Advances in Pure Mathematics, 2013, 3, 475-478 http://dx.doi.org/10.4236/apm.2013.35068 Published Online August 2013 (http://www.scirp.org/journal/apm) Weak Integrals and Bounded Operators in Topological Vector Spaces Lakhdar Meziani, Saud M. Alsulami Mathematics Department, King Abdulaziz University, Jeddah, KSA Email:
[email protected],
[email protected] Received May 4, 2013; revised June 8, 2013; accepted July 11, 2013 Copyright © 2013 Lakhdar Meziani, Saud M. Alsulami. This is an open access article distributed under the Creative Commons At- tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is prop- erly cited. ABSTRACT Let X be a topological vector space and let S be a locally compact space. Let us consider the function space CSX0 , of all continuous functions f : SX , vanishing outside a compact set of S, equipped with an appropriate topology. In this work we will be concerned with the relationship between bounded operators TC:,0 SX X, and X-valued in- tegrals on CSX0 , . When X is a Banach space, such relation has been completely achieved via Bochner integral in [1]. In this paper we investigate the context of locally convex spaces and we will focus attention on weak integrals, namely the Pettis integrals. Some results in this direction have been obtained, under some special conditions on the structure of X and its topological dual X * . In this work we consider the case of a semi reflexive locally convex space and prove that each Pettis integral with respect to a signed measure , on S gives rise to a unique bounded operator TC:,0 SXX , which has the given Pettis integral form.