.

Matsui, M. 1995. Calls produced by a ''voiceless'' frog, Rana blythi Boulenger 1920,

from Peninsular Malaysia (Amphibia Anura). Tropical Zoology 8: 325-331.

Matsui, M. 1997. Call characteristics of Malaysian Leptolalax with a description of two

new species (Anura: Pelobatidae). Copeia 1997: 158-165.

Matsui, M. & Nabhitabhata, J. 2006. A new species of Amolops from Thailand

(Amphibia, Anura, Ranidae). Zoological Science 23: 727-732.

Matsui, M., Mohamed, M., Shimada, T. & Sudin, A. 2007. Resurrection of Staurois

parvus from S. tuberilinguis from Borneo (Amphibia, Ranidae). Zoological

Science 24: 101-106.

Mendelson III, J.R., Williams, B.L., Sheil, C.A. & Mulcahy, D.G. 2005. Systematics of

the Bufo coccifer complex (Anura: Bufonidae) of Mesoamerica. Scientific

Papers Natural History Museum, The University of Kansas 38: 1-27.

Menzies, J.I. & Zweifel, R.G. 1974. Systematics of Litoria arfakiana of New Guinea

and sibling species (Salientia, Hylidae). American Museum Novitates 2558: 1-

16.

134

Minton, S.A. 1966. A contribution to the herpetology of West Pakistan. Bulletin of the

American Museum of Natural History 134: 27-184.

Mu, Y. & Zhao, E. 1990. Mating Call Structures of the Chinese Frog, Rana

nigromacula (Amphibia, Anura, Ranidae). Asiatic Herprtological Research 3:

60-63.

Myers, C.W. & Donnelly, M.A. 1997. A tepui herpetofauna on a granitic mountain

(Tamacuari) in the borderland between Venezuela and Brazil: report from the

Phipps Tapirapecó Expedition. American Museum Novitates 3213: 1-71.

Myers, C.W. & Donnelly, M.A. 2001. Herpetofauna of the Yutaje-Corocoro massif,

Venezuela: Second report from The Robert G. Goelet American Museum-

terramar expedition to the Northwestern Tepuis. Bulletin of the American

Museum of Natural History 261: 1-85.

Napoli, M.F. & Caramaschi, U. 1999. Geographic variation of Hyla rubicundula and

Hyla anataliasiasi, with the description of a new species (Anura, Hylidae).

Alytes 16: 165-189.

Nelson, C. 1963. Gastrophyrne elegans (Boulenger). Elegant Narrow-mouthed Toad.

Catalogue of American Amphibians and Reptiles, American Society of

Ichthyologists and Herpetologists.

Nelson, C.E. 1973. Mating calls of the Microhylinae: descriptions and phylogenetic and

ecological considerations. Herpetologica 29: 163-176.

Nguyen, T.Q., Phung, T.M., Le, M.D., Ziegler, T. & Böhme, W. 2013. First record of

the genus Oreolalax (Anura: Megophryidae) from Vietnam with description of a

new species. Copeia 2013: 213-222.

135

Noonan, B.P. & Bonett, R.M. 2003. A new species of Hyalinobatrachium (Anura :

Centrolenidae) from the highlands of Guyana. Journal of Herpetology 37: 91-

97.

Norman, D.R. 1994. Anfibios y reptiles del Chaco Paraguayo. Private printing, San

José, Costa Rica.

Nunes, I. & Juncá, F.A. 2006. Advertisement calls of three Leptodactylid frogs in the

state of Bahia, northeastern Brazil (Amphibia, Anura, Leptodactylidae), with

considerations on their taxonomic status. Arquivos do Museu Nacional 64: 151-

157.

Nunes, I., Santiago, R.S. & Juncá, F.A. 2007. Advertisement calls of four Hylid frogs

from the state of Bahia, Northeastern Brazil (Amphibia, Anura, Hylidae). South

American Journal of Herpetology 2: 89-96.

Odendaal, F.J., Bull, C.M. & Telford, S.R. 1983. The vocabulary of calls of Ranidella

riparia (Anura: Leptodactylidae). Copeia 1983: 534-537.

Ohler, A., Marquis, O., Swan, S. & Grosjean, S. 2000. Amphibian biodiversity of

Hoang Lien Nature Reserve (Lao Cai Province, northern Vietnam) with

description of two new species. Herpetozoa 13: 71-87.

Ohler, A. & Delorme, M. 2006. Well known does not mean well studied:

Morphological and molecular support for existence of sibling species in the

Javanese gliding frog Rhacophorus reinwardtii (Amphibia, Anura). Comptes

Rendus Biologies 329: 86-97.

Ohler, A., Wollenberg, K.C., Grosjean, S., Hendrix, R., Vences, M., Ziegler, T. &

Dubois, A. 2011. Sorting out Lalos: description of new species and additional

taxonomic data on megophryid frogs from Northern Indochina (genus

Leptolalax, Megophryidae, Anura). Zootaxa 3147: 1-83.

136

Oldham, R.S. & Gerhardt, H.C. 1975. Behavioral isolating mechanisms of the treefrogs

Hyla cinerea and H. gratiosa. Copeia 1975: 223-231.

Oliveira, M.E., Paillette, M., Rosa, H.D. & Crespo, E.G. 1991. A natural hybrid

between Hyla arborea and Hyla meridionalis detected by mating calls.

Amphibia-Reptilia 12: 15-20.

Ortega-Andrade, H.M. 2008. Agalychnis spurrelli Boulenger (Anura, Hylidae):

variación, distribución y sinonimia. Papéis Avulsos de Zoologia (São Paulo) 48:

103-117.

Ortega-Andrade, H.M., Rojas-Soto, O. & Paucar, C. 2013. Novel data on the ecology of

Cochranella mache (Anura: Centrolenidae) and the importance of protected

preas for this critically endangered glassfrog in the Neotropics. Plos One 8:

e8137.

Owen, P.C. & Tucker, J.K. 2006. Courtship calls and behavior in two species of chorus

frogs, genus Pseudacrs (Anura : Hylidae). Copeia 2006: 137-144.

Palma, C.C.C. 2013. Analisis taxonomico de Alsodes nodosus (Dumeril & Bibron,

1841) (amphibia, neobatrachia): antecedentes morfologicos y moleculares

Universidad Austral do Chile. Chile. PhD: 126.

Parker, H.W. 1934. A monograph of the frogs of the family Microhylidae. Trustees of

the British Museum, London.

Parker, H.W. 1940. XXII.—Undescribed anatomical structures and new species of

reptiles and amphibians. The Annals and Magazine of Natural History 5: 257-

274.

Passmore, N.I. & Carruthers, V.C. 1975. A new species of Tomopterna (Anura:

Ranidae) from the Kruger National Park, with notes on related species. Koedoe-

African Protected Area Conservation and Science 18: 31-50.

137

Pavan, D., Narvaes, P. & Rodrigues, M.T. 2001. A new species of leptodactylid frog

from the Atlantic Forests of South Eastern Brazil with notes on the status and on

the speciation of the Hylodes species groups. Papéis Avulsos de Zoologia (São

Paulo) 41: 407-425.

Peloso, P.L.V. & Sturaro, M.J. 2008. A new species of narrow-mouthed frog of the

genus Chiasmocleis Mehely 1904 (Anura, Microhylidae) from the Amazonian

rainforest of Brazil. Zootaxa 1947: 39-52.

Penna, M., Contreras, S. & Veloso, A. 1983. Acoustical repertoires and morphological

differences in the ear of two Alsodes species (Amphibia: Leptodactylidae).

Canadian Journal of Zoology 61: 2369-2376.

Penna, M. & Veloso, A. 1990. Vocal diversity in frogs of the South American temperate

forest. Journal of Herpetology 24: 23-33.

Penna, M. & Solis, R. 1998. Frog call intensities and sound propagation in the South

American temperate forest region. Behavioral Ecology and Sociobiology 42:

371-381.

Penna, M. & Meier, A. 2011. Vocal strategies in confronting interfering sounds by a

frog from the Southern Temperate Forest, Batrachyla antartandica. Ethology

117: 1147-1157.

Pereyra, M.O., Borteiro, C., Baldo, D., Kolenc, F. & Conte, C.E. 2012. Advertisement

call of the closely related species Scinax aromothyella Faivovich 2005 and S.

berthae (Barrio 1962), with comments on the complex calls in the S. catharinae

group. Herpetological Journal 22: 133-137.

Perret, J.L. 1996. Une nouvelle espèce du genre Ptychadena (Anura, Ranidae) du

Kenya. Revue Suisse de Zoologie 103: 757-766.

138

Peters, W.C.H. 1869. Über neue Saurier (Chaunolaemus multicarinatus,

Tropidolepisma Richardi und Gymnodactylus steudneri) und Batrachier

(Cyclorhamphus fasciatus und Hyla gracilenta). Monatsberichte der

Königlichen Preussische Akademie des Wissenschaften zu Berlin 1869: 786-790.

Peters, W.C.H. & Doria, G. 1878. Catalogo dei rettili e dei batraci raccolti da O.

Beccari, L.M. D’Albertis e A.A. Bruijn nella sotto-regione Austro-Malese.

Annali del Museo Civico di Storia Naturale di Genova 13: 323-450.

Pfennig, K.S. 2000. Female spadefoot toads compromise on mate quality to ensure

conspecific matings. Behavioral Ecology 11: 220-227.

Pfennig, K.S. & Pfennig, D.W. 2005. Character displacement as the "best of a bad

situation": Fitness trade-offs resulting from selection to minimize resource and

mate competition. Evolution 59: 2200-2208.

Pickersgill, M. 2005. The taxonomy and ethology of the Afrixalus stuhlmanni complex

(Anura: Hyperoliidae). Steenstrupia 29: 1-38.

Pimenta, B.V.S., Nunes, I. & Cruz, C.A.G. 2007. Notes on the poorly known

phyllomedusine frog Hylomantis aspera Peters, 1872 (Anura, Hylidae). South

American Journal of Herpetology 2: 206-214.

Pombal, J.P. & Haddad, C.F.B. 1999. Frogs of the genus Paratelmatobius (Anura :

Leptodactylidae) with descriptions of two new species. Copeia 1999: 1014-

1026.

Pombal Jr., J.P. & Haddad, C.F.B. 1992. Espécies de Phyllomedusa do grupo

burmeisteri do Brasil oriental, com descrição de uma espécie nova (Amphibia,

Hylidae). Revista Brasileira de Biologia 52: 217-229.

Pombal Jr., J.P. 2010. O espaço acústico em uma taxocenose de anuros (Amphibia) do

sudoeste do Brasil. Arquivos do Museu Nacional 68: 135-144.

139

Pombal Jr., P., Feio, R.N. & Haddad, C.F.B. 2002. A new species of torrent frog genus

Hylodes (Anura : Leptodactylidae) from Southeastern Brazil. Herpetologica 58:

462-471.

Porter, K.R. 1966. Mating calls of six Mexican and Central American toads (genus

Bufo). Herpetologica 22: 60-67.

Prado, G.M., Borgo, J.H., Abrunhosa, P.A. & Wogel, H. 2003. Comportamento

reprodutivo, vocalização e redescrição do girino de Phrynohyas mesophaea

(Hensel, 1867) do sudeste do Brasil (Amphibia, Anura, Hylidae). Boletim do

Museu Nacional do Rio de Janeiro 510: 1-11.

Prado, G.M. & Pombal Jr, J.P. 2008. Espécies de Proceratophrys Miranda-Ribeiro,

1920 com apêndices palpebrais (Anura; Cycloramphidae). Arquivos de Zoologia

39: 1-85.

Prakash, S. 1988. Genetic studies on Rana limnocharis, North Eastern Hill University.

Shillong, India.

Preininger, D., Böckle, M. & Hödl, W. 2007. Comparison of anuran acoustic

communities of two habitat types in the Danum Valley Conservation Area,

Sabah, Malaysia. Salamandra 32: 129-138.

Provete, D.B., Garey, M.V., Toledo, L.F., Nascimento, J., Lourenco, L.B., Rossa-Feres,

D.d.C. & Haddad, C.F.B. 2012. Redescription of Physalaemus barrioi (Anura:

Leiuperidae). Copeia 2012: 507-518.

Pyburn, W.F. 1977. A new hylid frog (Amphibia, Anura, Hylidae) from the Vaupes

River of Colombia with comments on related species. Journal of Herpetology

11: 405-410.

140

Richards, S.J. & Oliver, P.M. 2006. A new species of torrent-dwelling Litoria (Anura:

Hylidae) from the Kikori Integrated Conservation and Development Project

area, Papua New Guinea. Salamandra 42: 231-238.

Roberts, J.D., Mahony, M., Kendrick, P. & Majors, C.M. 1991. A new species of

burrowing frog, Neobatrachus (Anura: Myobatrachidae), from the Eastern

wheatbelt of Western Australia. Records of the Western Australian Museum 15:

23-32.

Roberts, J.D. 1997a. Geographic variation in calls of males and determination of species

boundaries in tetraploid frogs of the Australian genus Neobatrachus

(Myobatrachidae). Australian Journal of Zoology 45: 95-112.

Roberts, J.D. 1997b. Call evolution in Neobatrachus (Anura : Myobatrachidae):

Speculations on tetraploid origins. Copeia 1997: 791-801.

Robertson, J.G.M. 1986. Female choice, male strategies and the role of vocalizations in

the Australian frog Uperoleia rugosa. Animal Behaviour 34: 773-784.

Rödel, M.O. 2000. Herpetofauna of West Africa, Vol. I. Amphibians of the West African

Savanna. Edition Chimaira, Frankfurt, Germany.

Rodrigues, D.D.J., Uetanabaro, M. & Lopes, F.S. 2004. Reproductive strategies of

Physalaemus nattereri (Steindachner, 1863) and P. albonotatus (Steindachner,

1864) at Serra da Bodoquena, State of Mato Grosso do Sul, Brazil. Revista

Española de Herpetología 18: 63-73.

Rodrigues, D.J., Uetanabaro, M. & Lopes, F.S. 2007. Breeding biology of

Phyllomedusa azurea Cope, 1862 and P. sauvagii Boulenger, 1882 (Anura)

from the Cerrado, Central Brazil. Journal of Natural History 41: 1841-1851.

141

Rodrigues, D.J., Menin, M., Lima, A.P. & Mokross, K.S. 2008. Tadpole and

vocalizations of Chiasmocleis hudsoni (Anura, Microhylidae) in Central

Amazonia, Brazil. Zootaxa 1680: 55-58.

Rodrigues, D.J., Noronha, J.D.C., Lima, M.M. & Rosa, A.C. 2011. Amphibia, Anura,

Hylidae, Phyllomedusa boliviana Boulenger, 1902 and Phyllomedusa camba De

la Riva, 2000: Distribution extension in central Brazil. Check List 7: 397-399.

Rodrigues, V.H. 2009. Aspectos da transmissão e processamento de informação em

canto de anuros, Universisdade de São Paulo. Master: 100.

Rodríguez, L.O. & Duellman, W.E. 1994. Guide to the frogs of the Iquitos region,

Amazonian Peru. The University of Kansas Natural History Museum Special

Publication.

Roelke, C.E., Greenbaum, E., Kusamba, C., Aristote, M.M. & Smith, E.N. 2011.

Systematics and conservation status of two distinct albertine Rift Treefrogs,

Leptopelis karissimbensis and Leptopelis kivuensis (Anura: Arthroleptidae).

Journal of Herpetology 45: 343-351.

Rojas-Runjaic, F.J., Infante-Rivero, E.E. & Cabello, P. 2012. New records and

distribution extensions of centrolenid frogs for Venezuela. Check List 8: 819-

825.

Ron, S.R., Cannatella, D.C. & Coloma, L.A. 2004. Two new species of Physalaemus

(Anura : Leptodactylidae) from Western Ecuador. Herpetologica 60: 261-275.

Ron, S.R., Coloma, L.A. & Cannatella, D.C. 2005. A new, cryptic species of

Physalaemus (Anura : Leptodactylidae) from western Ecuador with comments

on the call structure of the P. pustulosus species group. Herpetologica 61: 178-

198.

142

Rosset, S.D., Ferraro, D.P., Alcalde, L. & Basso, N.G. 2007. A revision of

Odontophrynus barrioi (Anura: Neobatrachia): morphology, osteology,

vocalizations, and geographic distribution. South American Journal of

Herpetology 2: 97-106.

Roy, D. & Elepfandt, A. 1993. Bioacoustic analysis of frog calls from northeast India.

Journal of Biosciences 18: 381-393.

Roy, D., Borah, B. & Sarma, A. 1995. Analysis and significance of female reciprocal

call in frogs. Current Science 69: 265-270.

Ruiz-Carranza, P.M. & Lynch, J.D. 1991. Ranas Centrolenidae de Colombia III:

Nuevas especies de Cochranella del grupo granulosa. Lozania 59: 1-18.

Ryan, M.J. 1983. Sexual selection and communication in a Neotropical frog,

Physalaemus pustulosus. Evolution 37: 261-272.

Ryan, M.J. & Drewes, R.C. 1990. Vocal morphology of the Physalaemus pustulosus

species group (Leptodactylidae): morphological response to sexual selection for

complex calls. Biological Journal of the Linnean Society 40: 37-52.

Salas, N.E. & Di Tada, I.E. 1988. Análisis bioacústico del canto nupcial de poblaciones

de Odontophrynus achalensis y O. occidentalis (Anura: Leptodactylidae) en la

Provincia de Córdoba. Boletín de La Asociación Herpetológica Argentina 4: 1.

Salas, N.E., Zavattieri, M.V., Di Tada, I.E., Martino, A.L. & Bridarolli, M.E. 1998.

Bioacoustical and etho-ecological features in amphibian communities of

southern Cordoba Province (Argentina). Cuadernos de Herpetolgia 12: 37-46.

Santana, D.J., São-Pedro, V.d.A., Bernarde, P.S. & Feio, R.N. 2010. Descrição do canto

de anúncio e dimorfismo sexual em Proceratophrys concavitympanum Giaretta,

Bernarde & Kokubum, 2000. Papéis Avulsos de Zoologia (São Paulo) 50: 167-

174.

143

São-Pedro, V.A., Medeiros, P.H. & Garda, A.A. 2011. The advertisement call of

Rhinella granulosa (Anura, Bufonidae). Zootaxa 3092: 60-62.

Savage, J.M. 1972. The harlequin frogs, genus Atelopus, of Costa Rica and Western

Panama. Herpetologica 28: 77-94.

Savage, J.M. 2002. The amphibians and reptiles of Costa Rica: a herpetofauna between

two continents, between two seas. University of Chicago Press.

Schawrtz, A. 1957. Chorus frogs (Pseudacris nigrita LeConte) in South Carolina.

American Museum Novitates 1838: 1-12.

Schawrtz, A. 1959. A new species of toad, Bufo cataulaciceps, from the Isla de Pinos

and western Cuba. Proceedings of the Biological Society of Washington 72:

109-120.

Schawrtz, A. 1972. The native toads (Anura, Bufonidae) of Hispaniola. Journal of

Herpetology 6: 217-231.

Schiøtz, A. 1999. Treefrogs of Africa Ed. Chimaira.

Schneider, H. 1974. Structure of the mating calls and relationships of the European tree

frogs (Hylidae, Anura). Oecologia 14: 99-110.

Señaris, J.C. & Ayarzagüena, J. 2001. Una nueva especie de rana de cristal del género

Hyalinobatrachium (Anura: Centrolenidae) del Delta del Río Orinoco,

Venezuela. Revista de Biologia Tropical 49: 1083-1093.

Señaris, J.C. & Ayarzagüena, J. 2005. Revisión taxonómica de la Familia Centrolenidae

(Amphibia; Anura) de Venezuela. Publicaciones del Comité Español del

Programa Hombre y Biosfera – Red IberoMaB de la UNESCO, Sevilla.

Shen, J.-X., Xu, Z.-M., Feng, A.S. & Narins, P.M. 2011. Large odorous frogs

(Odorrana graminea) produce ultrasonic calls. Journal of Comparative

144

Physiology A-Neuroethology Sensory Neural and Behavioral Physiology 197:

1027-1030.

Sheridan, J.A., Bickford, D. & Su, K.F.-Y. 2010. An examination of call and genetic

variation in three wide-ranging Southeast Asian anuran species. Raffles Bulletin

of Zoology 58: 369-379.

Silva, I.S.N. & Juncá, F.A. 2006. Evidence of full species status of the neotropical leaf-

frog Phyllomedusa burmeisteri bahiana (A. Lutz, 1925) (Amphibia, Anura,

Hylidae). Zootaxa 1113: 51-64.

Silva, R.A., Martins, I.A. & Rossa-Feres, D.d.C. 2008. Bioacústica e sítio de

vocalização em taxocenoses de anuros de área aberta no noroeste paulista. Biota

Neotropica 8: 123-134.

Sinsch, U., Luemkemann, K., Rosar, K., Schwarz, C. & Dehling, J.M. 2012. Acoustic

niche partitioning in an anuran community inhabiting an Afromontane wetland

(Butare, Rwanda). African Zoology 47: 60-73.

Smith, M. 1927. Contributions to the Herpetology of the Indo-Australian Region.

Proceedings of the Zoological Society of London 97: 199-226.

Starrett, P.H. & Savage, J.M. 1973. The systematic status and distribution of Costa

Rican glass-frogs, genus Centrolenella (Family Centrolenidae), with description

of a new species. Bulletin of the Southern California Academy of Sciences 72:

57-78.

Stejneger, L. 1926. Two new tailless amphibians from western China. Proceedings of

the Biological Society of Washington 39.

Stöck, M., Bretschneider, P. & Grosse, W.R. 2000. The mating call and male release

call of Bufo raddei Strauch, 1876 with some phylogenetic implications. Russian

Journal of Herpetology 7: 215-226.

145

Stöck, M., Sicilia, A., Belfiore, N.M., Buckley, D., Lo Brutto, S., Lo Valvo, M. &

Arculeo, M. 2008. Post-Messinian evolutionary relationships across the Sicilian

channel: Mitochondrial and nuclear markers link a new green toad from Sicily to

African relatives. Bmc Evolutionary Biology 8: 56.

Straneck, R., Olmedo, E.V. & Carrizo, G.R. 1993. Catalogo de voces de anfíbios

Argentinos. Parte 1. Ediciones Lola, Buenos Aires.

Strecker, J.K. 1910. Description of a new solitary spadefoot (Scaphiopus hurterii) from

Texas, with other herpetological notes. Proceedings of the Biological Society of

Washington 23.

Stuart, B.L. & Chan-Ard, T. 2005. Two new Huia (Amphibia : Ranidae) from Laos and

Thailand. Copeia 2005: 279-289.

Suazo-Ortuño, I., Alvarado-Díaz, J., Raya-Lemus, E. & Martinez-Ramos, M. 2007. Diet

of the Mexican marbled toad (Bufo marmoreus) in conserved and disturbed

tropical dry forest. Southwestern Naturalist 52: 305-309.

Sullivan, B.K. & Wagner Jr., W.E. 1988. Variation in advertisement and release calls,

and social influences on calling behavior in the Gulf Coast toad (Bufo valliceps).

Copeia 1988: 1014-1020.

Sullivan, B.K., Malmos, K.B., Gergus, E.W.A. & Bowker, R.W. 2000. Evolutionary

implications of advertisement call variation in Bufo debilis, B. punctatus, and B.

retiformis. Journal of Herpetology 34: 368-374.

Tárano, Z. 2010. Advertisement calls and calling habits of frogs from a flooded

of Venezuela. South American Journal of Herpetology 5: 221-240.

Taylor, R.C., Buchanan, B.W. & Doherty, J.L. 2007. Sexual selection in the squirrel

treefrog Hyla squirella: the role of multimodal cue assessment in female choice.

Animal Behaviour 74: 1753-1763.

146

Thomé, M.T.C. & Brasileiro, C.A. 2007. Dimorfismo sexual, uso do ambiente e

abundância sazonal de Elachistocleis cf. ovalis (Anura: Microhylidae) em um

remanescente de Cerrado no estado de São Paulo, sudeste do Brasil. Biota

Neotropica 7: 27-33.

Trueb, L. & Duellman, W.E. 1971. A synopsis of Neotropical hylid frogs, genus

Osteocephalus. Occasional Papers of the Museum of Natural History, The

University of Kansas 1: 1-47.

Tucker, J.K. 1998. Population status of the Illinois chorus frog (Pseudacris streckeri

illinoensis) in Madison County, Illinois: Results of 1998 Surveys, University of

Illinois

Tyler, M.J. & Martin, A.A. 1977. Taxonomic studies of some Australian leptodactylid

frogs of the genus Cyclorana Steindachner. South Australian Museum 17: 261-

276.

Tyler, M.J. & Davies, M. 1978. Species-groups within the Australopapuan hylid frog

genus Litoria Tschudi. Australian Journal of Zoology 26: 1-47.

Ueda, H. 1994. Mating calls of the pond frog species distributed in the Far East and

their artificial hybrids. Scientific Report of the Laboratory for Amphibian

Biology, Hiroshima University 13: 197-232.

Valetti, J.A., Salas, N.E. & Martino, A.L. 2013. Bioacoustic of the advertisement call of

Ceratophrys cranwelli (Anura: Ceratophryidae). Revista de Biologia Tropical

61: 273-280.

Van Beurden, E. & McDonald, K.R. 1980. A new species of Cyclorana (Anura:

Hylidae) from northern Queensland. Transactions of the Royal Society of South

Australia 104: 193-195.

147 van den Elzen, P. & Kreulen, D.A. 1979. Notes on the vocalisations of some

amphibians from the Serengeti National Park, . Bonner Zoologische

Beiträege 30: 385-403.

Van Kampen, P.N. 1923. The Amphibia of the Indo-Australian Archipelago E. J. Brill,

Leiden.

Vásquez, T. & Pfennig, K.S. 2007. Looking on the bright side: females prefer coloration

indicative of male size and condition in the sexually dichromatic spadefoot toad,

Scaphiopus couchii. Behavioral Ecology and Sociobiology 62: 127-135.

Vaz-Silva, W., Di-Bernardo, M., Guimarães, L.D.A. & Bastos, R.P. 2007. Territoriality,

agonistic behavior, and vocalization in Pseudis bolbodactylus A. Lutz, 1925

(Anura: Hylidae) from Central Brazil. Salamandra 43: 35-42.

Vejarano, S., Thomas, M., Glaw, F. & Vences, M. 2006. Advertisement call and tadpole

morphology of the clutch-guarding frog Mantidactylus argenteus from eastern

Madagascar. African Zoology 41: 164-169.

Vences, M., Glaw, F., Jesu, R. & Schimmenti, G. 2000. A new species of Heterixalus

(Amphibia : Hyperoliidae) from Western Madagascar. African Zoology 35: 269-

276.

Vences, M., Andreone, F., Glaw, F., Raminosoa, N., Randrianirina, J.E. & Vieites, D.R.

2002. Amphibians and reptiles of the Ankaratra Massif: reproductive diversity,

biogeography and conservation of a montane fauna in Madagascar. Italian

Journal of Zoology 69: 263-284.

Vences, M. & Glaw, F. 2002. Two new treefrogs of the Boophis rappiodes group from

eastern Madagascar (Amphibia Mantellidae). Tropical Zoology 15: 141-163.

148

Vences, M., Raxworthy, C.J., Nussbaum, R.A. & Glaw, F. 2003. A revision of the

Scaphiophryne marmorata complex of marbled toads from Madagascar,

including the description of a new species. Herpetological Journal 13: 69-79.

Vences, M. & Glaw, F. 2004. Revision of the subgenus Chonomantis (Anura :

Mantellidae : Mantidactylus) from Madagascar, with description of two new

species. Journal of Natural History 38: 77-118.

Vilaça, T.R.A., Silva, J.R.D.S. & Solé, M. 2011. Vocalization and territorial behaviour

of Phyllomedusa nordestina Caramaschi, 2006 (Anura: Hylidae) from Southern

Bahia, Brazil. Journal of Natural History 45: 1823-1834.

Wagner Jr., W.E. & Sullivan, B.K. 1995. Sexual selection in the Gulf Coast toad, Bufo

valliceps: female choice based on variable characters. Animal Behaviour 49:

305-319.

Wang, J., Cui, J., Shi, H., Brauth, S.E. & Tang, Y. 2012. Effects of body size and

environmental factors on the acoustic structure and temporal rhythm of calls in

Rhacophorus dennysi. Asian Herpetological Research 3: 205-212.

Wen, A., Vasquez, N. & Castroviejo-Fisher, S. 2012. Description of the previously

unknown advertisement calls of Hyalinobatrachium fragile, H. pellucidum, and

Vitreorana antisthenesi (Amphibia: Centrolenidae). Zootaxa 3480: 80-87.

Weygoldt, P. & Peixoto, O.L. 1987. Hyla ruschii n. sp., a new frog from the Atlantic

Forest domain in the state of Espirito Santo, Brazil (Amphibia, Hylidae). Studies

on Neotropical Fauna and Environment 22: 237-247.

Wildenhues, M.J., Bagaturov, M.F., Schmitz, A., Tran, D.A., Hendrix, R. & Ziegler, T.

2011. Captive management and reproductive biology of Orlov's Treefrog,

Rhacophorus orlovi Ziegler & Köhler, 2001 (Amphibia: Anura:

149

Rhacophoridae), including larval description, colour pattern variation and

advertisement call. Der Zoologische Garten 80: 287-303.

Wilkinson, J. 2003. Kinugasa flying frog, Rhacophorus arboreus. Grzimek's Animal

Life Encyclopedia. Gale Group, Farmington Hills, Michigan.

Wogel, H., Abrunhosa, P.A. & Pombal Jr, J.P. 2002. Atividade reprodutiva de

Physalaemus signifer (Anura, Leptodactylidae) em ambiente temporário

Iheringia. Série Zoologia 92: 57-70.

Wogel, H. & Pombal Jr, J.P. 2007. Comportamento reprodutivo e seleção sexual em

Dendropsophus bipunctatus (Spix, 1824) (Anura, Hylidae). Papéis Avulsos de

Zoologia (São Paulo) 47: 165-174.

Wood Jr., P.L., Crismer, L.L., Ahmad, N. & Senawi, J. 2008. Two new species of

torrent-dwelling toads Ansonia Stoliczka, 1870 (Anura: Bufonidae) from

Peninsular Malaysia. Herpetologica 64: 321-340.

Wright, A.H. & Wright, A.A. 1949. Handbook of Frogs and Toads of the United States

and Canada. Comstock Publishing Company, Ithaca, NY.

Wycherley, J., Doran, S. & Beebee, T.J.C. 2002. Frog calls echo microsatellite

phylogeography in the European pool frog (Rana lessonae). Journal of Zoology

258: 479-484.

Yu, B.G. & Zheng, R.Q. 2009. The advertisement call of the giant spiny frog Paa

spinosa. Current Zoology 55: 411-415.

Zainudin, R., Rahman, M.A., Zain, B.M.M., Shukor, M.N., Inger, R.F. & Norhayati, A.

2010. Mating calls description of five species of frogs from the genus Hylarana

Tschudi 1838 (Amphibia, Anura, Ranidae) from Sarawak, Malaysia. Sains

Malaysiana 39: 363-369.

150

Zainudin, R. & Sazali, S.N. 2012. A morphometric analysis of Hylarana signata group

(previously known as Rana signata and Rana picturata) of Malaysia.

International Journal of Modern Physics: Conference Series 9: 199-208.

Zhang, F., Chen, P. & Zhao, S.Y. 2013. Comparison of mating calls and adaptive

strategies of Amolops wuyiensis and Odorrana tormotus (Anura) in noise-

controlled environments. Zoological Research / " Dong wu xue yan jiu" bian ji

wei yuan hui bian ji 34: 196-203.

Zhou, Y.L., Qiu, X., Fang, X.B., Yang, L.Y., Zhao, Y., Fang, T., Zheng, W.H. & Liu,

J.S. 2014. Acoustic characteristics of eight common Chinese anurans during the

breeding season. Zoological Research / " Dong wu xue yan jiu" bian ji wei yuan

hui bian ji 35: 42-50.

Zimmerman, B.L. 1983. A comparison of structural features of calls of open and forest

habitat frog species in the Central Amazon. Herpetologica 39: 235-246.

Zina, J. & Haddad, C.F.B. 2005. Reproductive activity and vocalizations of

Leptodactylus labyrinthicus (Anura: Leptodactylidae) in southeastern Brazil.

Biota Neotropica 5: 119-129.

151

152