Digital Sculpting for Historical Representation: Neville Tomb Case Study

Total Page:16

File Type:pdf, Size:1020Kb

Digital Sculpting for Historical Representation: Neville Tomb Case Study University of Huddersfield Repository Fitzpatrick, Frank Digital sculpting for historical representation: Neville tomb case study Original Citation Fitzpatrick, Frank (2013) Digital sculpting for historical representation: Neville tomb case study. Masters thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/id/eprint/23389/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Digital Sculpting for Historical Representation: Neville Tomb Case Study Frank Fitzpatrick UNIVERSITY OF HUDDERSFIELD School of Art, Design and Architecture Supervisors: Dr Ertu Unver and Cate Benincassa-Sharman Thesis submitted in partial fulfilment for the Degree of Master by Research April 2013 Acknowledgements I am grateful to the following individuals who have made a contribution to the development and completion of this Masters by Research Thesis and associated project: I would like to sincerely thank my supervisors: Dr Ertu Unver for his unfailing support and advice and Cate Benincassa-Sharman for her thoughtful suggestions and encouragement throughout. I would like to include my thanks to Durham Cathedral and St. Boniface Church, Bunbury Cheshire and also to Professor John Woodwark for his kind assistance. My gratitude also extends to my department colleagues Barry Armstrong and Anne Fox- Kelly and my acknowledgements would not be complete without heartfelt thanks to my wife Sharon and my children Sean and Sarah for their patience, understanding and for allowing me the time and space to complete this submission. Abstract Despite digital 3D polygon modelling applications providing a common and powerful tool-set for archaeological, architectural and historical visualisation over recent years, digital deformation sculpting tools are little used at present within the area of historical visualisation. More commonly applied within the video games and TV/motion picture industries, the intention of this research is to combine such tools and methodologies with existing scanned data and historical knowledge to remediate and re-imagine lost sculptural form. The aim would be to support both academic and public understanding of such missing artefacts. In addition, the research may promote alternative methods of prototyping within traditional stone carving industries and further provide an opportunity to critically evaluate approaches to deliberately mediated sculptural surrogates and their location within historical representation. The intended research will focus on an examination and partial re-construction of the Neville tomb at Durham Cathedral. An example of cultural vandalism, the tomb has been damaged at key moments throughout several hundred years of social and religious upheaval. It will provide the researcher with an opportunity to re-create and interpret some of the lost sculptural forms carved upon it. In addition, it affords the opportunity to further explore the use of polychrome on medieval stone carving. Table of Contents 1. Introduction .................................................................................................................. 1 1.1. Research Objectives ............................................................................................. 2 1.2. Research Methodology......................................................................................... 3 2. Literature Review ......................................................................................................... 5 2.1. Historical Overview ............................................................................................... 5 2.2. Visualisation .......................................................................................................... 6 2.3. Early Digital 3D Visualisation ............................................................................... 7 2.4. Critical Views ........................................................................................................ 9 2.5. The Wider Critical Debate ................................................................................... 10 2.6. The Heritage Industries ...................................................................................... 15 3. Application of Technology to the Field .................................................................... 20 3.1. 3D Surface Data Acquisition .............................................................................. 20 3.2. Digital 3D Modelling ............................................................................................ 24 3.3. Polychrome ......................................................................................................... 26 3.4. Digital Sculpting.................................................................................................. 27 3.5. Rapid Prototyping/3D Printing ........................................................................... 31 4. Experimental Study ................................................................................................... 34 4.1. Project Intentions ................................................................................................ 34 4.2. Hard Surface and Organic Modelling ................................................................ 35 4.3. Background and Context ................................................................................... 35 4.4. Data Capture ....................................................................................................... 37 4.5. Base Modelling ................................................................................................... 39 4.6. Typifaction........................................................................................................... 43 4.7. Application of Polychrome ................................................................................. 44 4.8. Application of Photogrammetry to the Project ................................................. 45 4.9. Further Project Research ................................................................................... 48 4.10. Editing the and combining the Photogrammetry Data.................................. 50 4.11. Modelling and Sculpting the Effigy ................................................................ 52 4.12. Sculpting in Mudbox ....................................................................................... 55 4.13. 3D Printing ....................................................................................................... 58 4.14. 3D Printing of the Sculpt ................................................................................. 62 4.15. PTEX Texturing ................................................................................................ 62 4.16. Please see further rendered images on the attached DVD ........................... 65 5. Findings and outcomes ............................................................................................. 65 6. Conclusions ............................................................................................................... 67 7. References ................................................................................................................. 72 8. Bibliography ............................................................................................................... 74 8.1. Books/eBooks ..................................................................................................... 74 8.2. Catalogue ............................................................................................................ 74 8.3. Conference Papers/Proceedings ....................................................................... 74 8.4. Journal Articles ................................................................................................... 75 8.5. Magazine/Newspaper Article .............................................................................. 77 8.6. Reports/Hearings/Standards .............................................................................. 77 8.7. Thesis .................................................................................................................. 77 8.8. Web Pages........................................................................................................... 78 9. Appendix .................................................................................................................... 78 List of Illustrations Figure 1: The location of the research ............................................................................... 3 Figure 2: A 19th century watercolour representation of part of the Parthenon. ............. 5 Figure 3: Plan and section
Recommended publications
  • Brian Paint Breakdown 1.Qxd
    Digital Matte Painting Reel Breakdown Brian LaFrance Run Time: 2 Minutes 949-302-2085 [email protected] Big Hero 6: Baymax and Hiro Flying Sequence Description: Lead Set Extension Artist. helped develop sky pano from source HDR's, which fed lighting dept. 360 degree seaming of ocean/sky horizon, land, atmosphere blending. Painted East Bay city. Made 3d fog volumes in houdini, rendered with scene lighting for reference, which informed the painting of multiple fog lay- ers, which were blended into the scene using zdepth "slices" for holdouts, integrating the fog into the landscape. Software Used: Photoshop, Maya, Nuke, Houdini, Terragen, Hyperion(Disney Prop. Rendering software) Big Hero 6: Bridge Description: Painted sky, ground fog slices and lights, projected in nuke. Software Used: Photoshop, Maya, Nuke, Terragen, Hyperion Big Hero 6: City Description: Painted sky, moving ground fog clouds. Clouds integrated into digital set using zdepth "slices" for holdouts, integrating fog into the landscape. Software Used: Photoshop, Maya, Nuke R.I.P.D.: City Shots Description: Blocked out city compositions with simple geometry, projected texture onto that geometry. Software Used: Photoshop, Rampage (Rhythm and Hues Prop. Projection software) The Seventh Son: Multiple Shots Description: Modeled simple geom, sculpted in zbrush for balcony shot, textured/lit/rendered in mental ray, painted over in photoshop, projected onto modeled or simplified geometry in rampage. Software Used: Photoshop, Maya, Mental Ray, Zbrush, Rampage Elysium: Earth Description: Provided a Terragen "Planet Rig" to Image Engine for them to render views of earth, as well as a large render of whole earth to be used as source for matte painting(s).
    [Show full text]
  • Filling the Void in Archaeological Excavations: 2D Point Clouds to 3D Volumes
    Open Archaeology 2021; 7: 589–614 Research Article Gary R. Nobles*, Christopher H. Roosevelt Filling the Void in Archaeological Excavations: 2D Point Clouds to 3D Volumes https://doi.org/10.1515/opar-2020-0149 received December 7, 2020; accepted May 31, 2021 Abstract: 3D data captured from archaeological excavations are frequently left to speak for themselves. 3D models of objects are uploaded to online viewing platforms, the tops or bottoms of surfaces are visualised in 2.5D, or both are reduced to 2D representations. Representations of excavation units, in particular, often remain incompletely processed as raw surface outputs, unable to be considered individual entities that represent the individual, volumetric units of excavation. Visualisations of such surfaces, whether as point clouds or meshes, are commonly viewed as an end result in and of themselves, when they could be considered the beginning of a fully volumetric way of recording and understanding the 3D archaeological record. In describing the creation of an archaeologically focused recording routine and a 3D-focused data processing workflow, this article provides the means to fill the void between excavation-unit surfaces, thereby producing an individual volumetric entity that corresponds to each excavation unit. Drawing on datasets from the Kaymakçı Archaeological Project (KAP) in western Turkey, the article shows the potential for programmatic creation of volumetric contextual units from 2D point cloud datasets, opening a world of possibilities and challenges for the development of a truly 3D archaeological practice. Keywords: Kaymakçı, 3D GIS, 3D visualisation, volumetric analysis, photogrammetry 1 Introduction Recent innovations in 3D recording and the display of archaeological entities have focused primarily on the capture and visualisation of landscapes, excavations, and objects as point clouds and derived textured meshes.
    [Show full text]
  • Science Fiction Artist In-Depth Interviews
    DigitalArtLIVE.com DigitalArtLIVE.com SCIENCE FICTION ARTIST IN-DEPTH INTERVIEWS THE FUTURE OCEANS ISSUE ARTUR ROSA SAMUEL DE CRUZ TWENTY-EIGHT MATT NAVA APRIL 2018 VUE ● TERRAGEN ● POSER ● DAZ STUDIO ● REAL-TIME 3D ● 2D DIGITAL PAINTING ● 2D/3D COMBINATIONS We visit Portugal, to talk with a master of the Vue software, Artur Rosa. Artur talks with Digital Art Live about his love of the ocean, his philosophy of beauty, and the techniques he uses to make his pictures. Picture: “The Sentinels” 12 ARTUR ROSA PORTUGAL VUE | PHOTOSHOP | POSER | ZBRUSH WEB DAL: Artur, welcome back to Digital Art Live magazine. We last interviewed you in our special #50 issue of the old 3D Art Direct magazine. That was back in early 2015, when we mainly focussed on your architectural series “White- Orange World” and your forest pictures. In this ‘Future Oceans’ themed issue of Digital Art Live we’d like to focus on some of your many ocean colony pictures and your recent sea view and sea -cave pictures. Which are superb, by the way! Some of the very best Vue work I’ve seen. Your recent work of the last six months is outstanding, even more so that the work you made in the early and mid 2010s. You must be very pleased at the level of achievement that you can now reach by using Vue and Photoshop? AR: Thank you for having me again, and thank you for the compliment and feedback. I’m humbled and honoured that my work may be of interest for your readers. To be honest, I’m never quite sure if my work is getting better or worse.
    [Show full text]
  • Signed Distance Fields
    Further Graphics Ray Marching and Signed Distance Fields Alex Benton, University of Cambridge – [email protected] 1 Supported in part by Google UK, Ltd GPU Ray-tracing Ray tracing 101: “Choose the color of the pixel by firing a ray through and seeing what it hits.” Ray tracing 102: “Let the pixel make up its own mind.” 2 GPU Ray-tracing 1. Use a minimal vertex shader (no transforms) - all work happens in the fragment shader 2. Set up OpenGL with minimal geometry, a single quad 3. Bind coordinates to each vertex, let the GPU interpolate coordinates to every pixel 4. Implement raytracing in GLSL: a. For each pixel, compute the ray from the eye through the pixel, using the interpolated coordinates to identify the pixel b. Run the ray tracing algorithm for every ray 3 GPU Ray-tracing // Window dimensions vec3 getRayDir( uniform vec2 iResolution; vec3 camDir, vec3 camUp, // Camera position vec2 texCoord) { uniform vec3 iRayOrigin; vec3 camSide = normalize( cross(camDir, camUp)); // Camera facing direction vec2 p = 2.0 * texCoord - 1.0; uniform vec3 iRayDir; p.x *= iResolution.x / iResolution.y; // Camera up direction return normalize( uniform vec3 iRayUp; p.x * camSide + p.y * camUp // Distance to viewing plane + iPlaneDist * camDir); uniform float iPlaneDist; } // ‘Texture’ coordinate of each // vertex, interpolated across camUp // fragments (0,0) → (1,1) camDir in vec2 texCoord; camSide 4 GPU Ray-tracing: Sphere Hit traceSphere(vec3 rayorig, vec3 raydir, vec3 pos, float radius) { float OdotD = dot(rayorig - pos, raydir); float OdotO = dot(rayorig
    [Show full text]
  • PELC253 Digital Sculpting with Zbrush 2020-21.Docx
    Glasgow School of Art Course Specification Course Title: Digital Sculpting with ZBrush Course Specifications for 2020/21 have not been altered in response to the COVID-19 pandemic. Please refer to the 2020/21 Programme Specification, the relevant Canvas pages and handbook for the most up-to-date information regarding any changes to a course. Course Code: HECOS Code: Academic Session: PELC253 2020-21 1. Course Title: Digital Sculpting with ZBrush 2. Date of Approval: 3. Lead School: 4. Other Schools: PACAAG April 2020 School of Simulation and This course is available to Visualisation students on PGT programmes which include a Stage 2 elective. 5. Credits: 6. SCQF Level: 7. Course Leader: 20 11 Dr. Sandy Louchart 8. Associated Programmes: This course is available to students on PGT programmes which include a Stage 2 elective. 9. When Taught: Semester 2 10. Course Aims: The overarching aims of the cross-school electives are to: • Encourage interdisciplinary, critical reflexivity from within an open set of choices; • Foster deep investigative approaches to new or unfamiliar areas of practice and theory; • Cultivate self-directed leadership and initiative-taking in both applied and abstract modes of • practice/ study not necessarily associated with a student’s particular creative specialism; • Enable flexible, ethical exploration and connection of diverse knowledge and understanding • within a specialist programme of study. The practice-based and skill focussed course provides a thorough and intensive introduction to digital 3D sculpting, allowing students to obtain a high-level of proficiency in this technically challenge discipline. Students will work with a range of techniques and practices through which a digital painting can be produced and distributed.
    [Show full text]
  • Makerbot in the Classroom
    COMPILED BY MAKERBOT EDUCATION Copyright © 2015 by MakerBot® www.makerbot.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. The information in this document concerning non-MakerBot products or services was obtained from the suppliers of those products or services or from their published announcements. Specific questions on the capabilities of non-MakerBot products and services should be addressed to the suppliers of those products and services. ISBN: 978-1-4951-6175-9 Printed in the United States of America First Edition 10 9 8 7 6 5 4 3 2 1 Compiled by MakerBot Education MakerBot Publishing • Brooklyn, NY TABLE OF CONTENTS 06 INTRODUCTION TO 3D PRINTING IN THE CLASSROOM 08 LESSON 1: INTRODUCTION TO 3D PRINTING 11 MakerBot Stories: Education 12 MakerBot Stories: Medical 13 MakerBot Stories: Business 14 MakerBot Stories: Post-Processing 15 MakerBot Stories: Design 16 LESSON 2: USING A 3D PRINTER 24 LESSON 3: PREPARING FILES FOR PRINTING 35 THREE WAYS TO MAKE 36 WAYS TO DOWNLOAD 40 WAYS TO SCAN 46 WAYS TO DESIGN 51 PROJECTS AND DESIGN SOFTWARE 52 PROJECT: PRIMITIVE MODELING WITH TINKERCAD 53 Make Your Own Country 55 Explore: Modeling with Tinkercad 59 Investigate: Geography and Climates 60 Create:
    [Show full text]
  • Nitin Singh - Senior CG Generalist
    Nitin Singh - Senior CG Generalist. Email: [email protected] Montreal, Canada Website: www.NitinSingh.net HONORS & AWARDS * VISUAL EFFECTS SOCIETY AWARDS (VES) 2014 (Outstanding Created Environment in a Commercial or Broadcast Program) for Game Of Thrones ( Project Lead ) “The Climb”. * PRIMETIME EMMY AWARDS 2013 ( as Model and Texture Lead ) for Game of Thrones. “Valar Dohaeris” (Season 03) EXPERIENCE______________________________________________________________________________________________ Environment TD at Framestore, Montreal (Feb.05.2018 - June.09.2018) Projects:- The Aeronauts, Captain Marvel. * procedural texturing and lookDev for full CG environments. * Developing custom calisthenics shaders for procedural environment texturing and look development. * Making clouds procedurally in Houdini, Layout, Lookdev, and rendering of Assets / Shots in FrameStore's proprietary rendering engine. Software's Used: FrameStore's custom texturing and lighting tools, Maya, Arnold, Terragen 4. __________________________________________________________________________________________________________ Environment Pipeline TD at Method Studios (Iloura), Melbourne (Feb.05.2018 - June.09.2018) Projects:- Tomb Raider, Aquaman. * Developing custom pipeline tools for layout and Environment Dept. using Python and PyQt4. * Modeling and texturing full CG environment's with Substance Designer and Zbrush. *Texturing High res. photo-real textures for CG environments and assets. Software's Used: Maya, World Machine, Mari, Zbrush, Mudbox, Nuke, Vray 3.0, Photoshop,
    [Show full text]
  • View Reel Breakdown
    Deadpool 2 ● Created lighting template to accommodate entire title sequence Title Sequence ● Body pile and villain texturing. ● Method Studios Deadpool character, body pile, and villian look dev. ● Lighting on katana, body pile, bullet hole, and close-up shots. Blocked lighting on quad Deadpool shot. ● Compositing R+D on bullet hole transition MODEL RIG TRACK ANIMATE UV TEXTURE SHADE LIGHT COMP UV Layout Mari V-Ray V-Ray Nuke Nike ● Engine and various environment texturing Hover ● Engine various environment look dev ● CHRLX Lit and composited engine shots MODEL RIG TRACK ANIMATE UV TEXTURE SHADE LIGHT COMP UV Layout Photoshop Arnold Arnold Nuke ZBrush Comcast ● Track texturing XFINITY 360° NASCAR VR ● Track look dev CHRLX MODEL RIG TRACK ANIMATE UV TEXTURE SHADE LIGHT COMP UV Layout Photoshop Arnold Mari Cheerios ● All textures Rapel ● All look dev ● CHRLX Lit and composited full :15 second spot MODEL RIG TRACK ANIMATE UV TEXTURE SHADE LIGHT COMP UV Layout Photoshop Arnold Arnold Nuke ZBrush Deadpool 2 ● Created lighting template to accommodate entire title sequence Title Sequence ● Parachute texturing. ● Method Studios Deadpool character and parachute look dev. ● Lighting on all shots featured except the exploding bear. ● Pre-comp MODEL RIG TRACK ANIMATE UV TEXTURE SHADE LIGHT COMP UV Layout Mari V-Ray V-Ray Nuke Turbotax ● Created lighting template for entire spot to maintain consistency Cafe ● HDRI stitching / clean-up ● Method Studios Robot look dev ● Key light rigs. Lit master shot of each sequence. ● Pre-comp MODEL RIG TRACK ANIMATE UV TEXTURE SHADE LIGHT COMP Mari / Maya V-Ray V-Ray Nuke procedural Planters ● Created lighting template for entire spot to maintain consistency "Mr.
    [Show full text]
  • INTEGRATING PIXOLOGIC ZBRUSH INTO an AUTODESK MAYA PIPELINE Micah Guy Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 8-2011 INTEGRATING PIXOLOGIC ZBRUSH INTO AN AUTODESK MAYA PIPELINE Micah Guy Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Computer Sciences Commons Recommended Citation Guy, Micah, "INTEGRATING PIXOLOGIC ZBRUSH INTO AN AUTODESK MAYA PIPELINE" (2011). All Theses. 1173. https://tigerprints.clemson.edu/all_theses/1173 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. INTEGRATING PIXOLOGIC ZBRUSH INTO AN AUTODESK MAYA PIPELINE A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Fine Arts in Digital Production Arts by Micah Carter Richardson Guy August 2011 Accepted by: Dr. Timothy Davis, Committee Chair Dr. Donald House Michael Vatalaro ABSTRACT The purpose of this thesis is to integrate the use of the relatively new volumetric pixel program, Pixologic ZBrush, into an Autodesk Maya project pipeline. As ZBrush is quickly becoming the industry standard in advanced character design in both film and video game work, the goal is to create a succinct and effective way for Maya users to utilize ZBrush files. Furthermore, this project aims to produce a final film of both valid artistic and academic merit. The resulting work produced a guide that followed a Maya-created film project where ZBrush was utilized in the creation of the character models, as well as noting the most useful formats and resolutions with which to approach each file.
    [Show full text]
  • The Process to Create a Realistic Looking Fantasy Creature for a Modern Triple-A Game Title
    The process to create a realistic looking fantasy creature for a modern Triple-A game title Historic-Philosophical faculty Department of game design Author Olov Jung Bachelor degree, 15 ECTS Credits Degree project in Game Design Game Design and Graphics 2014 Supervisor: Fia Andersson, Lina Tonegran Examiner: Masaki Hayashi September, 2014 Abstract In this project paper I have described my process to make a pipeline for production of an anatomically believable character that would fit into a pre-existing game title. To find out if the character model worked in chosen game world I did do an online Survey. For this project I did chose BioWares title Dragon Age Origins and the model I chose to produce was a dragon. The aim was to make the dragon character fit into the world of Dragon Age This project is limited to the first two phases of the pipeline: Pre-production and base model production phase. This project paper does not examine the texture, rigging and animation phases of the pipeline. Keywords: 3D game engine, 3D mesh, PC, NPC, 3D creation package, LOD, player avatar, triangles, quads Table of Contents 1 Introduction .......................................................................................................................... 1 1.1 Dragons in games .............................................................................................................. 1 1.2 3D modelling for real time 3D game engines ................................................................... 2 1.3 Questions ..........................................................................................................................
    [Show full text]
  • From Laser Scanner Point Clouds to 3D Modeling of the Valencian Silo-Yard in Burjassot”
    Hochschule Karlsruhe – Technik und Wirtschaft University of Applied Sciences Fakultät für Fakultät für Informationsmanagement und Medien Master´s Programme Geomatics Master´s Thesis of María Cristina Gómez Peribáñez FROM LASER SCANNER POINT CLOUDS TO 3D MODELING OF THE VALENCIAN SILO-YARD IN BURJASSOT First Referee: Prof. Dr.-Ing. H. Saler Second Referee: Prof. Dr.-Ing. V. Tsioukas (AUTH) Third Referee: Prof. Dr.-Ing. F. Buchón (UPV) Karlsruhe, September 2017 Acknowledgement I would like to express my sincere thanks to all those who have made this Master Thesis possible, especially to the program Baden- Württemberg Stipendium. I would like to thank my tutors Heinz Saler, Vassilis Tsioukas and Fernando Buchón, for the time they have given me, for their help and support in this project. To my parents, family and friends, I would also like to thank you for your daily support to complete this project. Especially to Irini for all her help. Thanks. María Cristina Gómez Peribáñez I | P a g e Hochschule Karlsruhe – Technik und Wirtschaft Aristotle University of Thessaloniki -Faculty of Engineering University Polytechnic of Valencia Table of contents Acknowledgement ......................................................................................................................... I Table of contents .......................................................................................................................... 1 List of figures ...............................................................................................................................
    [Show full text]
  • An Introduction to Zbrush • Understanding Digital Images • Understanding 3D Space • Being a Digital Artist
    62795c01.qxd 3/23/08 8:36 AM Page 1 CHAPTER 1 Pixels, Pixols, Polygons, and the Basics of Creating Digital Art Any experienced artist knows that the composition of the tools they use— the chemistry of the paint, the ingredients of the clay—affects the quality of a finished work of art. When you are learning to become an artist, you spend a great deal of time studying how the tools behave. It is the same with digital art. This chapter reviews the fundamentals of digital art. Just as an oil painter learns how the mixture of pigments and oils works with the canvas, a digital artist needs to learn how color depth, channels, file formats, and other elements factor into the quality of a digital masterpiece. This chapter includes the following topics: • An introduction to ZBrush • Understanding digital images • Understanding 3D space • Being a digital artist COPYRIGHTED MATERIAL 62795c01.qxd 3/23/08 8:36 AM Page 2 2 ■ chapter 1: Pixels, Pixols, Polygons, and the Basics of Creating Digital Art An Introduction to ZBrush Imagine walking into a fully stocked artist’s studio. Inside you find cabinets and drawers full of paints and brushes, a large canvas, a closet full of every type of sculpting medium imaginable, a lighting rig, a camera, a projector, a kiln, armatures for maquettes, and a seemingly infinite array of carving and cutting tools. On top of this, everything has been neatly arranged for optimal use while working. This is ZBrush, a self-contained studio where you can digitally create paintings and sculptures—and even combinations of the two.
    [Show full text]