Animal Information Africa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distribution, Utilization and Management of the Extra-Limital Common Warthog (Phacochoerus Africanus) in South Africa
Distribution, utilization and management of the extra-limital common warthog (Phacochoerus africanus) in South Africa Monlee Swanepoel Dissertation presented for the degree of Doctor of Philosophy (Conservation Ecology and Entomology) in the Faculty of AgriSciences, Stellenbosch University Promoter: Prof Louwrens C. Hoffman Co-Promoter: Dr. Alison J. Leslie March 2016 Stellenbosch University https://scholar.sun.ac.za Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained herein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously submitted it, in its entirety or in part, for obtaining any qualification. Date: March 2016 Copyright © 2016 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za Stellenbosch University http://scholar.sun.ac.za Acknowledgements I wish to express my sincere gratitude and appreciation to the following persons and institutions: My supervisors, Dr. Alison J. Leslie and Prof. Louwrens C. Hoffman for invaluable assistance, expertise, contribution and support and patience. The Meat Science team of Department of Animal Sciences at Stellenbosch University, including the technical and support staff for their extensive assistance, support and encouragement Academics, staff and colleagues of this institution and others for their contribution and assistance. An especial thank you to Prof. Martin Kidd, Marieta van der Rijst, Nina Muller, Erika Moelich, Lisa Uys, Gail Jordaan, Greta Geldenhuys, Michael Mlambo, Janine Booyse, Cheryl Muller, John Achilles, Dr. -
Hystrix Africaeaustralis)
Reproduction in captive female Cape porcupines (Hystrix africaeaustralis) R. J. van Aarde Mammal Research Institute, University ofPretoria, Pretoria 0002, South Africa Summary. Captive females attained sexual maturity at an age of 9\p=n-\16months and con- ceived for the first time when 10\p=n-\25months old. Adult females were polyoestrous but did not cycle while lactating or when isolated from males. The length of the cycle varied from 17 to 42 days (mean \m=+-\s.d. 31\m=.\2\m=+-\6\m=.\5days; n = 43) and females experienced 3\p=n-\7 sterile cycles before conceiving. Pregnancy lasted for 93\p=n-\94days (93\m=.\5\m=+-\0\m=.\6days; N = 4) and litter intervals varied from 296 to 500 days (385 \m=+-\60\m=.\4;n = 10). Litter size varied from 1 to 3 (1\m=.\5\m=+-\0\m=.\66;n = 165) and the well-developed precocial young weighed 300\p=n-\400g (351 \m=+-\47\m=.\4g; n= 19) at birth. Captive females reproduced throughout the year with most litters (78\m=.\7%;n = 165) being produced between August and March. Introduction Cape porcupines (Hystrix africaeaustralis) inhabit tropical forests, woodlands, grassland savannas, semi-arid and arid environments throughout southern Africa. Despite this widespread distribution little attention has been given to these nocturnal, Old World hystricomorph rodents, which shelter and breed in subterranean burrows, rock crevices and caves. Some information on reproduction in female porcupines has been published on the crested porcupine (H. cristata) (Weir, 1967), the Himalayan porcupine (H. hodgsoni) (Gosling, 1980) and the Indian porcupine (H. -
A National Park in Northern Rhodesia 15
A National Park in Northern Rhodesia 15 A NATIONAL PARK IN NORTHERN RHODESIA By a Proclamation dated 20th April, 1950, the Governor of Northern Rhodesia has established a National Park, to be known as the Kafue National Park. This new park covers some 8,650 square miles roughly in the central Kafue basin, between latitudes 14° and 16° 40' S. It contains a wide range of country from the comparatively drv sandy lands of the south to the big rivers, swamps, and heavy timber of the northern section. The magnificent Kafue River dominates the whole central portion, adding scenic beauty to the attraction of wild life. The park contains representatives of most species of the fauna of Northern Rhodesia. Primates are represented by the Rhodesian Baboon, the Vervet Monkey, and the Greater and Lesser Night-Apes. There are Elephant and Black Rhinoceros, Buffalo, Lion, Leopard, Cheetah, and numbers of the smaller carnivora. Antelope include Eland, Sable, Roan, Liehtenstein's Hartebeest, Blue Wildebeest, Kudu, Defassa Waterbuck, Bushbuck, Reedbuck, Puku, Impala, Oribi, Common, Blue, and Yellow-backed Duikers, Klipspringer, and Sharpe's Stein- buck. There are Red Lechwe and Sitatunga in the Busango Swamp in the north, Hippopotamus in numbers in the Kafue and its larger tributaries. Zebra are common, Warthog and Bushpig everywhere. Birds are abundant. The park is uninhabited apart from certain small settle- ments, on a limited section of the Kafue River, belonging to the indigenous Africans under their tribal chief Kayingu. These people must be accorded their traditional local hunting rights, but such will affect only a small fraction of the whole vast wild area. -
Site Report: Kafa Biosphere Reserve and Adjacent Protected Areas
Site report: Kafa Biosphere Reserve and adjacent Protected Areas Part of the NABU / Zoo Leipzig Project ‘Field research and genetic mapping of large carnivores in Ethiopia’ Hans Bauer, Alemayehu Acha, Siraj Hussein and Claudio Sillero-Zubiri Addis Ababa, May 2016 Contents Implementing institutions and contact persons: .......................................................................................... 3 Preamble ....................................................................................................................................................... 4 Introduction .................................................................................................................................................. 4 Objective ....................................................................................................................................................... 5 Description of the study site ......................................................................................................................... 5 Kafa Biosphere Reserve ............................................................................................................................ 5 Chebera Churchura NP .............................................................................................................................. 5 Omo NP and the adjacent Tama Reserve and Mago NP .......................................................................... 6 Methodology ................................................................................................................................................ -
Profile of Back Bacon Produced from the Common Warthog
foods Article Profile of Back Bacon Produced From the Common Warthog Louwrens C. Hoffman 1,2,* , Monlee Rudman 1,3 and Alison J. Leslie 3 1 Department of Animal Sciences, Faculty AgriSciences, Mike de Vries Building, Private Bag X1, Matieland, Stellenbosch University, Stellenbosch 7602, South Africa; [email protected] 2 Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD 4108, Australia 3 Department of Conservation Ecology and Entomology, Faculty AgriSciences, JS Marais Building, Private Bag X1, Matieland, Stellenbosch University, Stellenbosch 7602, South Africa; [email protected] * Correspondence: Louwrens.hoff[email protected]; Tel.: +61-4-1798-4547 Received: 7 April 2020; Accepted: 9 May 2020; Published: 15 May 2020 Abstract: The common warthog (Phacochoerus africanus) has historically been hunted and consumed by rural communities throughout its distribution range in Africa. This study aims to develop a processed product from warthog meat in the form of back bacon (Longissimus thoracis et lumborum) as a healthy alternative meat product and to determine its chemical and sensory characteristics derived from adult and juvenile boars and sows. The highest scored attributes included typical bacon and smoky aroma and flavor, and salty flavor, as well as tenderness and juiciness. Neither sex nor age influenced the bacon’s chemical composition; the bacon was high in protein (~29%) and low in total fat (<2%). Palmitic (C16:0), stearic (C18:0), linoleic (C18:2!6), oleic (C18:1!9c), and arachidonic (C20:4!6) were the dominant fatty acids. There was an interaction between sex and age for the PUFA:SFA ratio (p = 0.01). -
Visual Fields in Hornbills: Precision-Grasping and Sunshades
Ibis (2004), 146, 18–26 Blackwell Publishing Ltd. Visual fields in hornbills: precision-grasping and sunshades GRAHAM R. MARTIN1* & HENDRI C. COETZEE2 1School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 2Ground Hornbill Research and Conservation Project, Private Bag X1644, Warmbaths, 0480, Republic of South Africa Retinal visual fields were determined in Southern Ground Hornbills Bucorvus leadbeateri and Southern Yellow-billed Hornbills Tockus leucomelas (Coraciiformes, Bucerotidae) using an ophthalmoscopic reflex technique. In both species the binocular field is relatively long and narrow with a maximum width of 30° occurring 40° above the bill. The bill tip projects into the lower half of the binocular field. This frontal visual field topography exhibits a number of key features that are also found in other terrestrial birds. This supports the hypothesis that avian visual fields are of three principal types that are correlated with the degree to which vision is employed when taking food items, rather than with phylogeny. However, unlike other species studied to date, in both hornbill species the bill intrudes into the binocular field. This intrusion of the bill restricts the width of the binocular field but allows the birds to view their own bill tips. It is suggested that this is associated with the precision-grasping feeding technique of hornbills. This involves forceps-like grasping and manipulation of items in the tips of the large decurved bill. The two hornbill species differ in the extent of the blind area perpendicularly above the head. Interspecific comparison shows that eye size and the width of the blind area above the head are significantly cor- related. -
African Gray Hornbill Class: Aves
Tockus nasutus nasutus African Gray Hornbill Class: Aves. Order: Coraciiformes. Family: Bucerotidae. Other names: Gray hornbill, hornbill Physical Description: Male—dun-colored with a central light stripe from hind neck to rump; head, throat, neck more or less gray with a broad white stripe over eye to nape; wing feathers and coverts (feathers covering the bases of the quills of the wings and tail) edged with whitish; outer tail feathers tipped white; underside creamy white; bill black with a splash of cream at base of upper mandible. Female—smaller, bill is colored red at tip, and greater part of the upper mandible is yellow. Hornbills are about 18 inches, males being larger than females. The wingspan of the gray hornbill is 7.5- 10 inches and weighs 5-9oz. Diet in the Wild: bird eggs and nestlings, insects, rodents, lizards, frogs, supplemented with small fruit and seeds especially during the dry season. Diet at the Zoo: Apples, papayas, grapes, hard-boiled eggs, mealworms, softbill diet, pinkie mice Habitat & Range: Sub-Saharan and Eastern Africa into Arabia, living in open woodlands and tree hollows Life Span: Up to 25 years Perils in the wild: Birds of prey, some carnivores, man, habitat destruction Physical Adaptations: Hornbills have huge, two-tiered beaks that cause the birds to appear top-heavy. The bill is long forming dexterous forceps. The cutting edges are serrated for breaking up food. The casque surmounting the bill is a narrow ridge that may reinforce the upper mandible. In spite of its heavy appearance, the structure is a light skin of keratin overlying a bony support. -
Kingfishers to Mousebirds
3.8 Kingshers to mousebirds - Atlas of Birds uncorrected proofs Copyrighted Material Kingfishers to Mousebirds he orders featured on this spread include many of the planet’s most P Size of orders Trogoniformes: trogons R Teye-catching bird families. Some, such as kingfishers and rollers, Number of species in order Trogons make up a single family, the Trogonidae, are known for their dazzling plumage. Others, such as toucans and Percentage of total bird species which numbers seven genera, including the spectacular quetzals (Pharomachrus spp.) of hornbills, sport preposterously big bills. Though smaller species Coraciiformes South and Central America. Their weak feet are in some groups may superficially resemble songbirds, all have a 403 species unique among animals in having a heterodactyl number of key anatomical differences from the Passeriformes, and 4.1% toe arrangement: first and second toes facing none can sing. backwards; third and fourth toes forwards. They are colourful but retiring birds that These orders also share many features of their breeding behaviour, inhabit tropical forests worldwide – with the with the majority of families and species nesting in holes, and many greatest diversity in the Neotropics – and use performing flamboyant courtship displays. The exception to this rule Piciformes their short, broad bill to feed on insects and are the Coliiformes of Sub-Saharan Africa, which are neither colourful 403 species fruit, generally gleaned from the branches in 4.1% a brief fluttering flight. Trogons are typically nor cavity nesters – they build a simple cup-shaped nest in foliage – and have located by their soft, insistent call, given ) an evolutionary history that sets them apart from other near-passerines. -
Digestive Physiology, Resting Metabolism and Methane Production of Captive Indian Crested Porcupine (Hystrix Indica)
Journal of Animal and Feed Sciences, 28, 2019, 69–77 https://doi.org/10.22358/jafs/102741/2019 The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna Digestive physiology, resting metabolism and methane production of captive Indian crested porcupine (Hystrix indica) K.B. Hagen1, S. Hammer2, S. Frei1, S. Ortmann3, R. Głogowski4, M. Kreuzer5 and M. Clauss1,6 1 University of Zurich, Vetsuisse Faculty, Clinic for Zoo Animals, Exotic Pets and Wildlife, Winterthurerstr. 260, 15 8057 Zurich, Switzerland 2 Naturschutz-Tierpark Görlitz, Zittauerstrasse 43, D-02826 Görlitz, Germany 3 Leibniz Instiute for Zoo and Wildlife Research (IZW) Berlin, Alfred-Kowalke Str. 17, 10315 Berlin, Germany 4 Warsaw University of Life Sciences (WULS) – SGGW, Faculty of Animal Sciences, Department of Animal Breeding, Ciszewskiego 8, 02-786 Warsaw, Poland 5 ETH Zurich, Institute of Agricultural Sciences, Universitätsstr. 2, 8092 Zurich, Switzerland KEY WORDS: Hystricomorpha, Rodentia, ABSTRACT. Limited physiological measurements exist for the digestive mean retention time, digestibility, basal physiology of porcupines. We measured CH4 emission in three captive Indian metabolic rate, colonic separation mechanism crested porcupines (Hystrix indica; 16.1 ± 2.7 kg) fed a diet of pelleted lucerne, and measured feed intake, digestibility, and digesta mean retention time (MRT) of a solute and three particle markers (<2, 10 and 20 mm). Marker excretion patterns suggested secondary peaks indicative of caecotrophy, with MRTs of 26.4 h for the solute and 31.5, 26.8 and 26.2 h for the three particle markers, respectively. At a dry matter intake of 58 ±10 g/kg body mass0.75/day, Received: 29 November 2018 porcupines digested 49 and 35% organic matter and neutral detergent fibre, Revised: 9 January 2019 respectively, which is in the lower range of that expected for horses on a similar Accepted: 18 February 2019 diet. -
Amazing Species: Desert Warthog
© Yvonne A. de Jong & Thomas M. Butynski A. de Jong & Yvonne © Amazing Species: Desert Warthog The Desert Warthog, Phacochoerus aethiopicus, is listed as ‘Least Concern’ on the IUCN Red List of Threatened SpeciesTM. Only recently has it become widely accepted that there are two species of warthog: the Desert Warthog and the Common Warthog, Phacochoerus africanus. The present geographic distribution of the former is not well known, but is presently known from eastern Kenya, south-eastern Ethiopia and Somalia. Peculiarly, the Desert Warthog lacks incisors – one of the traits that make it the most specialized of the Geographical range world’s pigs. www.iucnredlist.org wildpigspecialistgroup The current conservation status of the Desert Warthog is poorly known. The species is www.wildsolutions.nl present at many localities in Kenya where it is common in some places, particularly where Help Save Species Islam is the predominant religion. Threats to the long-term survival of this species are www.arkive.org poaching, habitat degradation and competition for water with humans and livestock. The Desert Warthog is probably Africa’s least-studied large mammal. Present research is focused on assessing the distribution and conservation status of this species. Enforcement of anti-poaching laws and effective management of protected areas and their buffer zones are key to the long-term survival of this impressive wild pig species. The production of the IUCN Red List of Threatened Species™ is made possible through the IUCN Red List Partnership.. -
Traditional Medicinal Animal Use by Xhosa and Sotho Communities in the Western Cape Province, South Africa Willem A
Nieman et al. Journal of Ethnobiology and Ethnomedicine (2019) 15:34 https://doi.org/10.1186/s13002-019-0311-6 RESEARCH Open Access Traditional medicinal animal use by Xhosa and Sotho communities in the Western Cape Province, South Africa Willem A. Nieman1* , Alison J. Leslie1 and Anita Wilkinson2 Abstract Background: The use of animals and animal-derived materials in traditional medicine constitutes an important part of the belief systems of indigenous African cultures. It is believed to be rapidly expanding in South Africa, where traditional healers are estimated to outnumber western doctors by 2000:1 in some areas, with an overall clientele consisting of 60–80% of South African citizens. Despite concerns about the impact of the trade in traditional medicine on biodiversity, there has been only limited research on this topic in South Africa. Methods: Traditional Xhosa and Sotho healers operating from impoverished, rural communities in the Boland Region of the Western Cape Province were consulted to provide a comprehensive inventory of the number and frequency of animals used and sold. Species richness estimators, diversity indices, and a relative cultural importance (RCI) index were used to highlight species of concern and assess market dynamics. Results: A total of 26 broad use categories for 12 types of animal parts or products from 71 species or morphospecies were recorded. The most commonly sold items were skin pieces, oil or fat, and bones. Results showed that leopard, chacma baboon, Cape porcupine, monitor lizard species, puff adder, African rock python, and black-backed jackal were the species most used in the traditional medicinal trade. -
African Hornbills: Keystone Species Threatened by Habitat Loss, Hunting and International Trade
Ostrich 2007, 78(3): 609–613 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved OSTRICH ISSN 0030–6525 doi: 10.2989/OSTRICH.2007.78.3.7.318 African hornbills: keystone species threatened by habitat loss, hunting and international trade Pepper W Trail US Fish and Wildlife Service, National Fish and Wildlife Forensics Laboratory, 1490 E Main Street, Ashland, OR 97520, USA e-mail: [email protected] Africa is home to 23 of the world’s 54 hornbill species, including the largest members of the family, the ground hornbills. None of Africa’s hornbills are currently considered to be at significant risk of extinction by IUCN, and none are listed under the Convention on International Trade in Endangered Species (CITES). However, there is evidence for serious declines of African forest hornbills due to habitat loss and fragmentation, and to unsustainable exploitation for bushmeat. In addition, this paper documents a previously unreported international trade involving importation of African hornbills and their parts into the United States. In the absence of CITES reporting requirements, it is difficult to estimate the magnitude of this trade, but it appears to represent an additional threat to African hornbills, particularly large forest-dwelling species of the genera Bycanistes and Ceratogymna. Given this international trade, and other known threats to African forest-dwelling hornbills, the status of these species is in urgent need of review. Introduction Hornbills are among the world’s most recognisable birds, with This lack of conservation concern probably reflects the many species exhibiting large body size, spectacular fact that all African hornbills are continental species with enlarged casques, striking black-and-white plumage, and extensive geographic ranges.