PostDoc Journal Journal of Postdoctoral Research Vol. 3, No. 6, June 2015 www.postdocjournal.com Optimisation of antimicrobial peptide design: insights from action mechanisms Caleb M. Agbale1,3, Osmel Fleitas 2,3, Isaac K. Galyuon1, Octavio L. Franco3,4 1 School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana, 2 Pós-Graduação da Faculdade de Medicina. Campus Universitário Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília, DF, Brasil, 3 S-Inova, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brasil, 4 Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brasil Email:
[email protected] Abstract Antimicrobial peptides (AMPs) have emerged as one of several viable options for treatment of infections caused by multidrug-resistant microorganisms, which continue to pose the single greatest public health challenge to humankind. Unlike conventional antibiotics, AMPs affects several key extracellular and intracellular targets in bacteria simultaneously, drastically limiting chances of drug-resistance development. Over the years it has been possible to manipulate their chemical structures to design novel anti-infectives for the treatment of systemic and topical infections based on detailed information generated from structural-activity studies. These novel synthetic AMPs exhibit enhanced antimicrobial activity, less cytotoxicity to mammalian cells and enhanced stability to proteases. This review discusses some current developments that have expanded our understanding of their diverse killing mechanisms and shows how this has been employed in the design of AMPs with predictable activity.