Rmtr/Vwiow a N E W S B U L L E T I N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ferraccioli Etal2008.Pdf
Tectonophysics 478 (2009) 43–61 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Magmatic and tectonic patterns over the Northern Victoria Land sector of the Transantarctic Mountains from new aeromagnetic imaging F. Ferraccioli a,⁎, E. Armadillo b, A. Zunino b, E. Bozzo b, S. Rocchi c, P. Armienti c a British Antarctic Survey, Cambridge, UK b Dipartimento per lo Studio del Territorio e delle Sue Risorse, Università di Genova, Genova, Italy c Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy article info abstract Article history: New aeromagnetic data image the extent and spatial distribution of Cenozoic magmatism and older Received 30 January 2008 basement features over the Admiralty Block of the Transantarctic Mountains. Digital enhancement Received in revised form 12 November 2008 techniques image magmatic and tectonic features spanning in age from the Cambrian to the Neogene. Accepted 25 November 2008 Magnetic lineaments trace major fault zones, including NNW to NNE trending transtensional fault systems Available online 6 December 2008 that appear to control the emplacement of Neogene age McMurdo volcanics. These faults represent splays from a major NW–SE oriented Cenozoic strike-slip fault belt, which reactivated the inherited early Paleozoic Keywords: – Aeromagnetic anomalies structural architecture. NE SW oriented magnetic lineaments are also typical of the Admiralty Block and fl Transantarctic Mountains re ect post-Miocene age extensional faults. To re-investigate controversial relationships between strike-slip Inheritance faulting, rifting, and Cenozoic magmatism, we combined the new aeromagnetic data with previous datasets Cenozoic magmatism over the Transantarctic Mountains and Ross Sea Rift. -
Air and Shipborne Magnetic Surveys of the Antarctic Into the 21St Century
TECTO-125389; No of Pages 10 Tectonophysics xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Air and shipborne magnetic surveys of the Antarctic into the 21st century A. Golynsky a,⁎,R.Bellb,1, D. Blankenship c,2,D.Damasked,3,F.Ferracciolie,4,C.Finnf,5,D.Golynskya,6, S. Ivanov g,7,W.Jokath,8,V.Masolovg,6,S.Riedelh,7,R.vonFresei,9,D.Youngc,2 and ADMAP Working Group a VNIIOkeangeologia, 1, Angliysky Avenue, St.-Petersburg, 190121, Russia b LDEO of Columbia University, 61, Route 9W, PO Box 1000, Palisades, NY 10964-8000, USA c University of Texas, Institute for Geophysics, 4412 Spicewood Springs Rd., Bldg. 600, Austin, Texas 78759-4445, USA d BGR, Stilleweg 2 D-30655, Hannover, Germany e BAS, High Cross, Madingley Road, Cambridge, CB3 OET, UK f USGS, Denver Federal Center, Box 25046 Denver, CO 80255, USA g PMGE, 24, Pobeda St., Lomonosov, 189510, Russia h AWI, Columbusstrasse, 27568, Bremerhaven, Germany i School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH, 43210, USA article info abstract Article history: The Antarctic geomagnetics' community remains very active in crustal anomaly mapping. More than 1.5 million Received 1 August 2011 line-km of new air- and shipborne data have been acquired over the past decade by the international community Received in revised form 27 January 2012 in Antarctica. These new data together with surveys that previously were not in the public domain significantly Accepted 13 February 2012 upgrade the ADMAP compilation. -
In the Wake of Mawson #1873 8 January - 6 February 2018
In the Wake of Mawson #1873 8 January - 6 February 2018 MV Akademik Shokalskiy Expedition Team Samuel Blanc (Expedition Leader, Lecturer and Zodiac driver) Dr Nikki Rumney (Hotel Manager and Zodiac driver) Agnés Breniére (Lecturer and Zodiac driver) Dr Dean Miller (Lecturer, Guide and Zodiac driver, compiler of slide show) Dr David Harrowfield (Lecturer history; guide; compiler of Log & Captain’s Blog; wine steward) Jenny Ridgen (NZ Government Representative - Department of Conservation) Connor Arcus (Chef) Bruce Thomason (Chef) Dr Suzanne Knapp (Hospital) Crew Captain Igor Kiselev Chief Mate Nikolay Velichko 2nd Mate Evgenii Berzovskov 3rd Mate Dimitri Danilenok Chief Engineer Nail Makhmutov Chief Electrical Engineer Oleg Zlenko Chief Stewardess Natalya Ivanova Day 1: Monday 8 January Invercargill, New Zealand At long last our expedition, with 46 of us all keen to visit the Sub-Antarctic islands and to experience the wonders of Antarctica, is about to get underway. Some of us had arrived in the southern city of Invercargill on the fertile plains of Southland yesterday and the remainder today. Apart for a fast moving front with rain and wind last evening, today was beautiful and we were soon comfortably settled in the Kelvin Hotel. The expedition team had arrived from Christchurch on Sunday. At the Kelvin Hotel we enjoyed meeting fellow passengers and Nathan Russ who first visited Antarctica when nine years old and became Head Chef when 18. Nathan has for the past decade been Operations Manager for the company. The ship’s Hotel Manager Nikki from Cairns Australia and seasoned Antarctican and Expedition Leader, Samuel Blanc, who has wintered at the French Antarctic station, Dumont D’Urville, was introduced along with the New Zealand Government Department of Conservation Representative, Jenny Ridgen and other members of his team. -
Office of Polar Programs
DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1 -
DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION (CEE) for ANDRILL Mcmurdo Sound Portfolio Madrid, 9/20 De Junio 2003
XXVI ATCM Working Paper WP-002-NZ Agenda Item: IV CEP 4a NEW ZEALAND Original: English DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION (CEE) FOR ANDRILL McMurdo Sound Portfolio Madrid, 9/20 de junio 2003 ANDRILL - The McMurdo Sound Portfolio An international research effort with the participation of Germany, Italy, New Zealand, the United Kingdom and the United States of America. DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION (CEE) FOR ANDRILL McMurdo Sound Portfolio Antarctica New Zealand Private Bag 4745, Christchurch Administration Building International Antarctic Centre 38 Orchard Road, Christchurch January 22, 2003 2 CONTENTS 1. NON-TECHNICAL SUMMARY.....................................................................................11 2. INTRODUCTION...........................................................................................................13 2.1 What is ANDRILL?...............................................................................................13 2.2 The CEE process.................................................................................................15 2.2.1 What is a CEE and why is it needed?....................................................15 2.2.2 Process for preparing the Draft CEE .....................................................15 3. DESCRIPTION OF PROPOSED ACTIVITES ..............................................................17 2.1 Purpose and Need...............................................................................................17 3.1.1 Scientific justification..............................................................................17 -
The Recent Nature of the Siberian Pole of Cold*
T H E RECENT NATU R E OF T H E S IB E RI AN PO LE O F CO L D* By 1. P. GERASIMOV (I nstitute of Geography, Academy of Sciences of the U.S.S.R., Moscow) ABSTRACT. The Siberian pole of cold is situated in the extreme north-east of Eurasia (in the region of the Cherskiy mountain system, in the upper parts of the basins of the Yana, Indigirka and K o lyma Rivers). Particularl y low air and soil temperatures have been observed in the intermontane areas. Among these localities is the famous O ymyakon, where the lowest minimum temperature in the Northern Hemisphere has been recorded. In the climate of this area extreme aridity, connected with the intracontinental position of thc territory, is combined with intense cold. In the two highest massifs (Ulakhan-Chistayand Suntar-Khayata) small centres of recent glacierization (chiefly kars) are developed ; there are also distinct traces of a more extensive older mountain g laciation. In the intermontane areas and on the principal level of the dissected hilly peneplain positive indications of a former glaciation are absent. However, the recent cryogenic phenomena r epresented by fossil ice, permafrost, taryns, as well as thermokarstic, solifluction and congelation features, are very abundant and diverse. The widespread development of all th ese features gives this territory a periglacial aspect, and also provides the possibility of using the study of many recent phenomena for palaeogeographical purposes. From this point of view, the processes leading to the formation of loess deposits (cryogenic facies) and the formation of structural and thixotropic soils are of particular interest. -
The Commonwealth Trans-Antarctic Expedition 1955-1958
THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword .................................................................................................................................. -
A NEWS BULLETIN Published Quarterly by the NEW ZEALAND
A N E W S B U L L E T I N p u b l i s h e d q u a r t e r l y b y t h e NEW ZEALAND ANTARCTIC SOCIETY THESE VISITORS TO LAKE FRYXELL IN THE TAYLOR VALLEY ARE LIKE DWARFS AGAINST THE TOWERING CANADA GLACIER WHICH FLOWS DOWN FROM THE ASGAARD RANGE. —Photo by R. K. McBride. Antarctic Division, D.S.I.R. September 1972 «i (Successor to "Antarctic News Bulletin") Vol. 6, No. 7 67th ISSUE Editor: H. F. GRIFFITHS, 14 Woodchester Avenue, Christchurch 1. Assistant Editor: J. M. CAFFIN, 35 Chepstow Avenue, Christchurch 5. Address all contributions, enquiries, etc., to the Editor. All Business Communications, Subscriptions, etc., to: The Secretary, New Zealand Antarctic Society, P.O. Box 1223, Christchurch, N.Z CONTENTS ARTICLES SECOND-IN-COMMAND POLAR ACTIVITIES NEW ZEALAND 222, 225, 231, 240, 243, 251, 253 U.S.A 226, 232, 252 AUSTRALIA 236 UNITED KINGDOM 234 U.S.S.R 238, 239, 241 SOUTH AFRICA 242, 250 CZECHOSLOVAKIA 235 SUB-ANTARCTIC CAMPBELL ISLAND GENERAL LONE TRIP TO POLE DISCOVERY EXPEDITION LETTERS WHALING QUOTAS FIXED ANTARCTIC BOOKSHELF Fifteen years have passed since the International Geophysical Year of 1957-58 and it might be thought that the Antarctic Continent, through the continuing research carried out by the participating nations, would by now have yielded up all its secrets. But this is a false premise; new discoveries in the various branches of science have either highlighted gaps in our knowledge or have pointed the way to investigation in new fields. -
USGS Open-File Report 2007-1047, Short Research Paper 075, 4 P.; Doi: 10.3133/Of2007-1047.Srp075
U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 075, doi:10.3133/of2007-1047.srp075 Aeromagnetic search for Cenozoic magmatism over the Admiralty Mountains Block (East Antarctica) 1 2 3 4 5 6 E. Armadillo, F. Ferraccioli, A. Zunino, E. Bozzo, S. Rocchi, and P. Armienti 1Dipartimento per lo Studio del Territorio e delle Sue Risorse, Università di Genova, V.le Benedetto XV 5,16132 Genova, Italy ([email protected]) 2British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK ([email protected]) 3Dipartimento per lo Studio del Territorio e delle Sue Risorse, Università di Genova, V.le Benedetto XV 5,16132 Genova, Italy ([email protected]) 4Dipartimento per lo Studio del Territorio e delle Sue Risorse, Università di Genova, V.le Benedetto XV 5,16132 Genova, Italy ([email protected]) 5Dipartimento di Scienze della Terra, Università di Pisa, Via di S. Maria 53-56126, Pisa, Italy ([email protected]) 6Dipartimento di Scienze della Terra, Università di Pisa, Via di S. Maria 53-56126, Pisa, Italy ([email protected]) Abstract Cenozoic magmatic rocks of the Transantarctic Mountains provide an important window on the tectonic and magmatic processes of the West Antarctic Rift System. Previous aeromagnetic investigations in northern Victoria Land have delineated Cenozoic volcanic and intrusive complexes assigned to the McMurdo Volcanic Group and Meander Intrusives over the Transantarctic Mountains. We present a new aeromagnetic anomaly map for the region north of the Mariner Glacier to study the extent and spatial distribution of these Cenozoic rocks over the previously unexplored Admiralty Mountains. -
USCGC Glacier (WAGB-4)
NATIONAL REGISTER ELIGIBILITY ASSESSMENT VESSEL: USS Glacier (AGB-4) USCGC Glacier (WAGB-4) USCGC Glacier underway circa 1966-1972. Photo courtesy of U.S. Coast Guard. The icebreaker Glacier. Vessel History The former U.S. Coast Guard Cutter Glacier is an oceangoing icebreaker that was originally designed and constructed for the U.S. Navy in the mid-1950s. In 1966, Glacier was transferred to the Coast Guard. Ingalls Shipbuilding in Pascagoula, Mississippi began constructing the icebreaker in August 1953 and delivered the ship to the U.S. Navy in May 1955. It was named for Glacier Bay, Alaska, and was the fourth ship to carry this name. After its initial shakedown cruise, Glacier sailed from its homeport of Boston, Massachusetts as Admiral Richard E. Byrd’s flagship bound for the Antarctic as part of Operation Deep Freeze I1 in late 1955. It reached the 1 Operation Deep Freeze I was the codename for a series of scientific expeditions to Antarctica in 1955-56. The impetus behind the expeditions was the International Geophysical Year 1957-58. IGY was a collaborative effort of 40 nations to study the North and South Poles and points in between. Their goal was to advance knowledge of Antarctic hydrography and weather systems, glacial movements, and marine life. The U.S. Navy was charged with supporting the U.S. scientists for their portion of the IGY studies. 2 Ross Ice Pack in December where it smashed through thick ice “carving” out a harbor in Kainan Bay for ships delivering materials, supplies, and labor for the construction of Little America V.2 After clearing a channel and leading a group of ships to Kainan Bay, Glacier headed toward the Ross Ice Shelf to assist in the construction of a naval air station at McMurdo Sound. -
Nudlerical Dlodelling of a Fast-Flowing Outlet Glacier: Experidlents with Different Basal Conditions
.1n/lal.r oJ GlaciologJ' 23 1996 (' Internatio na l G laciological Society NUDlerical Dlodelling of a fast-flowing outlet glacier: experiDlents with different basal conditions FR:-\;'-JK P ,\TTYi\ De/Jar/lllen / of G eograjJ/~) I . "rije ['"il'eni/eil Brum/, B-1050 Bumel, BelgiulII A BSTRACT, R ecent o iJse J'\'ati o ns in Shirase Dra in age Basin, Enderb\' L a nd, Anta rcti ca, sholl' tha t the ice sheet is thinning a t the consid(: ra ble ra te of 0,5 (,0 m ai, S urface \'clocities in the stream a rea read; m ore tha n 2000 m ai, making S hirasc G lacier one of the fas test-fl o\l'ing glaciers in East Anta rcti ca, .\ numeri cal im'esti ga ti on of the pITSe nt stress fi eld in S hirase G lacier sholl's the existence of a large tra nsition zone 200 km in leng th w here bOlh shea ring a nd stretching a rc of equal im porta nce, fo ll owed b y a slI Tam zone 0(' a pproxima tely 50 km , \I'here stretchill g is the m ajor deform a ti o n process, In o rder to imprO\ 'e insig ht into the preselll tra nsient beha\'iour of the ice-sheet sys tem , a t\\'o-dimensiona ltime-dependent fl o\l'line model has been d e\'e loped, taking into account the ice-stream m echa ni cs, Bo th bedrock adj ustment a n cl ice tempera ture a re ta ken into ac('oulll a nd the templ'I'a lU re field is full y coupled to the ice-shcet \'C locit)' fiel d, Experiments were carried o ut \\'ith dilTerent basal m o ti o n conditio ns in order to understa nd their influen ce o n the cl\'na mic beha\'io ur of th e ice sheet a nd the stream a rea in pa rticul a r. -
Immediate Scientific Report of the Ross Sea Iceberg Project 1987-88
SCIENCE AND RESEARCH INTERNAL REPORT 9 IMMEDIATE SCIENTIFIC REPORT OF THE ROSS SEA ICEBERG PROJECT 1987-88 by J.R. Keys and A.D.W. Fowler* This is an unpublished report and must not be cited or reproduced in whole or part without permission from the Director, Science and Research. It should be cited as Science and Research Internal Report No.9 (unpublished). Science and Research Directorate, Department of Conservation, P.O. Box 10 420 Wellington, New Zealand April 1988 *Division of Information Technology, DSIR, Lower Hutt. 1 Frontispiece. NOAA 9 infrared satellite image of the 160 km long mega-giant iceberg B-9 on 9 November, four weeks after separating from the eastern front of Ross Ice Shelf. The image was digitized by US Navy scientists at McMurdo Station, paid for by the US National Science Foundation and supplied by the Antarctic Research Center at Scripps Institute. Several other bergs up to 20 km long that calved at the same time can be seen between B-9 and the ice shelf. These bergs have since drifted as far west as Ross Island (approx 600 km) whereas B-9 has moved only 215 km by 13 April, generally in a west-north-west direction. 2 CONTENTS Frontispiece 1 Contents page 2 SUMMARY 3 INTRODUCTION 4 PROPOSED PROGRAMME 5 ITINERARY 6 SCIENTIFIC ACHIEVEMENTS RNZAF C-130 iceberg monitoring flight 6 SPOT satellite image and concurrent aerial Photography 8 Ground-based fieldwork 9 B-9 iceberg 11 CONCLUSION 13 FUTURE RESEARCH 13 PUBLICATIONS 14 Acknowledgenents 14 References 14 FIGURES 15 TABLES 20 3 1.