Analysis of the Gene-Dense Major Histocompatibility Complex Class III Region and Its Comparison to Mouse
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AP2A2 Antibody Cat
AP2A2 Antibody Cat. No.: 63-513 AP2A2 Antibody Formalin-fixed and paraffin-embedded human Flow cytometric analysis of HepG2 cells using AP2A2 hepatocarcinoma with AP2A2 Antibody , which was Antibody (bottom histogram) compared to a negative peroxidase-conjugated to the secondary antibody, control cell (top histogram). FITC-conjugated goat-anti- followed by DAB staining. rabbit secondary antibodies were used for the analysis. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human This AP2A2 antibody is generated from rabbits immunized with a KLH conjugated IMMUNOGEN: synthetic peptide between 610-637 amino acids from the Central region of human AP2A2. TESTED APPLICATIONS: Flow, IHC-P, WB For WB starting dilution is: 1:1000 APPLICATIONS: For IHC-P starting dilution is: 1:10~50 For FACS starting dilution is: 1:10~50 September 25, 2021 1 https://www.prosci-inc.com/ap2a2-antibody-63-513.html PREDICTED MOLECULAR 104 kDa WEIGHT: Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: AP2A2 AP-2 complex subunit alpha-2, 100 kDa coated vesicle -
Evolution, Dynamic Expression Changes and Regulatory Characteristics of Gene Families Involved in the Glycerophosphate Pathway O
www.nature.com/scientificreports OPEN Evolution, dynamic expression changes and regulatory characteristics of gene families Received: 2 October 2018 Accepted: 14 August 2019 involved in the glycerophosphate Published: xx xx xxxx pathway of triglyceride synthesis in chicken (Gallus gallus) Liyu Yang1, Ziming Liu1, Kepeng Ou2, Taian Wang1, Zhuanjian Li1,3,4, Yadong Tian1,3,4, Yanbin Wang1,3,4, Xiangtao Kang1,3,4, Hong Li1,3,4 & Xiaojun Liu1,3,4 It is well documented that four gene families, including the glycerophosphate acyltransferases (GPATs), acylglycerophosphate acyltransferases (AGPATs), lipid phosphate phosphohydrolases (LPINs) and diacylglycerol acyltransferases (DGATs), are involved in the glycerophosphate pathway of de novo triglyceride (TG) biosynthesis in mammals. However, no systematic analysis has been conducted to characterize the gene families in poultry. In this study, the sequences of gene family members in the glycerophosphate pathway were obtained by screening the public databases. The phylogenetic tree, gene structures and conserved motifs of the corresponding proteins were evaluated. Dynamic expression changes of the genes at diferent developmental stages were analyzed by qRT-PCR. The regulatory characteristics of the genes were analyzed by in vivo experiments. The results showed that the GPAT, AGPAT and LPIN gene families have 2, 7 and 2 members, respectively, and they were classifed into 2, 4 and 2 cluster respectively based on phylogenetic analysis. All of the genes except AGPAT1 were extensively expressed in various tissues. Estrogen induction upregulated the expression of GPAM and AGPAT2, downregulated the expression of AGPAT3, AGPAT9, LPIN1 and LPIN2, and had no efect on the expression of the other genes. These fndings provide a valuable resource for further investigation of lipid metabolism in liver of chicken. -
Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug
cancers Article Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug Response Genes in Pediatric Acute Myeloid Leukemia David G.J. Cucchi 1 , Costa Bachas 1 , Marry M. van den Heuvel-Eibrink 2,3, Susan T.C.J.M. Arentsen-Peters 3, Zinia J. Kwidama 1, Gerrit J. Schuurhuis 1, Yehuda G. Assaraf 4, Valérie de Haas 3 , Gertjan J.L. Kaspers 3,5 and Jacqueline Cloos 1,* 1 Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; [email protected] (D.G.J.C.); [email protected] (C.B.); [email protected] (Z.J.K.); [email protected] (G.J.S.) 2 Department of Pediatric Oncology/Hematology, Erasmus MC–Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands; [email protected] 3 Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; [email protected] (S.T.C.J.M.A.-P.); [email protected] (V.d.H.); [email protected] (G.J.L.K.) 4 The Fred Wyszkowski Cancer Research, Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel; [email protected] 5 Emma’s Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, 1081 HV Amsterdam, The Netherlands * Correspondence: [email protected] Received: 21 April 2020; Accepted: 12 May 2020; Published: 15 May 2020 Abstract: Novel treatment strategies are of paramount importance to improve clinical outcomes in pediatric AML. Since chemotherapy is likely to remain the cornerstone of curative treatment of AML, insights in the molecular mechanisms that determine its cytotoxic effects could aid further treatment optimization. -
Viewed the Thesis/Dissertation in Its Final Electronic Format and Certify That It Is an Accurate Copy of the Document Reviewed and Approved by the Committee
U UNIVERSITY OF CINCINNATI Date: I, , hereby submit this original work as part of the requirements for the degree of: in It is entitled: Student Signature: This work and its defense approved by: Committee Chair: Approval of the electronic document: I have reviewed the Thesis/Dissertation in its final electronic format and certify that it is an accurate copy of the document reviewed and approved by the committee. Committee Chair signature: Investigation of Phosphorylated Proteins and Peptides in Human Cerebrospinal Fluid via High-Performance Liquid Chromatography Coupled to Elemental and Molecular Mass Spectrometry A thesis submitted to the Graduate School of the University of Cincinnati In partial fulfillment of the Requirements for the degree of MASTER OF SCIENCE In the Department of Chemistry of the College of Arts and Sciences By ORVILLE DEAN STUART B.S., Chemistry The University of Texas at Tyler, Tyler, Texas May 2006 Committee Chair: Joseph A. Caruso, Ph.D Abstract Cerebrospinal fluid (CSF) surrounds and serves as a protective media for the brain and central nervous system (CNS). This fluid remains isolated from other biological matrices in normal bodily conditions, therefore, an in depth analysis of CSF has the potential to reveal important details and malfunctions of many diseases that plague the nervous system. Because phosphorylation of a wide variety of proteins governs the activity of biological enzymes and systems, a method for the detection of 31P in proteins found in human cerebrospinal fluid by high-performance liquid chromatography (HPLC) coupled to inductively coupled plasma mass spectrometry (ICPMS) is described. Specifically, it is of interest to compare phosphorylated proteins/peptides from patients suffering from post subarachnoid hemorrhage (SAH) arterial vasospasms against CSF from non-diseased patients. -
Supplemental Figures Tables Importance of the MHC (SLA) in Swine Health and Biomedical Research
Supplemental Material: Annu. Rev. Anim. Biosci. 2020. 8:171-198 https://doi.org/10.1146/annurev-animal-020518-115014 Importance of the Major Histocompatibility Complex (Swine Leukocyte Antigen) in Swine Health and Biomedical Research Hammer, Ho, Ando, Rogel-Gaillard, Charles, Tector, Tector, and Lunney Supplemental Figures Tables Importance of the MHC (SLA) in swine health and biomedical research Annual Review Animal Biosciences AV08 Lunney Supplemental Figure 1. Chromosomal mapping of the human (HLA complex) and swine MHC (SLA complex) a b HSA 6p21 SSC 7p11-7q11 MOG MOG Class I Class III Class I Class II Class III RING1 Centromere Class II RING1 HLA complex SLA complex Human Leucocyte Antigen Swine Leucocyte Antigen Supplemental Figure 1. Chromosomal mapping of the human (HLA complex) and swine MHC (SLA complex). A. Schematic representation of the chromosome mapping and orientation of the HLA complex on HSA 6p21 and of the pig SLA complex on both sides of the centromere on swine chromosome 7 (SSC7). B. Fluorescent in situ hybridization (FISH) map demonstrating SLA location on SSC7 p11 using a YAC clone containing SLA class Ia genes (adapted from Velten F, Rogel-Gaillard C, Renard C, Pontarotti P, Tazi-Ahnini R, et al. 1998. A first map of the porcine major histocompatibility complex class I region. Tissue Antigens 51:183–94). Supplemental Figure 2. Detailed Physical Map of SLA genes Position Name Position Name Position Name Position Name Position Name 7 22 595 564 22 606 449+ MOG 23 190 757 23 207 872- DHX16 23 705 030 23 706 737- LTB -
LST1 Sirna (M): Sc-149136
SANTA CRUZ BIOTECHNOLOGY, INC. LST1 siRNA (m): sc-149136 BACKGROUND APPLICATIONS LST1 (leukocyte-specific transcript 1), also known as B144, is a 97 amino acid LST1 siRNA (m) is recommended for the inhibition of LST1 expression in protein single-pass membrane protein. LST1 may play a role in modulating mouse cells. immune responses, as well as dendritic cell maturation. LST1 has also been found to induce morphological changes, including microspikes and filopodia, SUPPORT REAGENTS when overexpressed in a variety of cell types. Localized to the endomembrane For optimal siRNA transfection efficiency, Santa Cruz Biotechnology’s system, LST1 is expressed as nine isoforms produced by alternative splicing. siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: Isoform 1, also designated LST1A, and isoform 2, also designated LST1C, sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recom- γ have inhibitory effects on lymphocyte proliferation. Induced by IFN- , LST1 mended. Control siRNAs or Fluorescein Conjugated Control siRNAs are is expressed in adult lung, thymus, placenta, kidney and tonsil and fetal liver, available as 10 µM in 66 µl. Each contain a scrambled sequence that will spleen and brain. not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and REFERENCES sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, 1. Neville, M.J. and Campbell, R.D. 1997. Alternative splicing of the LST1 gene sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. located in the major histocompatibility complex on human chromosome 6. -
4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4). -
The Porcine Major Histocompatibility Complex and Related Paralogous Regions: a Review Patrick Chardon, Christine Renard, Claire Gaillard, Marcel Vaiman
The porcine Major Histocompatibility Complex and related paralogous regions: a review Patrick Chardon, Christine Renard, Claire Gaillard, Marcel Vaiman To cite this version: Patrick Chardon, Christine Renard, Claire Gaillard, Marcel Vaiman. The porcine Major Histocom- patibility Complex and related paralogous regions: a review. Genetics Selection Evolution, BioMed Central, 2000, 32 (2), pp.109-128. 10.1051/gse:2000101. hal-00894302 HAL Id: hal-00894302 https://hal.archives-ouvertes.fr/hal-00894302 Submitted on 1 Jan 2000 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Genet. Sel. Evol. 32 (2000) 109–128 109 c INRA, EDP Sciences Review The porcine Major Histocompatibility Complex and related paralogous regions: a review Patrick CHARDON, Christine RENARD, Claire ROGEL GAILLARD, Marcel VAIMAN Laboratoire de radiobiologie et d’etude du genome, Departement de genetique animale, Institut national de la recherche agronomique, Commissariat al’energie atomique, 78352, Jouy-en-Josas Cedex, France (Received 18 November 1999; accepted 17 January 2000) Abstract – The physical alignment of the entire region of the pig major histocompat- ibility complex (MHC) has been almost completed. In swine, the MHC is called the SLA (swine leukocyte antigen) and most of its class I region has been sequenced. -
Proquest Dissertations
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 NOTE TO USERS Page(s) missing in number only; text follows. Microfilmed as received. 222-229 This reproduction is the best copy available. UMI MOLECULAR GENETIC AND BIOCHEMICAL STUDIES OF THE HUMAN AND MOUSE MHC COMPLEMENT GENE CLUSTERS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Zhenyu Yang, M.S. -
Genetic Predictors of Response to Anti-Tumor Necrosis Factor Drugs In
Rheumatology Reports 2009; volume 1:e1 Genetic predictors of response of the human immunoglobulin Ig-G1. It works by binding to soluble TNF and neutralizing it Correspondence: Anne Barton, to anti-tumor necrosis factor but can also bind lymphotoxin-α (LTA). Arthritis Research Campaign Epidemiology Unit, drugs in rheumatoid arthritis Adalimumab and infliximab are monoclonal University of Manchester, M13 9PT, UK antibodies directed against membrane-bound E-mail: [email protected] Rachael Tan and Anne Barton and soluble TNFα.1 Whilst DMARDs may slow radiological progression, studies using anti- Key words: genetics, rheumatoid arthritis, ARC Epidemiology Unit, Stopford response, etanercept, infliximab, adalimumab. Building, The University of Manchester, TNF drugs have shown their superiority in suppressing structural change.2 However, anti- Manchester, UK Conflict of interest: the authors reported no potential TNFs are not without their drawbacks. As well conflict of interests. as being expensive, studies have shown links with malignancy and serious infections.3 Received for publication: 24 March 2009. Furthermore, for unknown reasons, up to 30% Revision received: 18 May 2009. Abstract of patients fail to respond to treatment with Accepted for publication: 18 May 2009. anti-TNFs.4 In many countries, these concerns This work is licensed under a Creative Commons limit the wholesale use of these drugs. In the The introduction of anti-tumor necrosis fac- Attribution 3.0 License (by-nc 3.0). tor (anti-TNF) agents has dramatically UK, for example, the National Institute for improved the outlook for many patients with Health and Clinical Excellence (NICE) advises ©Copyright R. Tan and A. -
What Is the Extent of the Role Played by Genetic Factors in Periodontitis?
Perio Insight 4 Summer 2017 www.efp.org/perioinsight DEBATE EXPERT VIEW FOCUS RESEARCH Editor: Joanna Kamma What is the extent of the role played by genetic factors in periodontitis? Discover latest JCP research hile genetic factors are known to play a role in In a comprehensive overview of current knowledge, The Journal of Clinical Periodontology Wperiodontitis, a lot of research still needs to be they outline what is known today and discuss the (JCP) is the official scientific publication done to understand the mechanisms that are involved. most promising lines for future inquiry. of the European Federation of Indeed, the limited extent to which the genetic They note that the phenotypes of aggressive Periodontology (EFP). It publishes factors associated with periodontitis have been periodontitis (AgP) and chronic periodontitis (CP) may research relating to periodontal and peri- identified is “somewhat disappointing”, say Bruno not be as distinct as previously assumed because they implant diseases and their treatment. G. Loos and Deon P.M. Chin, from the Academic share genetic and other risk factors. The six JCP articles summarised in this Centre for Dentistry in Amsterdam. More on pages 2-5 edition of Perio Insight cover: (1) how periodontitis changes renal structures by oxidative stress and lipid peroxidation; (2) gingivitis and lifestyle influences on high-sensitivity C-reactive protein and interleukin 6 in adolescents; (3) the long-term efficacy of periodontal Researchers call regenerative therapies; (4) tooth loss in generalised aggressive periodontitis; (5) the association between diabetes for global action mellitus/hyperglycaemia and peri- implant diseases; (6) the efficacy of on periodontal collagen matrix seal and collagen sponge on ridge preservation in disease combination with bone allograft. -
Supplemental Information
Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.