CLEANER SHRIMP the Various Species of Cleaner Shrimp Are Some

Total Page:16

File Type:pdf, Size:1020Kb

CLEANER SHRIMP the Various Species of Cleaner Shrimp Are Some CLEANER SHRIMP Banded Shrimp (Stenopus hispidus), Golden Coral Banded Shrimp (Stenopus zanzibaricus), Blue Coral Banded Shrimp (Stenopus The various species of cleaner shrimp are some of the most often tenuirostris), and Peppermint Shrimp (Lysmata wurdemanni). encountered shrimp in the aquarium trade today. Their fascinating Some commensal Periclimenes shrimp (such as Pederson Shrimp behaviors and vibrant colors and patterns are favorites among reef (Periclimenes pedersoni) and Yucatanicus Shrimp (Periclimenes aquarists. Many different shrimp species are considered cleaner yucatanicus)) and some shrimp in the Urocaridella genus are shrimp. Some of the most common are Skunk Cleaner Shrimp recognized as cleaner shrimp, though they are also considered (Lysmata amboinensis), Blood Shrimp (Lysmata debelius), Coral anemone shrimp. Cleaner shrimp get their name from the fact that in the wild, they are known to clean fish. This cleaning consists of the shrimp crawling along the body of a fish and even entering the fish’s mouth and gills in order to remove parasites and dead skin. This is most often seen with Skunk Cleaner Shrimp. In the wild, they will set up a cleaning station where they hang upside down in a cave or under a rock ledge and fish will seek them out for their services. Skunk Cleaner Shrimp have even been observed cleaning inside the mouths of moray eels. Most fish will not eat cleaner shrimp because they know the shrimp provide them with an important service. In this mutualistic relationship, the fish gets cleaned and the shrimp gets a meal. Skunk Cleaner Shrimp are one of the most colorful and active shrimp available in the aquarium trade. This species is red and yellow with a white stripe running from head to tail and occurs throughout the Red Sea and Indo-Pacific. They can live for over 2 years and grow Blood Shrimp (Lysmata debelius). Image by Tim Wong. to about 3 inches in length. Because they are hermaphrodites, any two individuals who are put together can form a pair. It is a common misconception that one must purchase cleaner shrimp as a “true pair.” Although the cleaning behavior of Skunk Cleaner Shrimp is Skunk Cleaner Shrimp (Lysmata amboinensis). Image by Sabine Penisson. Reef Hobbyist Magazine 27.
Recommended publications
  • Lysmata Amboinensis (De Man, 1888)
    Lysmata amboinensis (de Man, 1888) B. Santhosh, M. K. Anil and Biji Xavier IDENTIFICATION Order : Decapoda Family : Lysmatidae Common/FAO : Pacific cleaner Name (English) shrimp Local names:names Not available MORPHOLOGICAL DESCRIPTION The Pacific cleaner shrimp is easily identified by its colour patterns. The body is light brown with one white band dorsally and two red bands laterally running longitudinally. The tail has two white spots on either side. The antennae are white in colour and the first pair has red coloured base. It grows up to a maximum of 6 cm. Source of image : RC CMFRI, Vizhinjam 363 PROFILE GEOGRAPHICAL DISTRIBUTION Scarlet cleaner shrimp or Pacific cleaner shrimp is one of the most popular species of ornamental crustaceans distributed in the waters of the Indo-Pacific region in Indonesia and Sri Lanka. HABITAT AND BIOLOGY It is one of the popular marine shrimp, associated with coral reefs and compatible with smaller sized marine ornamental fishes. It hides in the near shore, shallow and protected areas within a temperature range of 25-30 °C. In the Indo-Pacific areas and the Red Sea, it is mostly found in caves and crevices of coral reefs. It especially needs shelter from predators when it is moulting. It is an omnivore and a scavenger and often feeds on the external parasites of fishes. As its name indicates, this species cleans fishes including moray eels and groupers feeding on their external parasites as well as on mucous and dead or injured tissue. The shrimp moults once every 3-8 weeks and spawns regularly every 2-3 weeks.
    [Show full text]
  • Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Summer 8-22-2020 Senders, Receivers, and Spillover Dynamics: Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade Bryce Risley University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Marine Biology Commons Recommended Citation Risley, Bryce, "Senders, Receivers, and Spillover Dynamics: Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade" (2020). Electronic Theses and Dissertations. 3314. https://digitalcommons.library.umaine.edu/etd/3314 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. SENDERS, RECEIVERS, AND SPILLOVER DYNAMICS: UNDERSTANDING TRANSFORMATIVE FORCES OF AQUACULTURE IN THE MARINE AQUARIUM TRADE By Bryce Risley B.S. University of New Mexico, 2014 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Policy and Marine Biology) The Graduate School The University of Maine May 2020 Advisory Committee: Joshua Stoll, Assistant Professor of Marine Policy, Co-advisor Nishad Jayasundara, Assistant Professor of Marine Biology, Co-advisor Aaron Strong, Assistant Professor of Environmental Studies (Hamilton College) Christine Beitl, Associate Professor of Anthropology Douglas Rasher, Senior Research Scientist of Marine Ecology (Bigelow Laboratory) Heather Hamlin, Associate Professor of Marine Biology No photograph in this thesis may be used in another work without written permission from the photographer.
    [Show full text]
  • Lysmata Jundalini, a New Peppermint Shrimp (Decapoda, Caridea, Hippolytidae) from the Western Atlantic
    Zootaxa 3579: 71–79 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:C736A8DE-9BD7-4AE2-BC42-425C8F0D3F3B Lysmata jundalini, a new peppermint shrimp (Decapoda, Caridea, Hippolytidae) from the Western Atlantic ANDREW L. RHYNE1,2,5, RICARDO CALADO3 & ANTONINA DOS SANTOS4 1Department of Biology and Marine Biology, Roger Williams University, One Old Ferry Road, Bristol, RI 02809, USA 2New England Aquarium, Research Department, New England Aquarium, One Central Wharf Boston, MA 02110 3Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal 4Instituto Nacional de Recursos Biológicos - IPIMAR, Avenida de Brasilia s/n, 1449-006 Lisbon, Portugal 5Corresponding author. E-mail: [email protected] Abstract A new peppermint shrimp species, Lysmata jundalini sp. nov., is described based on five specimens collected in shallow subtidal waters on Enrique Reef at the University of Puerto Rico, Mayagüez Isla, Magueyes Laboratories. Lysmata jund- alini sp. nov. was identified from fresh material collected at the reef crest and back reef among coral rubble in June 2005 and April 2009. The new species is most closely related to the Atlantic Lysmata intermedia and eastern Pacific L. holthu- isi. It can be readily distinguished from all those in the genus Lysmata by its color pattern, the presence of a well developed accessory branch, the number of free vs. fused segments of the accessory branch, the number of carpal segments of the second pereiopod and well developed pterygostomian tooth. Key words: Hermaphrodite, Lysmata intermedia complex, cryptic taxa Introduction The caridean shrimp genus Lysmata Risso, 1816 is commonly placed within the family Hippolytidae Bate, 1888.
    [Show full text]
  • Reef Fishes Use Sea Anemones As Visual Cues for Cleaning Interactions with Shrimp
    Journal of Experimental Marine Biology and Ecology 416–417 (2012) 237–242 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Reef fishes use sea anemones as visual cues for cleaning interactions with shrimp Lindsay K. Huebner ⁎, Nanette E. Chadwick Department of Biological Sciences, 101 Rouse Life Sciences Building, Auburn University, Auburn, AL 36849, USA article info abstract Article history: Marine cleaners benefit diverse fish clients via removal of ectoparasites, yet little is known about how fishes Received 17 August 2011 locate small, inconspicuous cleaner shrimps on coral reefs. Pederson shrimp Ancylomenes pedersoni are effec- Received in revised form 19 December 2011 tive cleaners in the Caribbean Sea, and additionally form obligate associations with corkscrew sea anemones Accepted 5 January 2012 Bartholomea annulata, which also serve as hosts to a variety of other crustacean symbionts. We examined the Available online 24 January 2012 visual role of B. annulata to reef fishes during cleaning interactions with A. pedersoni by comparing anemone characteristics with fish visitation rates, and by manipulating the visibility of anemones and cleaner shrimp in Keywords: fi fi Ancylomenes pedersoni eld experiments using mesh covers. Rates of visitation by shes to cleaning stations increased primarily Cleaner shrimp with anemone body size and the total number of crustacean symbionts, but did not change consistently in Cleaning symbiosis response to covers. Fishes posed for cleaning at stations only where anemones remained visible, regardless Client fishes of whether shrimp were visible. Shrimp at stations where anemones were covered performed fewer cleaning Sea anemone interactions with fishes, as fishes did not continue to pose when anemones were not visible.
    [Show full text]
  • Broodstock Conditioning and Larval Rearing of the Marine Ornamental White-Striped Cleaner Shrimp, Lysmata Amboinensis (De Man, 1888)
    ResearchOnline@JCU This file is part of the following reference: Tziouveli, Vasiliki (2011) Broodstock conditioning and larval rearing of the marine ornamental white-striped cleaner shrimp, Lysmata amboinensis (de Man, 1888). PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/40038/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/40038/ Broodstock Conditioning and Larval Rearing of the Marine Ornamental White-striped Cleaner Shrimp, Lysmata amboinensis (de Man, 1888) Thesis submitted by Vasiliki Tziouveli For the degree of Doctor of Philosophy In the Discipline of Aquaculture Within the School of Marine and Tropical Biology James Cook University, QLD, Australia Statement of Access I, the undersigned, the author of this work, understand that James Cook University will make the thesis available for use within the University Library and allow access to users in other approved libraries. I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any further restriction on access to this work. ________________ ______________ Signature Date Vasiliki Tziouveli____________________________ Name ii Statement on sources Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education.
    [Show full text]
  • New Records of Marine Ornamental Shrimps (Decapoda: Stenopodidea and Caridea) from the Gulf of Mannar, Tamil Nadu, India
    12 6 2010 the journal of biodiversity data 7 December 2016 Check List NOTES ON GEOGRAPHIC DISTRIBUTION Check List 12(6): 2010, 7 December 2016 doi: http://dx.doi.org/10.15560/12.6.2010 ISSN 1809-127X © 2016 Check List and Authors New records of marine ornamental shrimps (Decapoda: Stenopodidea and Caridea) from the Gulf of Mannar, Tamil Nadu, India Sanjeevi Prakash1, 3, Thipramalai Thangappan Ajith Kumar2* and Thanumalaya Subramoniam1 1 Centre for Climate Change Studies, Sathyabama University, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600119, Tamil Nadu, India 2 ICAR - National Bureau of Fish Genetic Resources, Canal Ring Road, Dilkusha Post, Lucknow - 226002, Uttar Pradesh, India 3 Current address: Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA * Corresponding author. E-mail: [email protected] Abstract: Marine ornamental shrimps found in from coral reefs have greatly affected their diversity and tropical coral reef waters are widely recognized for the distribution (Wabnitz et al. 2003). aquarium trade. Our survey of ornamental shrimps in Among all the ornamental shrimps, Stenopus the Gulf of Mannar, Tamil Nadu (India) has found three spp. and Lysmata spp. are the most attractive and species, which we identify as Stenopus hispidus Olivier, extensively traded organisms in the marine aquarium 1811, Lysmata debelius Bruce, 1983, and L. amboinensis industry (Calado 2008). Interestingly, these shrimps are De Man, 1888, based on morphology and color pattern. associates of fishes, in particular, the groupers and giant These shrimps are recorded for the first time in Gulf of moray eels (Gymnothorax spp.). These shrimps display a Mannar, Tamil Nadu.
    [Show full text]
  • Cleaner Shrimp Use a Rocking Dance to Advertise Cleaning Service to Clients
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology, Vol. 15, 760–764, April 26, 2005, ©2005 Elsevier Ltd All rights reserved. DOI 10.1016/j.cub.2005.02.067 Cleaner Shrimp Use a Rocking Dance to Advertise Cleaning Service to Clients Justine H.A. Becker,* Lynda M. Curtis, creases their fitness, then signaling should increase as and Alexandra S. Grutter the cleaner’s desire to clean increases. Becker and School of Integrative Biology Grutter [12] showed that hunger level can affect a University of Queensland cleaner shrimp’s desire to clean. They manipulated the St. Lucia, Queensland 4072 hunger levels of cleaner shrimp and found that starved Australia cleaner shrimp spent almost twice as much time clean- ing client fish as satiated shrimp did. Therefore, we ma- nipulated the cleaner shrimp’s hunger level in the labo- Summary ratory and exposed them to client fish to determine whether hunger level affected the potential signaling Signals transmit information to receivers about sender behavior of the cleaner shrimp. We then tested whether attributes, increase the fitness of both parties, and the behavior of the client fish Cephalopholis cyano- are selected for in cooperative interactions between stigma toward cleaner shrimp varied according to the species to reduce conflict [1, 2]. Marine cleaning in- potential advertising signal. The latter was manipulated teractions are known for stereotyped behaviors [3–6] by varying the hunger level of the cleaner shrimp. that likely serve as signals. For example, “dancing” In the wild, we found that when a potential client and “tactile dancing” in cleaner fish may serve to ad- swam near a cleaning station, one to several cleaner vertise cleaning services to client fish [7] and manipu- shrimp performed a stereotypical, side-to-side move- late client behavior [8], respectively.
    [Show full text]
  • SEASMART Program Final Report Annex
    Creating a Sustainable, Equitable & Affordable Marine Aquarium Industry in Papua New Guinea | 1 Table of Contents Executive Summary ............................................................................................................ 7 Introduction ....................................................................................................................... 15 Contract Deliverables ........................................................................................................ 21 Overview of PNG in the Marine Aquarium Trade ............................................................. 23 History of the Global Marine Aquarium Trade & PNG ............................................ 23 Extent of the Global Marine Aquarium Trade .......................................................... 25 Brief History of Two Other Coastal Fisheries in PNG ............................................ 25 Destructive Potential of an Inequitable, Poorly Monitored & Managed Nature of the Trade Marine Aquarium Fishery in PNG ........................... 26 Benefit Potential of a Well Monitored & Branded Marine Aquarium Trade (and Other Artisanal Fisheries) in PNG ................................................................... 27 PNG Way to Best Business Practice & the Need for Effective Branding .............. 29 Economic & Environmental Benefits....................................................................... 30 Competitive Advantages of PNG in the Marine Aquarium Trade ................................... 32 Pristine Marine
    [Show full text]
  • (Decapoda, Hippolytidae) from Warm Temperate and Subtropical Waters of Japan
    LYSMATA LIPKEI, A NEW SPECIES OF PEPPERMINT SHRIMP (DECAPODA, HIPPOLYTIDAE) FROM WARM TEMPERATE AND SUBTROPICAL WATERS OF JAPAN BY JUNJI OKUNO1,3) and G. CURT FIEDLER2) 1) Coastal Branch of Natural History Museum and Institute, Chiba 123 Yoshio, Katsuura, Chiba 299-5242, Japan 2) University of Maryland University College, Asia Division, USAG-J, Unit 45013, Box 2786, Zama, Kanagawa 228-0027, Japan ABSTRACT A new hippolytid shrimp species of the genus Lysmata Risso, 1816, L. lipkei sp. nov., is described and illustrated on the basis of 13 specimens from intertidal and sublittoral zones of the Boso Peninsula, Honshu and the Ryukyu Islands, Japan. Morphologically, L. lipkei is closely related to the eastern Indian Ocean species, L. dispar Hayashi, 2007, but differs from the latter by the structure of the rostrum, the armature of the antennular peduncle, and the number of articulations of the second pereiopods. RÉSUMÉ Une nouvelle crevette Hippolytidae du genre Lysmata Risso, 1816, L. lipkei sp. nov., est décrite et illustrée en se fondant sur l’examen de 13 specimens intertidaux et subtidaux de la péninsule de Boso, Honshu et des îles Ryukyu, Japon. D’un point de vue morphologique, L. lipkei est étroitement apparentée à l’espèce de l’Océan Indien oriental, L. dispar Hayashi, 2007, mais en diffère par la structure du rostre, l’armature du pédoncule antennulaire, et le nombre d’articulations des seconds péreiopodes. INTRODUCTION The hippolytid genus Lysmata Risso, 1816 can be distinguished from other genera of the Hippolytidae by their moderately slender body, the long and 3) Corresponding author; e-mail: [email protected] © Koninklijke Brill NV, Leiden, 2010 Studies on Malacostraca: 597-610 598 CRM 014 – Fransen et al.
    [Show full text]
  • Roving and Service Quality in the Cleaner Wrasse Labroides Bicolor
    1 Roving and Service Quality in the Cleaner Wrasse Labroides bicolor Jennifer Oates*, Andrea Manica* & Redouan Bshary * Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge, UK Institut de Zoologie, Eco-Ethologie, Universite´ de Neuchaˆ tel, Neuchaˆ tel, Switzerland Abstract The cleaner wrasse Labroides dimidiatus occupies fixed ‘cleaning stations’ on coral reefs, which ‘client’ reef fish visit repeatedly to have parasites removed. Conflict arises because cleaners prefer to cheat by feeding on client mucus instead of parasites. Clients can prevent L. dimidiatus from always cheating using control mechanisms such as chasing and partner switching, which depend on repeated interactions. These control mecha- nisms would be undermined in the absence of frequent repeated inter- actions, if cleaners roved over large areas. Roving behaviour has been anecdotally described for the closely related cleaner wrasse Labroides bicolor. Here we report field data comparing these two species in Moorea, French Polynesia. Our results confirmed that L. bicolor home ranges are much larger than L. dimidiatus home ranges, and showed that cleaning interactions occurred all over the L. bicolor home range: home range of cleaning interactions increased with total home range size. Moreover, we found that cleaner initiation of interactions increased with home range size in L. bicolor, which would give L. bicolor with large home ranges additional leverage to increase cheating. In line with these results, we found that client jolt rate (used as a measure of cheating) was higher among clients of cleaners with large home ranges. Our results emphasise the importance of game structure and control over initiating interactions as parameters in determining the nature of inter- actions in mutualisms.
    [Show full text]
  • Dispersal of Pederson Cleaner Shrimp Among Host Sea Anemones: Impacts of Shrimp Body Size and Social Group Interactions
    Dispersal of Pederson cleaner shrimp among host sea anemones: Impacts of shrimp body size and social group interactions by Carly Elizabeth Winn A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn Alabama December 14, 2019 Keywords: shrimp, sea anemone, symbiosis, dominance hierarchy, mutualism, Caribbean coral reef Copyright 2019 by Carly Elizabeth Winn Approved by Nanette Chadwick, Associate Professor of Biological Sciences Daniel Warner, Assistant Professor of Biological Sciences James Stoeckel, Associate Professor of Fisheries, Aquaculture and Aquatic Sciences Abstract Pederson shrimp Ancylomenes pedersoni are the most common cleaners of reef fishes in the Caribbean Sea. They also are obligate associates of sea anemones, especially corkscrew anemones Bartholomea annulata; together these shrimp and anemones form cleaning stations that are visited by client fishes for ectoparasite removal. Pederson shrimp therefore likely impact the abundance and diversity of reef fishes by enhancing fish health through reduction of parasite loads and physiological stress levels. Shrimp dispersal patterns among host anemones affect the stability and locations of cleaning stations, but the extent to which shrimp move among anemones remains unknown. Here we quantify rates and patterns of association with and dispersal among host sea anemones by these shrimp, and how they vary with characteristics of both the shrimp (body size, social rank, social group size) and the anemone host (body size, distance to nearest neighbor). Laboratory experiments revealed that shrimp level of association with anemones increases with both shrimp body size and social rank, but not with anemone size. Field observations on patch reefs at St.
    [Show full text]
  • Phylogeny and Taxonomy of the Genera Lysmata and Exhippolysmata (Crustacea: Caridea: Hippolytidae)
    Zoological Journal of the Linnean Society, 2010, 160, 254–265. With 3 figures Molecular systematics of peppermint and cleaner shrimps: phylogeny and taxonomy of the genera Lysmata and Exhippolysmata (Crustacea: Caridea: Hippolytidae) J. ANTONIO BAEZA1,2,3* 1Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancón, Republic of Panama 2Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida 34949, USA 3Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile Received 31 December 2008; accepted for publication 22 May 2009 Shrimps from the ecologically diverse genera Lysmata and Exhippolysmata are rare among marine invertebrates because they are protandric simultaneous hermaphrodites: shrimps initially mature and reproduce solely as males, and later in life become functional simultaneous hermaphrodites. Considerable progress on the reproductive ecology of members from these two genera has been achieved during the last decade. However, several outstanding issues of systematic nature remain to be addressed. Here, a molecular phylogeny of these two genera was used to examine the overall evolutionary relationship within and between species and genera, and to answer various questions related to the systematic status of several species. The present phylogenetic analysis, including 53 sequences and 26 species of Lysmata and Exhippolysmata, indicates that semiterrestrial shrimps from the genus Merguia represent the sister group to a second natural clade composed by shrimps from the genera Lysmata and Exhippolysmata. Also, the phylogenetic analysis confirmed that the genus Lysmata is paraphyletic, and includes the genus Exhippolysmata, as noted in a preliminary study. The tree partially supports the separation of species with or without a developed accessory branch into two different genera or subgenera (i.e.
    [Show full text]