1 Slide Per Page Color
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Association of Locomotor Activity During Sleep Deprivation Treatment with Response
ORIGINAL RESEARCH published: 21 July 2020 doi: 10.3389/fpsyt.2020.00688 Association of Locomotor Activity During Sleep Deprivation Treatment With Response Jerome Clifford Foo 1*, Lea Sirignano 1, Nina Trautmann 1,2,3, Jinhyuk Kim 4, Stephanie H. Witt 1, Fabian Streit 1, Josef Frank 1, Lea Zillich 1, Andreas Meyer-Lindenberg 2, Ulrich Ebner-Priemer 5, Claudia Schilling 2, Michael Schredl 2, Yoshiharu Yamamoto 6, Maria Gilles 2, Michael Deuschle 2 and Marcella Rietschel 1 1 Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany, 2 Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany, 3 Department of Child and Adolescent Psychiatry Edited by: and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Andrea De Bartolomeis, Germany, 4 Department of Informatics, Graduate School of Integrated Science and Technology, Shizuoka University, University of Naples Federico II, Italy Shizuoka, Japan, 5 Department of Sport and Sport Science, Karlsruhe Institute of Technology, Karlsruhe, Germany, 6 Reviewed by: Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan Vincenzo Natale, University of Bologna, Italy Disrupted circadian rhythms and sleep patterns are frequently observed features of Mirko Manchia, University of Cagliari, Italy psychiatric disorders, and especially mood disorders. Sleep deprivation treatment (SD) *Correspondence: exerts rapid but transient antidepressant effects in depressed patients and has gained Jerome Clifford Foo recognition as a model to study quick-acting antidepressant effects. It is of interest how [email protected] locomotor activity patterns during SD might be associated with and potentially predict Specialty section: treatment response. -
Coupling Sleep-Wake and Circadian Neurobiology to the Antidepressant Effects of Ketamine
Pharmacology & Therapeutics 221 (2021) 107741 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Time is of the essence: Coupling sleep-wake and circadian neurobiology to the antidepressant effects of ketamine S. Kohtala a,b,1, O. Alitalo a,b,1,M.Rosenholma,b, S. Rozov a,b,T.Rantamäkia,b,⁎ a Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland b SleepWell Research Program, Faculty of Medicine, University of Helsinki, Finland article info abstract Available online 12 November 2020 Several studies have demonstrated the effectiveness of ketamine in rapidly alleviating depression and suicidal ideation. Intense research efforts have been undertaken to expose the precise mechanism underlying the antide- Keywords: pressant action of ketamine; however, the translation of findings into new clinical treatments has been slow. This Sleep translational gap is partially explained by a lack of understanding of the function of time and circadian timing in Circadian the complex neurobiology around ketamine. Indeed, the acute pharmacological effects of a single ketamine treat- Plasticity ment last for only a few hours, whereas the antidepressant effects peak at around 24 hours and are sustained for Depression the following few days. Numerous studies have investigated the acute and long-lasting neurobiological changes Rapid-acting antidepressant Slow-wave sleep induced by ketamine; however, the most dramatic and fundamental change that the brain undergoes each day is rarely taken into consideration. Here, we explore the link between sleep and circadian regulation and rapid-act- ing antidepressant effects and summarize how diverse phenomena associated with ketamine’s antidepressant actions – such as cortical excitation, synaptogenesis, and involved molecular determinants – are intimately con- nected with the neurobiology of wake, sleep, and circadian rhythms. -
Normal and Delayed Sleep Phases
1 Overview • Introduction • Circadian Rhythm Sleep Disorders – DSPS – Non-24 • Diagnosis • Treatment • Research Issues • Circadian Sleep Disorders Network © 2014 Circadian Sleep Disorders Network 2 Circadian Rhythms • 24 hours 10 minutes on average • Entrained to 24 hours (zeitgebers) • Suprachiasmatic nucleus (SCN) – the master clock • ipRGC cells (intrinsically photosensitive Retinal Ganglion Cells) © 2014 Circadian Sleep Disorders Network 3 Circadian Rhythm Sleep Disorders • Definition – A circadian rhythm sleep disorder is an abnormality of the body’s internal clock, in which a person is unable to fall asleep at a normal evening bedtime, although he is able to sleep reasonably well at other times dictated by his internal rhythm. • Complaints – Insomnia – Excessive daytime sleepiness • Inflexibility • Coordination with other circadian rhythms © 2014 Circadian Sleep Disorders Network 4 Circadian Sleep Disorder Subtypes* • Delayed Sleep-Phase Syndrome (G47.21**) • Non-24-Hour Sleep-Wake Disorder (G47.24) • Advanced Sleep-Phase Syndrome (G47.22) • Irregular Sleep-Wake Pattern (G47.23) • Shift Work Sleep Disorder (G47.26) • Jet Lag Syndrome * From The International Classification of Sleep Disorders, Revised (ICSD-R) ** ICD-10-CM diagnostic codes in parentheses © 2014 Circadian Sleep Disorders Network 5 Definition of DSPS from The International Classification of Sleep Disorders, Revised (ICSD-R): • Sleep-onset and wake times that are intractably later than desired • Actual sleep-onset times at nearly the same daily clock hour • Little or no reported difficulty in maintaining sleep once sleep has begun • Extreme difficulty awakening at the desired time in the morning, and • A relatively severe to absolute inability to advance the sleep phase to earlier hours by enforcing conventional sleep and wake times. -
Effects of Light Therapy on Mood and Insulin Sensitivity in Patients With
Diabetes Care Volume 42, April 2019 529 Annelies Brouwer,1 Daniel H. van Raalte,2 Effects of Light Therapy on Mood Hoang-Ton Nguyen,3 Femke Rutters,4 CLIN CARE/EDUCATION/NUTRITION/PSYCHOSOCIAL Peter M. van de Ven,4 Petra J.M. Elders,5 and Insulin Sensitivity in Patients Annette C. Moll,3 Eus J.W. Van Someren,1,6,7 Frank J. Snoek,8 With Type 2 Diabetes and Aartjan T.F. Beekman,1 and Depression: Results From a Marijke A. Bremmer1 Randomized Placebo-Controlled Trial Diabetes Care 2019;42:529–538 | https://doi.org/10.2337/dc18-1732 1Amsterdam UMC, Vrije Universiteit, and GGZ inGeest, Department of Psychiatry, Amsterdam Public Health research institute, Amsterdam, the OBJECTIVE Netherlands 2Amsterdam UMC, Vrije Universiteit, Depart- Depression is common in patients with type 2 diabetes and adversely affects ment of Internal Medicine, Diabetes Center, quality of life and diabetes outcomes. We assessed whether light therapy, an Amsterdam, the Netherlands 3 antidepressant, improves mood and insulin sensitivity in patients with depression and Amsterdam UMC, Vrije Universiteit, Depart- ment of Ophthalmology, Amsterdam, the Nether- type 2 diabetes. lands 4Amsterdam UMC, Vrije Universiteit, Depart- RESEARCH DESIGN AND METHODS ment of Epidemiology and Biostatistics, Am- This randomized, double-blind, placebo-controlled trial included 83 patients with sterdam Public Health research institute, depression and type 2 diabetes. The intervention comprised 4 weeks of light Amsterdam, the Netherlands 5Amsterdam UMC, Vrije Universiteit, Depart- therapy (10,000 lux) or placebo light therapy daily at home. Primary outcomes ment of General Practice and Elderly Care included depressive symptoms (Inventory of Depressive Symptomatology [IDS]) Medicine, Amsterdam Public Health research and insulin sensitivity (M-value derived from the results of a hyperinsulinemic- institute, Amsterdam, the Netherlands 6 euglycemic clamp). -
Circadian Rhythm Sleep Disorders
Circadian Rhythm Sleep Disorders Circadian Rhythm Sleep Disorders By Yolanda Smith, BPharm Circadian rhythm sleep disorders are a type of sleep disorder that involve abnormalities in the timing of sleep. The circadian rhythm, also sometimes referred to as the body clock, is the natural pattern of sleep in the body, including feelings of sleepiness and wakefulness during the day. It naturally affects the body temperature, appetite, hormone secretion and alertness of the individual, which influence the timing of sleep. A patient affected by a circadian rhythm sleep disorder is unable to sleep and wake up at the times according to their circadian rhythm, due to work, study or lifestyle commitments. In most cases, they are able to get enough sleep throughout the day if they are able to sleep according to the cues of their body clock, but their daily commitments are out of sync with their circadian rhythm, increasing the difficulty in falling asleep when they have time to sleep. Delayed Sleep Phase Disorder Delayed sleep phase disorder refers to when the body clock of an individual is two or more hours later than what is considered normal, resulting in delayed feelings of sleepiness and wakefulness with respect to the external environment. This typically means that they fall asleep after 1 a.m. in the night and would not naturally wake until the late morning or afternoon. However, most people with this disorder have work or study commitments in the morning that shorten the duration of the sleep, which may lead to sleep deprivation and daytime sleepiness. Light therapy and melatonin treatment may be useful in helping to advance the sleep phase by up to two hours, but it may not be possible for all individuals to advance their sleep phase to the normal schedule. -
Psychopathology-Madjirova.Pdf
NADEJDA PETROVA MADJIROVA PSYCHOPATHOLOGY psychophysiological and clinical aspects PLOVDIV 2005 I devote this book to all my patients that shared with me their intimate problems. © Nadejda Petrova Madjirova, 2015 PSYCHOPATHOLOGY: PSYCHOPHYSIOLOGICAL AND CLINICAL ASPECTS Prof. Dr. Nadejda Petrova Madjirova, MD, PhD, DMSs Reviewer: Prof. Rumen Ivandv Stamatov, PhD, DPS Prof. Drozdstoj Stoyanov Stoyanov, PhD, MD Design: Nadejda P. Madjirova, MD, PhD, DMSc. Prepress: Galya Gerasimova Printed by ISBN I. COMMON ASPECTS IN PSYCHOPHYSIOLOGY “A wise man ought to realize that health is his most valuable possession” Hippocrates C O N T E N T S I. Common aspects in psychophysiology. ..................................................1 1. Some aspects on brain structure. ....................................................5 2. Lateralisation of the brain hemispheres. ..........................................7 II. Experimental Psychology. ..................................................................... 11 1. Ivan Petrovich Pavlov. .................................................................... 11 2. John Watson’s experiments with little Albert. .................................15 III. Psychic spheres. ...................................................................................20 1. Perception – disturbances..............................................................21 2. Disturbances of Will .......................................................................40 3. Emotions ........................................................................................49 -
Circadian Rhythms and Depression Sleep-Wake Cycle Is out of Phase with the Day- in the Day, While Bright Light Applied in the with Remission in Spring and Summer)
CLINICAL Circadian rhythms Philip Boyce Erin Barriball and depression However, current treatments have been developed Background on the basis of a causal model for depression. Depression is a common disorder in primary care. Disruptions to the circadian rhythms Focused psychological treatments target those associated with depression have received little attention yet offer new and exciting depressions that arise from psychosocial approaches to treatment. difficulties. Examples include: Objective • cognitive behavioural therapy (CBT), which This article discusses circadian rhythms and the disruption to them associated with corrects maladaptive thinking patterns depression, and reviews nonpharmaceutical and pharmaceutical interventions to shift • behavioural treatments that aim to overcome circadian rhythms. ‘depressogenic’ behaviours such as avoiding Discussion pleasurable activities, and Features of depression suggestive of a disturbance to circadian rhythms include early • lifestyle modifications, particularly work-life morning waking, diurnal mood changes, changes in sleep architecture, changes in balance, diet and exercise and sleep-wake timing of the temperature nadir, and peak cortisol levels. Interpersonal social rhythm cycle management.5 therapy involves learning to manage interpersonal relationships more effectively Antidepressant medications target the and stabilisation of social cues, such as including sleep and wake times, meal times, neurotransmitter disturbances (serotonin or and timing of social contact. Bright light therapy is used to treat seasonal affective noradrenaline) considered to underlie biological disorders. Agomelatine is an antidepressant that works in a novel way by targeting depression. While the focus of biological melatonergic receptors. aspects of depression has centred on changes in Keywords: circadian rhythm, depression neurotransmitters, there has been relatively little attention paid to the changes in circadian rhythms associated with depression that offer new and rational treatment options for depression. -
Sleep Deprivation Increases Dorsal Nexus Connectivity to the Dorsolateral Prefrontal Cortex in Humans
Sleep deprivation increases dorsal nexus connectivity to the dorsolateral prefrontal cortex in humans Oliver G. Boscha,1, Julia S. Rihmb, Milan Scheideggera,c, Hans-Peter Landoltd, Philipp Stämpflie, Janis Brakowskia, Fabrizio Espositof, Björn Raschg, and Erich Seifritza aDepartment of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, 8032 Zurich, Switzerland; bDivision of Biopsychology, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; cInstitute for Biomedical Engineering, University of Zurich and ETH Zurich, 8092 Zurich, Switzerland; dInstitute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; eMR-Center of the Hospital of Psychiatry and the Department of Child and Adolescent Psychiatry, University of Zurich, 8032 Zurich, Switzerland; fDepartment of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; and gDivision of Cognitive Biopsychology and Methods, Department of Psychology, University of Fribourg, 1701 Fribourg, Switzerland Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved October 21, 2013 (received for review September 18, 2013) In many patients with major depressive disorder, sleep depriva- areas such as hypothalamus, amygdala, entorhinal cortex, and tion, or wake therapy, induces an immediate but often transient nucleus accumbens (18, 19). antidepressant response. It is known from brain imaging studies Increased connectivity of DMN, CCN, and AN with a distinct that changes -
Melatonin Treatment of Winter Depression Following Total Sleep Deprivation: Waking EEG and Mood Correlates
Neuropsychopharmacology (2005) 30, 1345–1352 & 2005 Nature Publishing Group All rights reserved 0893-133X/05 $30.00 www.neuropsychopharmacology.org Melatonin Treatment of Winter Depression Following Total Sleep Deprivation: Waking EEG and Mood Correlates ,1 2 Konstantin V Danilenko* and Arcady A Putilov 1Institute of Internal Medicine, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia; 2Research Institute for Molecular Biology and Biophysics, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia Patients with winter depression (seasonal affective disorder (SAD)) commonly complain of sleepiness. Sleepiness can be objectively measured by spectral analysis of the waking electroencephalogram (EEG) in the 1–10 Hz band. The waking EEG was measured every 3 h in 16 female SAD patients and 13 age-matched control women throughout a total sleep deprivation of 30 h. Melatonin (or placebo) under double-blind conditions was administered subsequently (0.5 mg at 1700 h for 6 days), appropriately timed to phase advance circadian rhythms, followed by reassessment in the laboratory for 12 h. The increase in EEG power density in a narrow theta band (5– 5.99 Hz, derivation Fz–Cz) during the 30 h protocol was significantly attenuated in patients compared with controls (difference between linear trends p ¼ 0.037). Sleepiness (p ¼ 0.092) and energy (p ¼ 0.045) self-ratings followed a similar pattern. Six patients improved after X sleep deprivation ( 50% reduction on SIGH-SAD22 score). EEG power density dynamics was correlated with clinical response to sleep deprivation: the steeper the build-up (as in controls), the better the improvement (po0.05). -
Depression and Anxiety Spectrum Disorders
AlternativeMentalHealth.com Codex Alternus: Depression and Anxiety Spectrum Disorders A Research Collection of Alternative and Complementary Treatments for Dysthymia, Major Depression, Seasonal Affective Disorder and Anxiety Spectrum Disorders Dion Zessin Researcher Omaha, Nebraska Alternative Mental Health Research Sourced From The US National Library of Medicine Contents Introduction .......................................................................................................................................................... 12 Dysthymia and Major Depression ......................................................................................................................... 13 Vitamins, Minerals, Amino Acids, Omega-3 Fatty Acids, Nutraceuticals and Physiologics .............................. 13 Acetyl-L-carnitine .......................................................................................................................................... 13 Chromium ...................................................................................................................................................... 14 Chromium Picolinate, antidepressant effects ............................................................................................... 14 Chromium Picolinate, carbohydrate craving reduction ................................................................................ 14 Creatine Monohydrate ................................................................................................................................. -
The Implications of Chronobiology for Psychiatry
56 CASPONSOREDT BY CMEE LLC • PSYCHIATRICG TIMESO • OCTOBER 2011RY The Implications of Chronobiology for Psychiatry by Anna Wirz-Justice, PhD vides the temporal organization necessary for uli that act on biological rhythms (eg, light) or optimum behavior—the right function at the right direct manipulations of sleep to treat psychiatric hronobiology—the science of daily time. disorders. (circadian), monthly, tidal, and season- The field of chronobiology is exemplary in Biological rhythms are not new to psychiatry. al rhythms—has undergone exponen- its bench-to-bedside translational approach. The 19th century German psychiatrists, in par- C tial growth in the past decade, with Groundbreaking research into the genetic clock- ticular, collected enormous numbers of case stud- major discoveries at the molecular and neuroana- work covers all phyla, from cyanobacteria to the ies that demonstrated periodicity in psycho- tomic level. The most ubiquitous rhythms are weed Arabidopsis, utilizing the rich mutant pos- pathology. In 1960, Menninger-Lerchenthal1 those linked to the 24-hour day-night cycle. sibilities in fruit flies and mice and scanning for proposed a hypothalamic neuroendocrine mecha- These circadian rhythms manifest themselves at polymorphisms of clock genes in clinical disor- nism to underlie the astonishing precision of every hierarchical level: from the general popula- ders. On the basis of this research, novel, non- daily and seasonal rhythms in clinical symptoms tion (eg, more traffic accidents late at night) to the pharmacological treatments for chronobiological and behavior—a very prescient prediction that individual (eg, the sleep-wake cycle), in each disorders have been developed. Chronothera- has been characterized in detail by modern re- organ, cell, and molecule. -
Chronobiological Strategies for Unmet Needs in the Treatment of Depression – Wirz-Justice MEDICOGRAPHIA, VOL 27, No
U NMET N EEDS IN THE T REATMENT OF D EPRESSION he field of chronobiology studies 24-hour bio- logical clocks (the circadian system) and their Tsynchronizers (“zeitgebers”) such as light, the pineal hormone melatonin, food, activity, as well as the factors regulating sleep.1 Light therapy has arisen out of this basic research in circadian rhythms, Anna WIRZ-JUSTICE, PhD whereas, in contrast, sleep deprivation (“wake ther- Center for Chronobiology apy”) was established by astutely following up clin- University Psychiatric Hospitals Basel ical observations.2 Chronotherapeutics can be de- Basel, SWITZERLAND fined as translating basic chronobiology research into valid treatments. The term is broad, and the treatments subsumed under this heading will grow as the field grows, and are of course not limited to affective disorders (there is an important body of evidence, for example, that the correct timing of cancer treatments augments survival and dimin- ishes the often potent side effects). The theme of meeting unmet needs in the treat- Chronobiological ment of depression is important and timely. The onset of action of antidepressants is still not rapid enough, a proportion of patients do not respond, strategies for unmet others have residual symptoms that predict relapse. Although medication based on classic neurotrans- mitter systems is still a prime focus, drug targets other than monoamines are under intensive inves- needs in the treatment 3 tigation. Strategies promoting adjuvant therapy are on the increase, whether they encompass com- bination with other medications (eg, addition of of depression pindolol, of thyroid hormone) or psychological in- terventions (eg, cognitive behavioral therapy). Main- stream psychiatry is becoming more and more by A.