Ribulose-1, 5-Bisphosphate Carboxylase/Oxygenase Gene Sequencing in Taxonomic Delineation of Padina Species in the Northern Coast of the Persian Gulf, (IRAN)

Total Page:16

File Type:pdf, Size:1020Kb

Ribulose-1, 5-Bisphosphate Carboxylase/Oxygenase Gene Sequencing in Taxonomic Delineation of Padina Species in the Northern Coast of the Persian Gulf, (IRAN) Journal of the Persian Gulf (Marine Science)/Vol. 4/No. 13/September 2013/11/47-57Journal of the Persian Gulf Ribulose-1, 5-Bisphosphate Carboxylase/Oxygenase Gene Sequencing in Taxonomic Delineation of Padina Species in the Northern Coast of the Persian Gulf, (IRAN). Amini, Faedeh1*; Riahi, Hossein1; Zolgharnain, Hossein2 1- Faculty of Biosciences, Shahid Beheshti University, G.C., Tehran, IR Iran 2- Faculty of Marine Biology. Khorramshahr Marine Science and Technology University, Khorramshahr, IR Iran Received: May 2013 Accepted: August 2013 © 2013 Journal of the Persian Gulf. All rights reserved. Abstract Taxonomic study of the genus Padina (Dictyotales, Phaeophyceae) from the Persian Gulf coast was conducted based on morphology and molecular phylogenetic analyses using chloroplast encoded large subunit RuBisCo (rbcL) gene sequences. Detailed descriptions of each species found in this study are described. Several morphological characters, such as number of cell layers composing the thallus, presence or absence and degree of calcification, presence or absence of small groups of rhizoid-like hairs, structure, position and arrangement of hairlines, presence or absence of indusium and reproductive sori, are considered to be reliable morphological characters for species delineation. In this study, it was realized there were 12 new sequences among the samples examined and as such, based on the rbcL sequences, four species could be tentatively delineated along the Persian Gulf coast: Padina sp.FA, Padina sp.PG, Padina sp. INDEGR032 and Dictyota ciliolate Sonder ex Kützing 1859. Further work is required to complete description of new species based on morphology and molecular analyses. Keywords: Macroalgae, Padina genus, Systematic, Molecular studies, rbcL gene. 1. Introduction and Rabii 1996, 1999, 2004, 2008). There are articles about taxonomy of macroalgae on Arabian coasts of Species of the marine brown algal genus Padina Persian Gulf, (Al-Hasan and Jones, 1989, Basson et are widely distributed throughout the tropics and are al., 1977, 1989., Basson etal,. 1992, Basson, 1979a., very easy to recognize in the field with their "fan- 1979b., Børgesen, 1939., DeClerk et al., 1996, like" blade. According to Algae Base (Guiry&Guiry, Newton, 1955a., 1955b., and Abdel-Kareem, 2009). 2013: http://www.algaebase.org), 37 species are Taxonomic studies of Padina species in the coast of currently recognized worldwide, in which 6 species the Persian Gulf were, until recently, usually dealt were recorded in the northern of Persian Gulf coast with revisions or descriptions exclusively based on of Iran based on morphological studies (Børgesen, somewhat variable morphological characters, e.g., 1939., Nizamuddin and Gesner 1970., Sohrabipour thallus shape, size and color (Trono, 1969 and Ni-Ni- Win et al., 2011). Furthermore, several recent studies 1* E-mail: [email protected] dealing with European and Mediterranean taxa 47 Amini et al. / Ribulose-1, 5-Bisphosphate Carboxylase/Oxygenase Gene Sequencing in Taxonomic Delineation… indicated that common morphological data without in December 2009, August and March 2010, August the support of DNA sequence data were insufficient and September 2011 (Figure 1). basis for estimating species diversity and knowledge of species boundaries (De Clerck et al., 2005 and 2006). However, a few papers based on taxonomic sources, were published dealing with the marine algal flora of the Persian Gulf, for example, the molecular RAPD and ISSR markers studies on three Sargassum species (Noormohammadi et al., 2011b). In addition, Padina could be employed as a possible environmental bioindicator in the Persian Gulf (Amini et al., 2013); therefore it is very important to identify the Padina species. The chloroplast-encoded Fig. 1. Locations of sampling for seaweeds on the intertidal Coast of Persian Gulf of Iran. 1. Kish island, 2. Lengeh area, 3. large subunit of the RUBISCO gene (rbcL) has been Shib Deraz (Qeshm island), 4. Messen(Qeshm island), 5. used in molecular phylogenetic studies of brown Behined Farmandari (Qeshm island) algae and has been demonstrated to be a useful molecular marker by many authors (Cho et al., 2004, The samples were obtained by hand and diving Hoshina et al., 2004, De Clerck et al., 2006, Cho et preserving proceeds followed (Tsuda, 1972) and al., 2007, Bittner et al., 2008, Ni-Ni-Win et al., 2008, DNA extraction, amplification (PCR) of rbcL 2010, 2011, Phillips et al., 2008). Thus, in this study, region, and sequencing followed (Siemer et al., rbcL is used as molecular marker combined with 1998 and Ni-Ni-Win et al., 2008). For anatomical morphological observations to clarify the taxonomy observations, specimens were hand-sectioned and of Padina species and evaluate taxonomically micrographed using a Dino Capture Ver.3 Digital important morphological characters. We infer a Camera attached to a microscope CH 40 (Olympus, phylogeny of the genus with 12 newly generated Japan). For each specimen, the morphological and sequences plus already available sequence data, anatomical characteristics (vegetative and discuss the molecular taxonomy of the genus, and reproductive) were analyzed. According to (Ni-Ni- suggest possibility of describing new species based Win et al., 2011) some of the morphological on combined morphological and molecular analyses. characters like shape, size, color, and thickness of In this study detailed descriptions of all species the thallus, are highly variable within the species examined are provided based on recently collected and are dependent to environmental conditions and samples and type specimens. age of the individual. But other characters like the number of cell layers, presence or absence and 2. Materials and Methods degree of calcification, the structure and the position arrangement of hair lines and arrangement The brown algae Padina species (Phaeophyceae, of them with sporangial sori, presence or absence of Dictyotales, Dictyotaceae) were collected from an indusium, the presence or absence of groups of Persian Gulf in the intertidal regions along the rhizoid-like hairs on the thallus surface, and southern coast of Iran, namely: Kish island (26° 51' reproductive sori were considered stable within the N, 53°59' E), Lengeh area (26° 28' N, 54°78' E ), species. The collected samples were deposited in Shib Deraz (26° 42' N, 56°04' E), Messen (26° 49' N, HSBU Bioscience Faculty (Beheshti University 53°23' E), Behind Farmandari (27° 04' N, 56°59' E) Herbarium). Total genomic DNA was extracted 48 Journal of the Persian Gulf (Marine Science)/Vol. 4/No. 13/September 2013/11/47-57 from tissue samples, dried in a silica gel DNA heuristic search with tree-bisection-reconnection extraction, with amplification (PCR) of the rbcL (TBR) branch swapping options. Bootstrap region and sequencing using an extraction protocol resampling was carried out with 100 replicates for detailed by (Ni-Ni-Win et al., 2008, 2011a and ML and 1000 replicates for NJ and MP (Felsenstein, 2011b). The PCR conditions for rbcL were as 1985). Dictyota ciliolata and Dictyota dicotoma follows: an initial denaturation step at 94°C for 3 (Dictyotales) were considered as outgroup to root the min, followed by 94°C for 0.5 min, annealing at trees. 58°C for 0.5 min, extension at 72°C for 2 min for 28 cycles, and final extension at 72°C for 10 min. 3. Results PCR products were checked for length and yielded by electrophoresis on 1.5% agarose gels dyed with 3.1. Morphological Observations ethidium bromide. In order to minimize possible errors during PCR, three independent PCR reactions All specimens used for this study are listed in were performed for each DNA sample. Primer Tables 2 and 3. The major morphoanatomical sequences, annealing temperatures and characters used for species identification are been bibliographic sources are provided in Table 1. summarized in Table 4. Table 1.The Primers that used in this study Padin sp. PG, haplotype 1 nov. AB793713 HSBU- Primer Sequence Annealing Gene Direction Reference name (5'a→3') T°C 2011300 GGGTAATTTGT Ni-Ni-Win et al., 2008 rbcL-P1 rbcL Forward 64 AAGTGGATGCG and Kawai et al., 2007 CGACGAAGTCA Ni-Ni-Win et al., 2008 rbcL-D2 rbcL Reversed 61.4 GGAGTATCTG and Kawai et al., 2007 GTGGACTGTTG The erect thalli with 2-4 cell layers, (4 cells Fa(57-76) rbcL Forward 60.6 Present study TTTGGACTG ACATTTACGAA Ra500-519 rbcL Reverse 59.7 Present study layered at the base) is yellowish brown in color, GAGAAGCCC attached by branched rhizoidal stipe. Thalli DNA sequences are deposited in DNA Data Bank moderately calcified on both surfaces, blades are of Japan (DDBJ). The 12 newly generated sequences divided deeply into 5 fan-shaped segments, the were complemented with 31 sequences downloaded length of each segment is between 5 to 10 cm, and from Genbank and aligned using (Thompson et al., the width up to 4 cm. The stipe is up to 5 cm long 1994) and the alignment was refined manually. and 0.2 cm wide. Sporangia rows are closely Phylogenetic analyses were carried out by maximum alternate with hair rows at different intervals parsimony (MP), maximum likelihood (ML) and without indusia, sometimes as isolated patches neighbor joining (NJ) methods, using MEGA5.1 between two hair lines on the lower surface when (Tamura et al., 2011). An appropriate model of both surfaces are viewed together. The species sequence evolution for maximum likelihood (ML) resembles P. tetrastromatica Hauck but the blades analysis was selected the best-fit models based on of P. tetrastromatica Hauck showed no AICc values criterion with MEGA’s built-in model calcification (Wynne et al., 1998) but this species testing suite. A ML tree was inferred using the has light calssification on two sides. In cross selected GTR model using nearest neighbor sections of the blades, both in mid region and in interchange tree rearrangements. A neighbour- more basal portions showed a 4 layered joining (NJ) distance-based tree was constructed organization but Padina sp. PG has 2 cell layer (Saitou and Nei etal., 1987 and Nei etal., 2000) using and 4 layers at the base.
Recommended publications
  • Marine Species Distributions: from Data to Predictive Models
    Marine Species Distributions: From data to predictive models Samuel Bosch Promoter: Prof. Dr. Olivier De Clerck Thesis submitted in partial fulfilment of the requirements for the degree of Doctor (PhD) in Science – Biology Academic year 2016-2017 Members of the examination committee Prof. Dr. Olivier De Clerck - Ghent University (Promoter)* Prof. Dr. Tom Moens – Ghent University (Chairman) Prof. Dr. Elie Verleyen – Ghent University (Secretary) Prof. Dr. Frederik Leliaert – Botanic Garden Meise / Ghent University Dr. Tom Webb – University of Sheffield Dr. Lennert Tyberghein - Vlaams Instituut voor de Zee * non-voting members Financial support This thesis was funded by the ERANET INVASIVES project (EU FP7 SEAS-ERA/INVASIVES SD/ER/010) and by VLIZ as part of the Flemish contribution to the LifeWatch ESFRI. Table of contents Chapter 1 General Introduction 7 Chapter 2 Fishing for data and sorting the catch: assessing the 25 data quality, completeness and fitness for use of data in marine biogeographic databases Chapter 3 sdmpredictors: an R package for species distribution 49 modelling predictor datasets Chapter 4 In search of relevant predictors for marine species 61 distribution modelling using the MarineSPEED benchmark dataset Chapter 5 Spatio-temporal patterns of introduced seaweeds in 97 European waters, a critical review Chapter 6 A risk assessment of aquarium trade introductions of 119 seaweed in European waters Chapter 7 Modelling the past, present and future distribution of 147 invasive seaweeds in Europe Chapter 8 General discussion 179 References 193 Summary 225 Samenvatting 229 Acknowledgements 233 Chapter 1 General Introduction 8 | C h a p t e r 1 Species distribution modelling Throughout most of human history knowledge of species diversity and their respective distributions was an essential skill for survival and civilization.
    [Show full text]
  • Taxonomy of the Brown Algal Genus Padina with the Description of the New Species Padina Sp. PG Nov
    Taxonomy of the Brown Algal Genus Padina With the Description of the New Species Padina sp. PG nov. (Dictyotales, Pheaophyceae) from the Northern Coast of Persian Gulf Faedeh Amini 1,2*, Hossein Riahi 1, Hossein Zolgharnain2 Received: 2018- 06- 15 Revised and accepted: 2018-09-23 Abstract their “fan-like” blade. According to Algae- Padina is a marine brown macro algal Base (Guiry and Guiry, 2011) 37 species are genus, comprising of about 37 species. Rep- currently recognized worldwide, in which resentatives genus data along the Persian 6 species were recorded in the northern of gulf coast is limited to a few floristic sur- Persian gulf coast of Iran based on morpho- veys. The present study introduces the Pa- logical studies (Børgesen, 1939; Nizamud- dina species along the Persian gulf coast, din and Gesner, 1970; Sohrabipour and with emphasis on the molecular taxonomy. Rabiei, 1996, 1999, 2005, 2008). Several Sequences of the large subunit of RuBis- studies about systematic of macroalgae in Co (rbcL) have been used in the molecular Persian gulf along Arabian coasts heve been analysis of species and for phylogenetic done (Al-Hasan and Jones, 1989; Basson purposes. Based on the rbcL sequences, four et al., 1992, 1989; Basson, 1979a, 1979b; species are recognized along the Persian Børgesen, 1939; DeClerk et al., 1997; New- gulf coast: Padina sp. FA, Padina sp. PG, ton, 1955a, 1955b; Abdel-Kareem, 2009). Padina sp. INDEGRO32 and Dictyota cili- Taxonomic studies of Padina species in the olata. A new species, Padina sp. PG nov. is coast of Persian gulf, until recently were described based on morphology and molec- usually consisting of revisions or descrip- ular analyses.
    [Show full text]
  • Evaluation and Characterization of Alginate Extracted from Brown Seaweed Collected in the Red Sea
    applied sciences Article Evaluation and Characterization of Alginate Extracted from Brown Seaweed Collected in the Red Sea Sarah H. Rashedy 1,* , Mohamed S. M. Abd El Hafez 1,2 , Mahmoud A. Dar 1, João Cotas 3 and Leonel Pereira 3 1 National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt; [email protected] (M.S.M.A.E.H.); [email protected] (M.A.D.) 2 City of Scientific Research and Technological Applications, SRTA-City, New Borg El-Arab City 21934, Egypt 3 Marine and Environmental Sciences Centre (MARE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; [email protected] (J.C.); [email protected] (L.P.) * Correspondence: [email protected]; Tel.: +02-010-2586-5156 Abstract: Alginates are one of the most important compounds of brown seaweeds. These compounds are employed in the food area, because of their important rheological properties, such as viscosity, gelling, and stabilizing features and as dietary fiber source. In this study, five species of dominant brown seaweeds were collected in the Red Sea (Padina boergesenii, Turbinaria triquetra, Hormophysa cuneiformis, Dictyota ciliolata, and Sargassum aquifolium) so as to characterize the alginate yield and its properties. The analysis demonstrated differences in the alginate yield among the seaweeds. The highest yield of alginate was recorded in the species T. triquetra (22.2 ± 0.56% DW), while the lowest content was observed in H. cuneiformis (13.3 ± 0.52% DW). The viscosity from the alginates varied greatly between the species, whereas the pH varied slightly. The alginate exhibited a moisture Citation: Rashedy, S.H.; Abd El content between 6.4 and 13.1%, the ash content ranged between 12.3 and 20% DW, the protein reached Hafez, M.S.M.; Dar, M.A.; Cotas, J.; values from 0.57 to 1.47% DW, and the lipid concentration varied from 0.3 to 3.5% DW.
    [Show full text]
  • Morpho-Anatomical Studies on the Genus Padina (Dictyotales, Phaeophycota) from the Coast of Karachi, Pakistan
    Proceedings of the Pakistan Academy of Sciences 50 (1): 21–36 (2013) Pakistan Academy of Sciences Copyright © Pakistan Academy of Sciences ISSN: 0377 - 2969 (print), 2306 - 1448 (online) Research Article Morpho-anatomical Studies on the Genus Padina (Dictyotales, Phaeophycota) from the Coast of Karachi, Pakistan Alia Abbas1* and Mustafa Shameel2 1Department of Botany, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal, Karachi-75300, Pakistan 2Department of Botany, University of Karachi, Karachi-75270, Pakistan Abstract: Specimens of the genus Padina Adanson were collected from northern coast of the Arabian Sea at Karachi, Pakistan during March 2006–April 2009 and investigated for their morphology, anatomy and reproductive structures in details. The collection included five species which were studied for their size and shape of surface cells, presence and absence of intercellular spaces, cell-wall thickness, not studied by previous workers. Two recently described species, i.e., P. afaqhusainii and P. nizamudinii, were thoroughly investigated and compared with the other three species. The lack of hair bands in the former species and the presence of more layers in the middle part as compared to upper and lower parts in the latter species were observed as their characteristic features. Keywords: Dictyotales, Padina, taxonomy, morphology, anatomy, reproductive structures 1. INTRODUCTION indusium, a hyaline cover over tetrasporangial sori. The brown algal genus Padina Adanson is widely However, species–level taxonomy is still somewhat distributed in the warm temperate to tropical confused because of morphological differences coastal regions, where it is found in the lower between species that are difficult to describe, as intertidal to deep subtidal zones [1].
    [Show full text]
  • Morphological and Molecular Characterization of Lobophora Declerckii and L
    Phytotaxa 382 (1): 057–073 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.382.1.2 Morphological and molecular characterization of Lobophora declerckii and L. variegata (Dictyotales, Ochrophyta) on the Atlantic coast of Mexico JOSÉ LUIS GODÍNEZ-ORTEGA1*, LIDIA I. CABRERA1, RICARDO GARCÍA-SANDOVAL1,4, MICHAEL J. WYNNE2, HUGO F. OLIVARES-RUBIO1, PEDRO RAMÍREZ-GARCÍA1 & ALEJANDRO GRANADOS- BARBA3 1Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, Circuito terior s/n, Ciudad Universitaria, 04510, Ciudad de México, México. 2Department of Ecology and Evolutionary Biology and Herbarium, University of Michigan, Ann Arbor, MI 48108, USA. 3Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Calle Hidalgo 617, Col. Río Jamapa, Boca del Río, 94290, Veracruz, México. 4Centro de Investigaciones Biológicas del Noroeste S.C. Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur; La Paz, B.C.S. México; C.P. 23096. E-mail addresses. JOSÉ LUIS GODÍNEZ-ORTEGA*: [email protected] LIDIA I. CABRERA: [email protected] RICARDO GARCÍA-SANDOVAL: [email protected] MICHAEL J. WYNNE: [email protected] HUGO F. OLIVARES-RUBIO: [email protected] PEDRO RAMÍREZ-GARCÍA: [email protected] ALEJANDRO GRANADOS-BARBA: [email protected] *Corresponding author. Abstract The Veracruz Reef System National Park (PNSAV) is located in the central region of Veracruz, off the coast of the municipalities of Veracruz, Boca del Río and Antón Lizardo. It is a complex and important system within the Gulf of Mexico, since it has been declared a biosphere reserve by UNESCO, a Ramsar wetland and an essential component of the southwestern Gulf of Mexico Reef Corridor.
    [Show full text]
  • Biogeographic Affinities of Dictyotales from Madagascar: a Phylogenetic Approach
    Cryptogamie, Algologie, 2015, 36 (2): 129-141 © 2015 Adac. Tous droits réservés Biogeographic affinities of Dictyotales from Madagascar: a phylogenetic approach Frédérique STEENa*, Christophe VIEIRAa,b,c, Frederik LELIAERTd, E. Claude PAYRIb & Olivier DE CLERCKa aPhycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Gent, Belgium bLabEx-CORAIL, UMR9220 ENTROPIE “Écologie marine tropicale de l’Indo-Pacifique”, Institut de Recherche pour le Développement, B.P. A5, 98848, Nouméa Cedex, Nouvelle-Calédonie, France cSorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, 75252 PARIS cedex 05, France dMarine Biology Section, Ghent University, Gent, Belgium Abstract – During the Atimo Vatae research cruise of 2010, the seaweed flora of the southern coast of Madagascar was extensively sampled. Here we report on the species diversity and biogeographic affinities of the brown algal order Dictyotales, which was assessed using DNA-barcoding makers. Molecular identification resulted in 23 MOTU’s belonging to 9 genera. From a biogeographic perspective Madagascar is considered to be part of the large tropical Western Indo-Pacific realm. However, only 3 out of 23 species confirmed this affinity. In contrast, species- and genus-level links to the more temperate coast of KwaZulu-Natal were as prominent (4 species) and 6 species represent endemic species. The remaining species were either widely distributed in tropical regions or their affinities were unclear. In conclusion, the Dictyotales data do not suggest the flora of southern Madagascar is unequivocally a part of the tropical Western Indo-Pacific realm, but rather a region of overlap, where more temperate species thrive in conjunction with some Indo West Pacific (IWP) elements.
    [Show full text]
  • Distribution and Diversity of Macroalgae in the Andaman Region, India
    ISSN (Online): 2349 -1183; ISSN (Print): 2349 -9265 TROPICAL PLANT RESEARCH 6(3): 493–496, 2019 The Journal of the Society for Tropical Plant Research DOI: 10.22271/tpr.2019.v6.i3.061 Research article Distribution and diversity of Macroalgae in the Andaman region, India Prasanta Mallick Vivekananda Mahavidyalaya, The University of Burdwan, Sripally, Burdwan East-713103, West Bengal, India Corresponding Author: [email protected] [Accepted: 17 December 2019] Abstract: Andaman is under one of the nine union territories of India, containing 572 islands and it covers nearly 6498 km2. These Islands form an archipelago in Bay of Bengal between India to the West and Myanmar to the north and east situated in between 6º N to 14º N latitude and 92º E to 94º E longitude, Once a hill range extending from Myanmar to Indonesia, these quaint undulating islets are cover with dense and evergreen forest and endless varieties of exotic flora and fauna. Present communication deals with sixteen taxa, represented by nine genera under Chlorophyceae, Phaeophyceae and Rhodophyceae from twelve stations of north and south Andaman. Keywords: Seaweeds - Diversity - Distribution significance - Andaman. [Cite as: Mallick P (2019) Distribution and diversity of Macroalgae in the Andaman region, India. Tropical Plant Research 6(3): 493–496] INTRODUCTION Seaweeds are the major significant plants in marine ecosystem. These cryptogams are the only plants that can grow vigorously and act as keystone species in this respective niche. They are not only the producer in the ecological pyramid, they have or more significant role, they are the major source of phycocolloid, nutrients, fodder, fertilizer, food or more (Chennubhotla et al.
    [Show full text]
  • Microhabitat Preferences of Phaeophyta on Shore Platform of Dwarka, Gujarat Coast, India
    Transylv. Rev. Syst. Ecol. Res. 17.2 (2015), "The Wetlands Diversity" 11 MICROHABITAT PREFERENCES OF PHAEOPHYTA ON SHORE PLATFORM OF DWARKA, GUJARAT COAST, INDIA Dimpal SANGHVI *, Nandini RAY CHAUDHURY ** and Bhanukumar JAIN ** * M. G. Science Institute, Department of Botany, Navarangpura, Ahmedabad, Gujarat, India, IN-300009, [email protected] ** Indian Space Research Organisation, Space Applications Centre, Environment and Hydrology Division, Biological and Planetary Sciences and Applications Group, Earth, Ocean, Atmosphere and Planetary Sciences Area, Jodhpur Tekra, Ambavadi Vistar, Ahmedabad, Gujarat, India, IN-38001, [email protected], [email protected]. DOI: 10.1515/trser-2015-0060 KEYWORDS: Marine algae, Phaeophyta, microhabitats, shore platform, Dwarka. ABSTRACT This paper reports microhabitat preferences of Phaeophyta from the shore platform, Dwarka, Gujarat coast, India. Macroalgae distribution was tagged with shore platform’s zonal morphology. Macroalgae (Phaeophyta) were surveyed based on systematic random sampling for two years (April, 2013 to March, 2015). Total 21 species of Phaeophyta were identified through intensive fieldwork/in situ survey based on Line Intercept Transect and Quadrate based methods. Five groups of Phaeophyta were identified as per their zonal preference on the shore platform. On family level, most of the Sargassaceae showed a ubiquitous distribution on the shore platform while Dictyotaceae showed preference towards the subtidal and intertidal mixed zone of the shore platform. RESUMEN: Preferencias de microhabitat de algas pardas en la plataforma costera de Dwarka, costa de Gujarat, India. En este artículo se reportan las preferencias de microhábitat de las Phaeophytas de la plataforma continental de Dwarka, en la costa de Gujarat, India. Se mapeó la distribución de las macrofítas mediante la morfología zonal de la plataforma costera.
    [Show full text]
  • Constancea 83.8: Checklist of the Benthic Marine Algae Known to Puerto Rico
    Constancea 83.8: Checklist of the Benthic Marine Algae Known to Puerto Rico Constancea 83, 2002 University and Jepson Herbaria P.C. Silva Festschrift A Checklist of the Benthic Marine Algae Known to Puerto Rico, Second Revision David L. Ballantine and Nilda E. Aponte Department of Marine Sciences University of Puerto Rico Mayagüez, Puerto Rico U.S.A. 00681 http://ucjeps.berkeley.edu/constancea/83/ballantine_aponte/checklist.html (1 of 3)9/14/2006 6:10:37 AM Constancea 83.8: Checklist of the Benthic Marine Algae Known to Puerto Rico Bonnie Bower Dennis The Checklist: ● Rhodophyta ● Heterokontophyta ● Chlorophyta ● Bibliography ● Notes This checklist is originally based on: Ballantine, D.L. and N.E. Aponte. 1997. A revised checklist of the benthic marine algae known to Puerto Rico. Caribbean Journal of Science, 33: 150–179. The first complete list of the marine benthic algal flora of Puerto Rico was compiled by Almodóvar and Ballantine (1983). That list was revised by Ballantine and Aponte (1997a). Numerous nomenclatural changes were incorporated. The present revision includes newly reported species records for Puerto Rico as well as systematic updates reported by Wynne (1998). Four hundred ninety-two species of algae, including macroscopic Chrysophyceae and Xanthophyceae but excluding Cyanophyta, are now listed from Puerto Rico. Among the major divisions of algae, the flora consists of 59% Rhodophyta, 13% Phaeophyta, and 28% Chlorophyta. Puerto Rico is centrally situated in an arc of islands comprising the West Indies. The Greater Antilles, of which Puerto Rico is the eastern-most island, define the northern boundary of the Caribbean Sea; thus, the north coast of Puerto Rico abuts the Atlantic Ocean while the remaining coasts are technically Caribbean.
    [Show full text]
  • Antibacterial Efficacy and Phytochemical Characterization of Some Marine Brown Algal Extracts from the Red Sea, Egypt
    Copyright © 2020 University of Bucharest Rom Biotechnol Lett. 2020; 25(1): 1160-1169 Printed in Romania. All rights reserved doi: 10.25083/rbl/25.1/1160.1169 ISSN print: 1224-5984 ISSN online: 2248-3942 Received for publication, October, 10, 2018 Accepted, June, 20, 2019 Original paper Antibacterial efficacy and phytochemical characterization of some marine brown algal extracts from the red sea, Egypt MOSTAFA M. EL-SHEEKH1*, AMAL SH. H. MOUSA2, ABLA A.M. FARGHL2 1Botany Department, Faculty of Science, Tanta University, Tanta, Egypt 2Botany Department, Faculty of Science, South Valley University, Qena, Egypt Abstract This study was carried out to evaluate the antibacterial activity of ethanol, methanol, acetone, and ethyl acetate extracts of the brown seaweeds, Cystoseira myrica, Padina boergesenii and Sargassum cinereum (Phaeophyta), as well as to identify the phytochemical constituents of the most effective algal extracts. Antibacterial activities were expressed as inhibition zones and minimum inhibitory concentrations (MICs) of the algal extracts. All seaweed extracts tested exhibited a broad spectrum of antibacterial activity. The maximum inhibition activities were recorded for methanolic extracts of P. boergesenii and ethyl acetate extracts of C. myrica and S. cinereum against Shigella flexneri, Staphylococcus aureus (MRSA) and Staphylococcus aureus, respectively. The MIC values of the marine algal extracts tested for inhibiting pathogenic bacteria ranged from 3.13 to 300 mg/ml. GC-MS and FTIR analyses of algal extracts revealed the chemical components and their functional constituents in the brown seaweeds that might have potent antimicrobial activities. These components include fatty acids esters, alcohols, phenols, amines-containing compounds and others. The results indicated that brown seaweeds may be main sources of phytoconstituents which exhibited antibacterial properties and will be helpful in diminishing the adverse effects of synthetic drugs.
    [Show full text]
  • Hodgson Et Al 2000
    Micronesica 32(2):289-307, 2000 Marine Plants of Pohnpei and Ant Atoll: Chlorophyta, Phaeophyta and Magnoliophyta LYNN M. HODGSON University of Hawai‘i - West O‘ahu 96-129 Ala Ike, Pearl City, Hawai‘i 96782 KARLA J. MCDERMID1 Marine Science Department, University of Hawai‘i at Hilo 200 W. Kawili St., Hilo, Hawai‘i 967201 Abstract—A study of marine benthic plants collected from Pohnpei Island and Ant Atoll, Federated States of Micronesia, between 1994 and 1997 documented the occurrence of 59 species of green algae (Division Chlorophyta), 16 species of brown algae (Division Phaeophyta), and 3 species of seagrasses (Division Magnoliophyta). Based on these collec- tions and a review of the literature, the marine flora of Pohnpei now comprises 52 Chlorophyta species, 22 Phaeophyta species, and 3 sea- grass species; and the list for Ant Atoll currently stands at 60 Chlorophyta species, 11 Phaeophyta species, and 2 seagrasses. New records include 20 species from Pohnpei, and 30 from Ant. Of these, 8 were taxa previously unknown from Micronesia: Caulerpa microphysa (Weber-van Bosse) J. Feldmann, Derbesia fastigiata Taylor, Dictyota acutiloba J. Agardh, Enteromorpha flexuosa (Roth) J. Agardh, Padina boergesenii Allender & Kraft, Percursaria dawsonii Hollenberg & Abbott, Ulothrix flacca (Dillw.) Thuret, and Ulvella setchellii Dangeard. Red algae (Division Rhodophyta) were also collected, and will be reported in a future paper. Introduction The early marine algal checklists that spanned vast expanses of the Pacific, i.e., the Caroline Islands (Okamura 1916), western Oceania (Schmidt 1928), and Micronesia (Tokida 1939) gave the first sparse records of marine plants of Pohnpei Island (previously spelled Ponape) (6°55'N, 158°15'E).
    [Show full text]
  • (Dictyotales, Phaeophyceae) Species from French Polynesia: Current Knowledge and Future Research
    ARTICLE IN PRESS Dictyotaceae (Dictyotales, Phaeophyceae) species from French Polynesia: current knowledge and future research Tohei Theophilusa, Christophe Vieirab,GéraldCuliolic, Olivier P. Thomasd, Antoine De Ramon N’Yeurte, Serge Andréfouëtf, Lydiane Mattiog,h,ClaudeE.Payrif and Mayalen Zubiaa,* aUniversity of French Polynesia, UMR-EIO, LabEx CORAIL, BP6570, 98702 Faa’a, Tahiti, French Polynesia bPhycology Research Group and Centre for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281 (S8), Ghent, Belgium cUniversité de Toulon, MAPIEM, Toulon, France dMarine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland ePacific Centre for Environment and Sustainable Development, The University of the South Pacific, Suva, Fiji fFrench National Research Institute for Sustainable Development, UMR 9220/250 ENTROPIE (IRD-UR-CNRS), Noumea, New Caledonia gblue[c]weed, Locmaria-Plouzané, France hDepartment of Biological Sciences, University of Cape Town, Rondebosch, South Africa *Corresponding author: E-mail: [email protected] Contents 1. Introduction 2 2. Diversity and distribution of the family Dictyotaceae in French Polynesia 7 3. Ecological dynamics of Dictyotaceae in Tahiti 9 3.1 Abundance, seasonality, and habitat of Dictyotaceae in Tahiti 9 3.2 Main factors controlling the abundance of Dictyotaceae species 12 3.2.1 Abiotic factors 13 3.2.2 Biotic factors 15 3.3 Is there a risk for further macroalgae proliferation in Tahiti? 17 4. Potential for the development of biotechnological applications 18 4.1 Chemodiversity & biological activities 18 4.2 Applications 34 4.2.1 Human consumption 34 4.2.2 Animal nutrition 34 4.2.3 Health care, medicinal, pharmaceutical, and cosmetic properties 35 4.2.4 Agriculture 36 Advances in Botanical Research, Volume 95 ISSN 0065-2296 © 2020 Elsevier Ltd.
    [Show full text]