Guide to Visual Flight Rules in the UK
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FAA) Privacy Impact Assessment Service Availability Prediction Tool (SAPT)
U.S. Department of Transportation Federal Aviation Administraiton (FAA) Privacy Impact Assessment Service Availability Prediction Tool (SAPT) Responsible Official David E. Gray Program Manager [email protected] Approving Official Claire W. Barrett Chief Privacy & Information Asset Officer Office of the Chief Information Officer [email protected] 0 U.S. Department of Transportation Executive Summary On May 28, 2010, the Federal Aviation Administration (FAA) published the Automatic Dependent Surveillance – Broadcast (ADS-B) final rule mandating that aircraft flying in certain controlled airspace be equipped with ADS-B Out capability not later than January 1, 2020.1 In turn, the FAA developed the Service Availability Prediction Tool (SAPT) to assist pilots, dispatchers, and commercial operators in checking their predicted navigation and surveillance availability before a flight as well as handle requests for Air Traffic Control (ATC) authorization pursuant to 14 CFR § 91.225(g). The SAPT has three main components: Receiver Autonomous Integrity Monitoring (RAIM) SAPT, Automatic Dependent Surveillance-Broadcast (ADS-B) SAPT, and ADS-B Deviation Authorization Pre-Flight Tool (ADAPT). This Privacy Impact Assessment (PIA) was developed pursuant to Section 208 of the E-Government Act of 2002 because the SAPT includes a web-based capability to collect and manage Personally Identifiable Information (PII) captured from aircraft operators to facilitate the automated handling of ATC authorization requests and FAA’s responses. What is a Privacy Impact Assessment? The Privacy Act of 1974 articulates concepts for how the federal government should treat individuals and their information and imposes duties upon federal agencies regarding the collection, use, dissemination, and maintenance of personally identifiable information (PII). -
Annexes 1 to 18
The Convention on International Civil Aviation Annexes 1 to 18 International Civil Aviation Organization Annex 1 Personnel Licensing Annex 2 Rules of the Air Annex 3 Meteorological Service for International Air Navigation Annex 4 Aeronautical Charts Annex 5 Units of Measurement to be Used in Air and Ground Operations Annex 6 Operation of Aircraft Annex 7 Aircraft Nationality and Registration Marks Annex 8 Airworthiness of Aircraft Annex 9 Facilitation Annex 10 Aeronautical Telecommunications Annex 11 Air Traffic Services Annex 12 Search and Rescue Annex 13 Aircraft Accident and Incident Investigation Annex 14 Aerodromes Annex 15 Aeronautical Information Services Annex 16 Environmental Protection Annex 17 Security: Safeguarding International Civil Aviation Against Acts of Unlawful Interference Annex 18 The Safe Transport of Dangerous Goods by Air ANNEX 1 to the Convention on International Civil Aviation Personnel Licensing As long as air travel cannot do without pilots and other air and ground personnel, their competence, skills and training will remain the essential guarantee for efficient and safe operations. Adequate personnel training and licensing also instill confidence between States, leading to international recognition and acceptance of personnel qualifications and licences and greater trust in aviation on the part of the traveller. Standards and Recommended Practices for the licensing of flight crew members (pilots, flight engineers and flight navigators), air traffic controllers, aeronautical station operators, maintenance technicians and flight dispatchers , are provided by Annex 1 to the Convention on International Civil Aviation. Related training manuals provide guidance to States for the scope and depth of training curricula which will ensure that the confidence in safe air navigation, as intended by the Convention and Annex 1, is maintained. -
Instrument Rating ‒ Airplane Airman Certification Standards
FAA-S-ACS-8B (with Change 1) U.S. Department of Transportation Federal Aviation Administration Instrument Rating ‒ Airplane Airman Certification Standards June 2018 Flight Standards Service Washington, DC 20591 Acknowledgments The U.S. Department of Transportation, Federal Aviation Administration (FAA), Office of Safety Standards, Regulatory Support Division, Airman Testing Branch, P.O. Box 25082, Oklahoma City, OK 73125 developed this Airman Certification Standards (ACS) document with the assistance of the aviation community. The FAA gratefully acknowledges the valuable support from the many individuals and organizations who contributed their time and expertise to assist in this endeavor. Availability This ACS is available for download from www.faa.gov. Please send comments regarding this document using the following link to the Airman Testing Branch Mailbox. Material in FAA-S-ACS-8B will be effective June 11, 2018. All previous editions of the Instrument Rating – Airplane Airman Certification Standards will be obsolete as of this date for airplane applicants. i Foreword The Federal Aviation Administration (FAA) has published the Instrument Rating – Airplane Airman Certification Standards (ACS) document to communicate the aeronautical knowledge, risk management, and flight proficiency standards for the instrument rating in the airplane category, single-engine land and sea; and multiengine land and sea classes. This ACS incorporates and supersedes FAA-S-ACS-8A Instrument Rating – Airplane Airman Certification Standards. The FAA views the ACS as the foundation of its transition to a more integrated and systematic approach to airman certification. The ACS is part of the Safety Management System (SMS) framework that the FAA uses to mitigate risks associated with airman certification training and testing. -
Advisory Circular (AC) 91-63D
U.S. Department Advisory of Transportation Federal Aviation Circular Administration Subject: TEMPORARY FLIGHT Date: 12/09/2015 AC No: 91-63D RESTRICTIONS (TFR) and Initiated by: AJV-1 Flight Limitations ___________________________ 1. WHAT IS THE PURPOSE OF THIS ADVISORY CIRCULAR? This advisory circular (AC): (1) explains and defines the different flight limitations and Temporary Flight Restrictions (TFRs); (2) describes conditions under which the Federal Aviation Administration (FAA) may establish a flight limitation or TFR area; (3) explains which FAA offices are authorized to issue flight limitations or TFRs; (4) lists the agencies/offices from which the FAA will accept requests to establish a flight limitation or TFR area; and (5) provides an appendix for each type of flight limitation or restriction. 2. EFFECTIVE DATE. This advisory circular is effective on November 9, 2015. 3. CANCELLATION. AC 91-63C, Temporary Flight Restrictions, dated May 20, 2004, is canceled. 4. AUTHORITY. a. The FAA has authority to formulate policy regarding the navigable airspace (Title 49 United States Code, Section 40103). b. Title 14 of the Code of Federal Regulations (14 CFR) parts 91 and 99 contain regulations for addressing temporary flight restrictions. c. Section 352 of Public Law 108-7 and As Amended By Section 521 of Public Law 108-199 5. EXPLANATION OF CHANGES. This AC has been revised to: update FAA office titles; remove outdated information; include an appendix for section 91.139; change the title to include flight limitations; and include other minor editorial changes. 6. RELATED READING MATERIAL. Users of this AC should refer to the following: 12/09/2015 AC No: 91-63D a. -
General Aviation Activity and Airport Facilities
New Hampshire State Airport System Plan Update CHAPTER 2 - AIRPORT SYSTEM INVENTORY 2.1 INTRODUCTION This chapter describes the existing airport system in New Hampshire as of the end of 2001 and early 2002 and served as the database for the overall System Plan. As such, it was updated throughout the course of the study. This Chapter focuses on the aviation infrastructure that makes up the system of airports in the State, as well as aviation activity, airport facilities, airport financing, airspace and air traffic services, as well as airport access. Chapter 3 discusses the general economic conditions within the regions and municipalities that are served by the airport system. The primary purpose of this data collection and analysis was to provide a comprehensive overview of the aviation system and its key elements. These elements also served as the basis for the subsequent recommendations presented for the airport system. The specific topics covered in this Chapter include: S Data Collection Process S Airport Descriptions S Airport Financing S Airport System Structure S Airspace and Navigational Aids S Capital Improvement Program S Definitions S Scheduled Air Service Summary S Environmental Factors 2.2 DATA COLLECTION PROCESS The data collection was accomplished through a multi-step process that included cataloging existing relevant literature and data, and conducting individual airport surveys and site visits. Division of Aeronautics provided information from their files that included existing airport master plans, FAA Form 5010 Airport Master Records, financial information, and other pertinent data. Two important element of the data collection process included visits to each of the system airports, as well as surveys of airport managers and users. -
FAA-H-8083-15, Instrument Flying Handbook -- 1 of 2
i ii Preface This Instrument Flying Handbook is designed for use by instrument flight instructors and pilots preparing for instrument rating tests. Instructors may find this handbook a valuable training aid as it includes basic reference material for knowledge testing and instrument flight training. Other Federal Aviation Administration (FAA) publications should be consulted for more detailed information on related topics. This handbook conforms to pilot training and certification concepts established by the FAA. There are different ways of teaching, as well as performing, flight procedures and maneuvers and many variations in the explanations of aerodynamic theories and principles. This handbook adopts selected methods and concepts for instrument flying. The discussion and explanations reflect the most commonly used practices and principles. Occasionally the word “must” or similar language is used where the desired action is deemed critical. The use of such language is not intended to add to, interpret, or relieve a duty imposed by Title 14 of the Code of Federal Regulations (14 CFR). All of the aeronautical knowledge and skills required to operate in instrument meteorological conditions (IMC) are detailed. Chapters are dedicated to human and aerodynamic factors affecting instrument flight, the flight instruments, attitude instrument flying for airplanes, basic flight maneuvers used in IMC, attitude instrument flying for helicopters, navigation systems, the National Airspace System (NAS), the air traffic control (ATC) system, instrument flight rules (IFR) flight procedures, and IFR emergencies. Clearance shorthand and an integrated instrument lesson guide are also included. This handbook supersedes Advisory Circular (AC) 61-27C, Instrument Flying Handbook, which was revised in 1980. -
Rules for VFR Flight
EUROCONTROL guidance notes for pilots 1. Rules for VFR Flight AIRSPACE INFRINGEMENT when aircraft are on converging courses. detailed requirements for both VFR and Infringement of controlled airspace, dan- If there is a risk of collision, both pilots IFR vary depending on the class of air- ger and restricted areas etc. is a serious must act in accordance with these space in which the aircraft is flying. aviation hazard and occurs when an air- General Rules. A pilot who is required to craft enters the airspace without permis- give way should alter course to the right, VISUAL FLIGHT RULES sion. This happens several times a day in and one who has the right of way should Internationally, a pilot is required to stay the busiest areas of European airspace. maintain course and speed, but should more than 1000 feet above any obstacles Careful planning, and accurately flying also be prepared to take avoiding action in a “congested area” or above any large the plan, are the best means of avoiding if the other does not give way. collection of people. Over uncongested such infringements. However, it is impor- areas, he or she must stay more than 500 tant that pilots understand the rules they feet above the ground. Also, loss of are expected to follow. engine power needs to be considered when operating a single engine aircraft. This is one of a series of Guidance Notes The UK is unique. In that country, pilots (GN) intended to help you keep out of following VFR may fly below 500 feet, but trouble.The others are listed at the foot of they must stay more than 500 feet away the next page. -
6.3 a Real-Time Automated Ceiling and Visibility Analysis System
6.3 A REAL-TIME AUTOMATED CEILING AND VISIBILITY ANALYSIS SYSTEM Richard Bateman∗, Paul Herzegh, Gerry Wiener, and Jim Cowie NCAR Research Applications Laboratory (RAL), Boulder, CO 1. INTRODUCTION Flight Rules (VFR) flight is permitted; that is, From 1994 through 2003, impacted ceiling and conditions in which pilots have sufficient visibility visibility (C&V) was the second-most prevalent (vertical and horizontal) to fly the aircraft without cause of weather-related accidents in the United reference to instruments and can maintain visual States [AOPA, 2006]. These C&V-related separation from terrain and other aircraft. accidents predominantly affect the general Instrument Flight Rules (IFR) take effect when aviation and commuter/air taxi communities, and the ceiling is less than or equal to 1000’ above often could be avoided if existing weather data ground level (AGL), or when the visibility is ≤3 from a variety of sources could be more effectively statute miles. used in the pilot pre-flight and in-flight decision- Flight category is a derived field, determined making processes. by the lowest (worst) condition of either ceiling or In this paper, the National Ceiling and Visibility visibility. There are four flight categories: VFR, (NCV) Research Team of the Federal Aviation MVFR (Marginal Visual Flight Rules), IFR, and Administration’s Aviation Weather Program will LIFR (Low Instrument Flight Rules). The introduce a real-time continental United States conditions for each are summarized in Table 1. (CONUS) C&V analysis product that is planned for release to the aviation community in 2008. Flight Rules Ceiling (ft) Visibility (mi) This new product combines METAR surface observations and GOES satellite cloud information Visual (VFR) > 3000 > 5 to yield what can be described as a space-cast: an Marginal Visual < or = 3000 < or = 5 analysis of CONUS C&V conditions on a high- (MVFR) resolution (5-km) grid. -
Flight Training
Search HOW IT ALL WORKS Hello 01190268 81 View/modify your account info View your ASF Course Transcript Airspace LOGOUT All of the open sky covering the United States — from less than an Member Tools inch off the ground all the way to outer space — is part of America's airspace. From A to G All of this airspace is divided into several standardized types, ranging from A through G — with A being the most restrictive and G the least restrictive. Advertisement Each type of airspace has its own required level of air traffic control services and its own minimum requirements for pilot qualifications, aircraft equipment, and weather conditions. In addition, there is other airspace reserved for special purposes called special use airspace (SUA). Controlled and Uncontrolled Within the United States, airspace is classified as either controlled or uncontrolled. Controlled airspace will have specific defined dimensions (e.g. altitude ranges or vertical boundaries, and an applicable surface area or horizontal boundaries). Within controlled airspace, air traffic control (ATC) services are provided to all pilots operating under instrument flight rules (IFR), because they are flying solely by reference to instrument indications. The services also are provided to some pilots operating under visual flight rules (VFR) even though they are using points on the ground to navigate.Map of airspace examples Class A Scheduling cancellations Class A airspace covers the entire United States and lies between 18,000 feet and 60,000 feet mean sea level (msl). All of the jetways (jet routes) are in Class A airspace. Class A airspace is primarily used by jets and airliners traveling over long distances between major cities. -
Chapter 7. Airspace
Guam and CNMI Military Relocation Final EIS (July 2010) CHAPTER 7. AIRSPACE 7.1 AFFECTED ENVIRONMENT 7.1.1 Definition of Resource 7.1.1.1 Airspace Management Airspace management is defined as directing, controlling, and handling flight operations in the volume of air that overlies the geopolitical borders of the United States (U.S.) and its territories. In the U.S., airspace is a resource that is managed by the Federal Aviation Administration (FAA) with established policies, designations, and flight rules to protect aircraft on the airfield, en route, in Special Use Airspace (SUA) identified for military and other governmental activities, in other military training airspace, and for ground training activities that require the use of airspace over ground firing areas or other hazardous activities on the ground that impact the airspace overlying the activity. The FAA Western Service Area (Renton, Washington) provides guidance and control of U.S. territory airspace in the Pacific that includes Guam and Commonwealth of the Northern Mariana Islands (CNMI). Guam Air Traffic Control, Guam Approach Control and Guam Departure Control manage air traffic in Guam. Andersen Air Force Base (AFB) also has tower controllers. For airspace outside of the U.S. and its territories, rules are agreed to by members of the International Civil Aviation Organization, an agency of the United Nations, that codifies the principles and techniques of international air navigation and fosters the coordination, planning and development of international air transport to ensure safe and orderly growth. The practices used to manage airspace consider how the airspace is designated, used, and administered to best accommodate the individual and common needs of the military, commercial organizations, and private aviation enthusiasts. -
Section I Air Defense Identification Zones
International Law Studies—Volume 51 Situation, Documents, and Commentary on Recent Developments in the International Law of the Sea Brunson MacChesney The thoughts and opinions expressed are those of the authors and not necessarily of the U.S. Government, the U.S. Department of the Navy or the Naval War College. SECTION I AIR DEFENSE IDENTIFICATION ZONES 578 3 SECTION I AIR DEFENSE IDENTIFICATION ZONES A. United States Air Defense Identification Zone 1. Note. By Public Law 778 of September 9, 1950, the Civil Aeronautics Act was amended by adding Subchapter XII, Security Provisions, Sections 1201-1205, which furnish the statutory authority for the domestic and coastal air defense identification zones which have been promulgated. The text of Subchapter XII may be found at 64 Stat. 825 and 49 U.S.C., Sections 701- 705 (U.S. Code, 1952 Edition, page 7247). The President, in Executive Order No. 10197 (Ibid., page 7247; 15 Federal Register 9180) of 21 December 1950, determined that action under this Subchapter was required in the interests of national security, and delegated authority to the Secretary of Commerce, who, in turn, delegated the authority to the Administrator of Civil Aeronautics. (16 Federal Register 99, published 4 January 1951.) Part 620 of the Regulations of the Administrator, establishing the Air Defense Iden- tification Zones, was first promulgated on 27 December 1950 (15 Federal Register 9319). Since that time, there have been various amendments. The latest revision, effective 1 December 1955, is reprinted below (20 F.R. 8184). Amendments made to these Regulations up to August 1957 may be found in 21 Federal Register 9284 and 10310. -
GPS-Squitter Automatic Dependent Surveillance Broadcast: Flight Testing in the Gulf of Mexico
Project Report ATC-235 GPS-Squitter Automatic Dependent Surveillance Broadcast: Flight Testing in the Gulf of Mexico R. E. Boisvert M. L. Burrows S. R. Bussolari G. H. Knittel M. R. Owen K. W. Saunders 13 October 1995 Lincoln Laboratory MASSACHUSETTS INSTITUTE OF TECHNOLOGY LEXINGTON, MASSACHUSETTS Prepared for the Federal Aviation Administration, Washington, D.C. 20591 This document is available to the public through the National Technical Information Service, Springfield, VA 22161 This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. TECHNICAL REPORT STANDARD TITLE PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. ATC-235 4. Title and Subtitle 5. Report Date 13 October 1995 GPS-Squitter Automatic Dependent Surveillance Broadcast: 6. Performing Organization Code Flight Testing in the Gulfof Mexico 7. Author(s) 8. Performing Organization Report No. R.E. Boisvert, M.L. Burrows, S.R. Bussolari, G.H. Knittel, M.R. Owen, and ATC-235 K.W. Saunders 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Lincoln Laboratory, MIT 244 Wood Street 11. Contract or Grant No. Lexington, MA 02173-9108 DTFAO 1-93-Z-02012 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Department of Transportation Federal Aviation Administration Systems Research and Development Service 14. Sponsoring Agency Code Washington, DC 20591 15. Supplementary Notes This report is based on studies performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract Fl9628-95-C-0002.