Cobol Data Flow Restructuring
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MANNING Greenwich (74° W
Object Oriented Perl Object Oriented Perl DAMIAN CONWAY MANNING Greenwich (74° w. long.) For electronic browsing and ordering of this and other Manning books, visit http://www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact: Special Sales Department Manning Publications Co. 32 Lafayette Place Fax: (203) 661-9018 Greenwich, CT 06830 email: [email protected] ©2000 by Manning Publications Co. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps. Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Library of Congress Cataloging-in-Publication Data Conway, Damian, 1964- Object oriented Perl / Damian Conway. p. cm. includes bibliographical references. ISBN 1-884777-79-1 (alk. paper) 1. Object-oriented programming (Computer science) 2. Perl (Computer program language) I. Title. QA76.64.C639 1999 005.13'3--dc21 99-27793 CIP Manning Publications Co. Copyeditor: Adrianne Harun 32 Lafayette -
7. Control Flow First?
Copyright (C) R.A. van Engelen, FSU Department of Computer Science, 2000-2004 Ordering Program Execution: What is Done 7. Control Flow First? Overview Categories for specifying ordering in programming languages: Expressions 1. Sequencing: the execution of statements and evaluation of Evaluation order expressions is usually in the order in which they appear in a Assignments program text Structured and unstructured flow constructs 2. Selection (or alternation): a run-time condition determines the Goto's choice among two or more statements or expressions Sequencing 3. Iteration: a statement is repeated a number of times or until a Selection run-time condition is met Iteration and iterators 4. Procedural abstraction: subroutines encapsulate collections of Recursion statements and subroutine calls can be treated as single Nondeterminacy statements 5. Recursion: subroutines which call themselves directly or indirectly to solve a problem, where the problem is typically defined in terms of simpler versions of itself 6. Concurrency: two or more program fragments executed in parallel, either on separate processors or interleaved on a single processor Note: Study Chapter 6 of the textbook except Section 7. Nondeterminacy: the execution order among alternative 6.6.2. constructs is deliberately left unspecified, indicating that any alternative will lead to a correct result Expression Syntax Expression Evaluation Ordering: Precedence An expression consists of and Associativity An atomic object, e.g. number or variable The use of infix, prefix, and postfix notation leads to ambiguity An operator applied to a collection of operands (or as to what is an operand of what arguments) which are expressions Fortran example: a+b*c**d**e/f Common syntactic forms for operators: The choice among alternative evaluation orders depends on Function call notation, e.g. -
A Survey of Hardware-Based Control Flow Integrity (CFI)
A survey of Hardware-based Control Flow Integrity (CFI) RUAN DE CLERCQ∗ and INGRID VERBAUWHEDE, KU Leuven Control Flow Integrity (CFI) is a computer security technique that detects runtime attacks by monitoring a program’s branching behavior. This work presents a detailed analysis of the security policies enforced by 21 recent hardware-based CFI architectures. The goal is to evaluate the security, limitations, hardware cost, performance, and practicality of using these policies. We show that many architectures are not suitable for widespread adoption, since they have practical issues, such as relying on accurate control flow model (which is difficult to obtain) or they implement policies which provide only limited security. CCS Concepts: • Security and privacy → Hardware-based security protocols; Information flow control; • General and reference → Surveys and overviews; Additional Key Words and Phrases: control-flow integrity, control-flow hijacking, return oriented programming, shadow stack ACM Reference format: Ruan de Clercq and Ingrid Verbauwhede. YYYY. A survey of Hardware-based Control Flow Integrity (CFI). ACM Comput. Surv. V, N, Article A (January YYYY), 27 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION Today, a lot of software is written in memory unsafe languages, such as C and C++, which introduces memory corruption bugs. This makes software vulnerable to attack, since attackers exploit these bugs to make the software misbehave. Modern Operating Systems (OSs) and microprocessors are equipped with security mechanisms to protect against some classes of attacks. However, these mechanisms cannot defend against all attack classes. In particular, Code Reuse Attacks (CRAs), which re-uses pre-existing software for malicious purposes, is an important threat that is difficult to protect against. -
Java/Java Packages.Htm Copyright © Tutorialspoint.Com
JJAAVVAA -- PPAACCKKAAGGEESS http://www.tutorialspoint.com/java/java_packages.htm Copyright © tutorialspoint.com Packages are used in Java in order to prevent naming conflicts, to control access, to make searching/locating and usage of classes, interfaces, enumerations and annotations easier, etc. A Package can be defined as a grouping of related types classes, interfaces, enumerationsandannotations providing access protection and name space management. Some of the existing packages in Java are:: java.lang - bundles the fundamental classes java.io - classes for input , output functions are bundled in this package Programmers can define their own packages to bundle group of classes/interfaces, etc. It is a good practice to group related classes implemented by you so that a programmer can easily determine that the classes, interfaces, enumerations, annotations are related. Since the package creates a new namespace there won't be any name conflicts with names in other packages. Using packages, it is easier to provide access control and it is also easier to locate the related classes. Creating a package: While creating a package, you should choose a name for the package and include a package statement along with that name at the top of every source file that contains the classes, interfaces, enumerations, and annotation types that you want to include in the package. The package statement should be the first line in the source file. There can be only one package statement in each source file, and it applies to all types in the file. If a package statement is not used then the class, interfaces, enumerations, and annotation types will be placed in the current default package. -
Control-Flow Analysis of Functional Programs
Control-flow analysis of functional programs JAN MIDTGAARD Department of Computer Science, Aarhus University We present a survey of control-flow analysis of functional programs, which has been the subject of extensive investigation throughout the past 30 years. Analyses of the control flow of functional programs have been formulated in multiple settings and have led to many different approximations, starting with the seminal works of Jones, Shivers, and Sestoft. In this paper, we survey control-flow analysis of functional programs by structuring the multitude of formulations and approximations and comparing them. Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica- tions—Applicative languages; F.3.1 [Logics and Meanings of Programs]: Specifying and Ver- ifying and Reasoning about Programs General Terms: Languages, Theory, Verification Additional Key Words and Phrases: Control-flow analysis, higher-order functions 1. INTRODUCTION Since the introduction of high-level languages and compilers, much work has been devoted to approximating, at compile time, which values the variables of a given program may denote at run time. The problem has been named data-flow analysis or just flow analysis. In a language without higher-order functions, the operator of a function call is apparent from the text of the program: it is a lexically visible identifier and therefore the called function is available at compile time. One can thus base an analysis for such a language on the textual structure of the program, since it determines the exact control flow of the program, e.g., as a flow chart. On the other hand, in a language with higher-order functions, the operator of a function call may not be apparent from the text of the program: it can be the result of a computation and therefore the called function may not be available until run time. -
Quick Start Guide for Java Version 5.0
Quick Start Guide for Java Version 5.0 Copyright © 2020 Twin Oaks Computing, Inc. Castle Rock, CO 80104 All Rights Reserved Welcome CoreDX DDS Quick Start Guide for Java Version 5.0 Nov 2020 Welcome to CoreDX DDS, a high-performance implementation of the OMG Data Distribution Service (DDS) standard. The CoreDX DDS Publish-Subscribe messaging infrastructure provides high-throughput, low-latency data communications. This Quick Start will guide you through the basic installation of CoreDX DDS, including installation and compiling and running an example Java application. You will learn how easy it is to integrate CoreDX DDS into an application. This Quick Start Guide is tailored for Java applications, and the examples differ slightly for other languages. Installation First things first: get CoreDX DDS onto your development system! Here’s what you need to do: 1. Once you have obtained CoreDX DDS from Twin Oaks Computing (or from the Eval CD), unpack the appropriate distribution for your machine somewhere on your system. We’ll refer to this directory throughout this guide as COREDX_HOME. For example, on a UNIX system this command will extract the distribution into the current directory: gunzip –c coredx-5.0.0-Linux_2.6_x86_64_gcc5-Release.tgz | tar xf – CoreDX DDS is available for multiple platform architectures, and multiple platform architectures of CoreDX DDS can be installed in the same top level (COREDX_TOP) directory. The directory structure under COREDX_TOP will look like: 2. If you are using an evaluation copy of CoreDX DDS, follow the instructions you received when you downloaded the software to obtain an evaluation license. -
Importance of DNS Suffixes and Netbios
Importance of DNS Suffixes and NetBIOS Priasoft DNS Suffixes? What are DNS Suffixes, and why are they important? DNS Suffixes are text that are appended to a host name in order to query DNS for an IP address. DNS works by use of “Domains”, equitable to namespaces and usually are a textual value that may or may not be “dotted” with other domains. “Support.microsoft.com” could be considers a domain or namespace for which there are likely many web servers that can respond to requests to that domain. There could be a server named SUPREDWA.support.microsoft.com, for example. The DNS suffix in this case is the domain “support.microsoft.com”. When an IP address is needed for a host name, DNS can only respond based on hosts that it knows about based on domains. DNS does not currently employ a “null” domain that can contain just server names. As such, if the IP address of a server named “Server1” is needed, more detail must be added to that name before querying DNS. A suffix can be appended to that name so that the DNS sever can look at the records of the domain, looking for “Server1”. A client host can be configured with multiple DNS suffixes so that there is a “best chance” of discovery for a host name. NetBIOS? NetBIOS is an older Microsoft technology from a time before popularity of DNS. WINS, for those who remember, was the Microsoft service that kept a table of names (NetBIOS names) for which IP address info could be returned. -
Bigraphical Domain-Specific Language (BDSL): User Manual BDSL Version: V1.0-SNAPSHOT
>_ Interpreter CLI BDSL BDSL User Manual BDSL v1.0-SNAPSHOT 1 Bigraphical Domain-specific Language (BDSL): User Manual BDSL Version: v1.0-SNAPSHOT Dominik Grzelak∗ Software Technology Group Technische Universit¨at Dresden, Germany Abstract This report describes Bigraphical DSL (BDSL), a domain-specific language for reactive systems, rooted in the mathematical spirit of the bigraph theory devised by Robin Milner. BDSL is not only a platform-agnostic programming language but also a development framework for reactive applications, written in the Java program- ming language, with a focus on stability and interoperability. The report serves as a user manual mainly elaborating on how to write and execute BDSL programs, further covering several features such as how to incorporate program verification. Moreover, the manual procures some best practices on design patterns in form of code listings. The BDSL development framework comes with a ready- to-use interpreter and may be a helpful research tool to experiment with the underlying bigraph theory. The framework is further in- tended for building reactive applications and systems based on the theory of bigraphical reactive systems. This report is ought to be a supplement to the explanation on the website www.bigraphs.org. The focus in this report lies in the basic usage of the command-line interpreter and mainly refers to the features available for the end-user, thus, providing a guidance for taking the first steps. It does not cover programmatic implementation details in great detail of the whole BDSL Interpreter Framework that is more suited to developers. Acknowledgment This research project is funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of Germany's Excel- lence Strategy { EXC 2050/1 { Project ID 390696704 { Cluster of Ex- cellence "Centre for Tactile Internet with Human-in-the-Loop" (CeTI) of Technische Universit¨at Dresden. -
Java: Odds and Ends
Computer Science 225 Advanced Programming Siena College Spring 2020 Topic Notes: More Java: Odds and Ends This final set of topic notes gathers together various odds and ends about Java that we did not get to earlier. Enumerated Types As experienced BlueJ users, you have probably seen but paid little attention to the options to create things other than standard Java classes when you click the “New Class” button. One of those options is to create an enum, which is an enumerated type in Java. If you choose it, and create one of these things using the name AnEnum, the initial code you would see looks like this: /** * Enumeration class AnEnum - write a description of the enum class here * * @author (your name here) * @version (version number or date here) */ public enum AnEnum { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY } So we see here there’s something else besides a class, abstract class, or interface that we can put into a Java file: an enum. Its contents are very simple: just a list of identifiers, written in all caps like named constants. In this case, they represent the days of the week. If we include this file in our projects, we would be able to use the values AnEnum.MONDAY, AnEnum.TUESDAY, ... in our programs as values of type AnEnum. Maybe a better name would have been DayOfWeek.. Why do this? Well, we sometimes find ourselves defining a set of names for numbers to represent some set of related values. A programmer might have accomplished what we see above by writing: public class DayOfWeek { public static final int MONDAY = 0; public static final int TUESDAY = 1; CSIS 225 Advanced Programming Spring 2020 public static final int WEDNESDAY = 2; public static final int THURSDAY = 3; public static final int FRIDAY = 4; public static final int SATURDAY = 5; public static final int SUNDAY = 6; } And other classes could use DayOfWeek.MONDAY, DayOfWeek.TUESDAY, etc., but would have to store them in int variables. -
Obfuscating C++ Programs Via Control Flow Flattening
Annales Univ. Sci. Budapest., Sect. Comp. 30 (2009) 3-19 OBFUSCATING C++ PROGRAMS VIA CONTROL FLOW FLATTENING T. L¶aszl¶oand A.¶ Kiss (Szeged, Hungary) Abstract. Protecting a software from unauthorized access is an ever de- manding task. Thus, in this paper, we focus on the protection of source code by means of obfuscation and discuss the adaptation of a control flow transformation technique called control flow flattening to the C++ lan- guage. In addition to the problems of adaptation and the solutions pro- posed for them, a formal algorithm of the technique is given as well. A prototype implementation of the algorithm presents that the complexity of a program can show an increase as high as 5-fold due to the obfuscation. 1. Introduction Protecting a software from unauthorized access is an ever demanding task. Unfortunately, it is impossible to guarantee complete safety, since with enough time given, there is no unbreakable code. Thus, the goal is usually to make the job of the attacker as di±cult as possible. Systems can be protected at several levels, e.g., hardware, operating system or source code. In this paper, we focus on the protection of source code by means of obfuscation. Several code obfuscation techniques exist. Their common feature is that they change programs to make their comprehension di±cult, while keep- ing their original behaviour. The simplest technique is layout transformation [1], which scrambles identi¯ers in the code, removes comments and debug informa- tion. Another technique is data obfuscation [2], which changes data structures, 4 T. L¶aszl¶oand A.¶ Kiss e.g., by changing variable visibilities or by reordering and restructuring arrays. -
Control Flow Statements
Control Flow Statements Christopher M. Harden Contents 1 Some more types 2 1.1 Undefined and null . .2 1.2 Booleans . .2 1.2.1 Creating boolean values . .3 1.2.2 Combining boolean values . .4 2 Conditional statements 5 2.1 if statement . .5 2.1.1 Using blocks . .5 2.2 else statement . .6 2.3 Tertiary operator . .7 2.4 switch statement . .8 3 Looping constructs 10 3.1 while loop . 10 3.2 do while loop . 11 3.3 for loop . 11 3.4 Further loop control . 12 4 Try it yourself 13 1 1 Some more types 1.1 Undefined and null The undefined type has only one value, undefined. Similarly, the null type has only one value, null. Since both types have only one value, there are no operators on these types. These types exist to represent the absence of data, and their difference is only in intent. • undefined represents data that is accidentally missing. • null represents data that is intentionally missing. In general, null is to be used over undefined in your scripts. undefined is given to you by the JavaScript interpreter in certain situations, and it is useful to be able to notice these situations when they appear. Listing 1 shows the difference between the two. Listing 1: Undefined and Null 1 var name; 2 // Will say"Hello undefined" 3 a l e r t( "Hello" + name); 4 5 name= prompt( "Do not answer this question" ); 6 // Will say"Hello null" 7 a l e r t( "Hello" + name); 1.2 Booleans The Boolean type has two values, true and false. -
Learning from Examples to Find Fully Qualified Names of API Elements In
Learning from Examples to Find Fully Qualified Names of API Elements in Code Snippets C M Khaled Saifullah Muhammad Asaduzzaman† Chanchal K. Roy Department of Computer Science, University of Saskatchewan, Canada †School of Computing, Queen's University, Canada fkhaled.saifullah, [email protected] †[email protected] Abstract—Developers often reuse code snippets from online are difficult to compile and run. According to Horton and forums, such as Stack Overflow, to learn API usages of software Parnin [6] only 1% of the Java and C# code examples included frameworks or libraries. These code snippets often contain am- in the Stack Overflow posts are compilable. Yang et al. [7] biguous undeclared external references. Such external references make it difficult to learn and use those APIs correctly. In also report that less than 25% of Python code snippets in particular, reusing code snippets containing such ambiguous GitHub Gist are runnable. Resolving FQNs of API elements undeclared external references requires significant manual efforts can help to identify missing external references or declaration and expertise to resolve them. Manually resolving fully qualified statements. names (FQN) of API elements is a non-trivial task. In this paper, Prior studies link API elements in forum discussions to their we propose a novel context-sensitive technique, called COSTER, to resolve FQNs of API elements in such code snippets. The pro- documentation using Partial Program Analysis (PPA) [8], text posed technique collects locally specific source code elements as analysis [2], [9], and iterative deductive analysis [5]. All these well as globally related tokens as the context of FQNs, calculates techniques except Baker [5], need adequate documentation or likelihood scores, and builds an occurrence likelihood dictionary discussion in online forums.