Intel(R) X38 Chipset External Design Specification

Total Page:16

File Type:pdf, Size:1020Kb

Intel(R) X38 Chipset External Design Specification Intel® 3200 and 3210 Chipset Datasheet — For the Intel® 3200 and 3210 Chipset Memory Controller Hub (MCH) November 2007 Document Number: 318463-001 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® 3200/3210 Memory Controller Hub (MCH) may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation. No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (Intel® TXT) is a security technology under development by Intel and requires for operation a computer system with Intel® Virtualization Technology, a Intel® Trusted Execution Technology- enabled Intel processor, chipset, BIOS, Authenticated Code Modules, and an Intel or other Intel® Trusted Execution Technology compatible measured virtual machine monitor. In addition, Intel® Trusted Execution Technology requires the system to contain a TPMv1.2 as defined by the Trusted Computing Group and specific software for some uses. Intel, Pentium, Xeon, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright© 2007, Intel Corporation 2 Datasheet Contents 1Introduction............................................................................................................ 15 1.1 Terminology ..................................................................................................... 17 1.2 MCH Overview .................................................................................................. 20 1.2.1 Host Interface........................................................................................ 20 1.2.2 System Memory Interface ....................................................................... 20 1.2.3 Direct Media Interface (DMI).................................................................... 21 1.2.4 PCI Express* Interface............................................................................ 22 1.2.5 MCH Clocking ........................................................................................ 23 1.2.6 Power Management ................................................................................ 23 1.2.7 Thermal Sensor ..................................................................................... 23 2 Signal Description ................................................................................................... 25 2.1 Host Interface Signals........................................................................................ 26 2.2 System Memory (DDR2) Interface Signals ............................................................ 29 2.2.1 System Memory Channel A Interface Signals.............................................. 29 2.2.2 System Memory Channel B Interface Signals.............................................. 30 2.2.3 System Memory Miscellaneous Signals ...................................................... 31 2.3 PCI Express* Interface Signals............................................................................ 31 2.4 Controller Link Interface Signals.......................................................................... 32 2.5 Clocks, Reset, and Miscellaneous......................................................................... 32 2.6 Direct Media Interface........................................................................................ 33 2.7 Power and Grounds ........................................................................................... 34 3 System Address Map ............................................................................................... 35 3.1 Legacy Address Range ....................................................................................... 38 3.1.1 DOS Range (0h – 9_FFFFh) ..................................................................... 38 3.1.2 Expansion Area (C_0000h-D_FFFFh) ......................................................... 39 3.1.3 Extended System BIOS Area (E_0000h–E_FFFFh)....................................... 39 3.1.4 System BIOS Area (F_0000h–F_FFFFh) ..................................................... 40 3.1.5 PAM Memory Area Details........................................................................ 40 3.2 Main Memory Address Range (1MB – TOLUD)........................................................ 40 3.2.1 ISA Hole (15 MB –16 MB)........................................................................ 41 3.2.2 TSEG .................................................................................................... 42 3.2.3 Pre-allocated Memory ............................................................................. 42 3.3 PCI Memory Address Range (TOLUD – 4 GB) ........................................................ 43 3.3.1 APIC Configuration Space (FEC0_0000h–FECF_FFFFh)................................. 45 3.3.2 HSEG (FEDA_0000h–FEDB_FFFFh) ........................................................... 45 3.3.3 FSB Interrupt Memory Space (FEE0_0000–FEEF_FFFF)................................ 45 3.3.4 High BIOS Area...................................................................................... 45 3.4 Main Memory Address Space (4 GB to TOUUD)...................................................... 46 3.4.1 Memory Re-claim Background .................................................................. 47 3.4.2 Memory Reclaiming ................................................................................ 47 3.5 PCI Express* Configuration Address Space ........................................................... 47 3.6 PCI Express* Address Space ............................................................................... 48 3.7 System Management Mode (SMM) ....................................................................... 49 3.7.1 SMM Space Definition ............................................................................. 49 3.7.2 SMM Space Restrictions .......................................................................... 50 3.7.3 SMM Space Combinations........................................................................ 50 3.7.4 SMM Control Combinations ...................................................................... 51 3.7.5 SMM Space Decode and Transaction Handling ............................................ 51 3.7.6 Processor WB Transaction to an Enabled SMM Address Space....................... 51 Datasheet 3 3.7.7 SMM Access Through TLB.........................................................................51 3.8 Memory Shadowing............................................................................................52 3.9 I/O Address Space .............................................................................................52 3.9.1 PCI Express* I/O Address Mapping............................................................53 4 MCH Register Description.........................................................................................55 4.1 Register Terminology .........................................................................................56 4.2 Configuration Process and Registers .....................................................................57 4.2.1 Platform Configuration Structure...............................................................57 4.3 Configuration Mechanisms ..................................................................................58 4.3.1 Standard PCI Configuration Mechanism......................................................58 4.3.2 PCI Express Enhanced Configuration Mechanism .........................................59 4.4 Routing Configuration Accesses ...........................................................................60 4.4.1 Internal Device Configuration Accesses......................................................61 4.4.2 Bridge Related Configuration Accesses.......................................................62
Recommended publications
  • 2Nd Generation Intel Core Processor Family with Intel 6 Series Chipset Development Kit User Guide
    2nd Generation Intel® Core™ Processor Family with Intel® 6 Series Chipset Development Kit User Guide March 2011 Document Number: 325208 About This Document INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Intel processor numbers are not a measure of performance.
    [Show full text]
  • The New Intel® Xeon® Processor Scalable Family
    Akhilesh Kumar Intel Corporation, 2017 Authors: Don Soltis, Irma Esmer, Adi Yoaz, Sailesh Kottapalli Notices and Disclaimers This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance. Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
    [Show full text]
  • Im Divar Ip 6000 2U
    DIVAR IP 6000 2U DIP-6080-00N, DIP-6082-8HD, DIP-6083-8HD en Installation Manual DIVAR IP 6000 2U Table of Contents | en 3 Table of contents 1 Safety precautions 5 1.1 General safety precautions 5 1.2 Electrical safety precautions 6 1.3 ESD precautions 7 1.4 Operating precautions 7 1.5 Important notices 8 1.6 FCC and ICES compliance 8 2 System overview 9 2.1 Chassis features 9 2.2 Chassis components 9 2.2.1 Chassis 10 2.2.2 Backplane 10 2.2.3 Fans 10 2.2.4 Mounting rails 10 2.2.5 Power supply 10 2.2.6 Air shroud 10 2.3 System interface 10 2.3.1 Control panel buttons 11 2.3.2 Control panel LEDs 12 2.3.3 Drive carrier LEDs 12 3 Chassis setup and maintenance 13 3.1 Removing the chassis cover 13 3.2 Installing hard drives 14 3.2.1 Removing hard drive trays 14 3.2.2 Installing a hard drive 15 3.3 Installing an optional floppy or fixed hard drive 16 3.4 Installing or replacing a DVD-ROM drive 17 3.5 Replacing the internal transcoder device 17 3.6 Replacing or installing the front port panel 17 3.7 Installing the motherboard 18 3.8 Installing the air shroud 18 3.9 System fans 19 3.10 Power supply 20 3.10.1 Replacing the power supply 21 3.10.2 Replacing the power distributor 22 4 Rack installation 23 4.1 Unpacking the system 23 4.2 Preparing for setup 23 4.2.1 Choosing a setup location 23 4.2.2 Rack precautions 23 4.2.3 General system precautions 24 4.2.4 Rack mounting considerations 24 4.3 Rack mounting instructions 24 4.3.1 Separating the sections of the rack rails 25 4.3.2 Installing the inner rails 26 4.3.3 Installing the outer rails to the
    [Show full text]
  • Desktop 4Th Generation Intel® Core™ Processor Family, Desktop Intel® Pentium® Processor Family, and Desktop Intel® Celeron® Processor Family Datasheet – Volume 1 of 2
    Desktop 4th Generation Intel® Core™ Processor Family, Desktop Intel® Pentium® Processor Family, and Desktop Intel® Celeron® Processor Family Datasheet – Volume 1 of 2 July 2014 Order No.: 328897-008 By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
    [Show full text]
  • BRKINI-2390.Pdf
    BRKINI-2390 Data Center security within modern compute and attached fabrics - servers, IO, management Dan Hanson Director UCS Architectures and Technical Marketing Cisco Spark Questions? Use Cisco Spark to communicate with the speaker after the session How 1. Find this session in the Cisco Live Mobile App 2. Click “Join the Discussion” 3. Install Spark or go directly to the space 4. Enter messages/questions in the space cs.co/ciscolivebot#BRKINI-2390 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public Recent Press Items © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public Agenda • x86 Architecture Review • BIOS and Kernel Manipulation • Device Firmware Manipulation • On Server Data Storage Manipulation • Segmentation and Device access • Root of Trust Flow • Policy Control vs. Component Configuration (Cisco UCS and ACI) • Example of Security Offloading: Skyport Systems • Conclusion x86 Architecture Review Many Points of possible attack X86 Reference Legacy Elements • You may see many terms in various articles shown here • Over time, items moving on the CPU itself • Memory • PCIe • Processors/Servers differentiation in some areas • Front Side Bus speeds • Direct Media Interface • Southbridge Configurations BRKINI-2390 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 7 X86 Reference Fundamental Architecture • Not shown: Quick Path Interconnect/UltraPath Interconnect for CPU to CPU communications • Varied counts and speeds for multi-socket systems • Current Designs have On-Die PCIe and Memory controllers • Varied numbers and DIMMs in memory channels by CPU • Platform Controller Hub varies and can even offer server acceleration and security functions BRKINI-2390 © 2018 Cisco and/or its affiliates.
    [Show full text]
  • Dell EMC Poweredge C4140 Technical Guide
    Dell EMC PowerEdge C4140 Technical Guide Regulatory Model: E53S Series Regulatory Type: E53S001 Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your product. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2017 - 2019 Dell Inc. or its subsidiaries. All rights reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners. 2019 - 09 Rev. A00 Contents 1 System overview ......................................................................................................................... 5 Introduction............................................................................................................................................................................ 5 New technologies.................................................................................................................................................................. 5 2 System features...........................................................................................................................7 Specifications......................................................................................................................................................................... 7 Product comparison.............................................................................................................................................................
    [Show full text]
  • ECE 571 – Advanced Microprocessor-Based Design Lecture 16
    ECE 571 { Advanced Microprocessor-Based Design Lecture 16 Vince Weaver http://www.eece.maine.edu/~vweaver [email protected] 31 March 2016 Announcements • Project topics • HW#8 will be similar, about a modern ARM chip 1 Busses • Grey Code, only one bit change when incrementing. Lower energy on busses? (Su and Despain, ISLPED 1995). 2 Reading of the Webpage http://anandtech.com/show/9582/intel-skylake-mobile-desktop-launch-architecture-analysis/ The Intel Skylake Mobile and Desktop Launch, with Architecture Analysis by Ian Cutress 3 Background on where info comes from Intel Developer Forum This one was in August 4 Name tech Year Conroe/Merom 65nm Tock 2006 Penryn 45nm Tick 2007 Nehalem 45nm Tock 2008 Westmere 32nm Tick 2010 Sandy Bridge 32nm Tock 2011 Ivy Bridge 22nm Tick 2012 Haswell 22nm Tock 2013 Broadwell 14nm Tick 2014 Skylake 14nm Tock 2015 Kaby Lake? 14nm Tock 2016 5 Clock: tick-tock. Upgrade the process technology, then revamp the uarch. 14nm technology? Finfets? What technology are Pis at? 40nm? 14nm yields getting better. hard to get, even with electron beam lithography plasma damage to low-k silicon only 0.111nm finfet. Intel has plants Arizona, etc. Delay to 10nm 7nm? EUV? 6 Skylake Processor { Page 1 • 4.5W ultra-mobile to 65W desktop They release desktop first these days. For example just today releasing \Xeon E5-2600 v4" AKA Broadwell-EP Confusing naming i3, i5, i7, Xeon, Pentium, m3, m5, m7, etc. Number of pins important. Low-power stuck with LPDDR3/DDR3L instead of DDR4 possibly due to lack of pins? eDRAM? 7 Intel no longer releasing info on how many transistors/transistor size? 8 Skylake Processor { Page 2 • \mobile first” design.
    [Show full text]
  • Intel® Coretm 2 Duo Processor and Mobile Intel® GME965 Express Chipset
    Intel® CoreTM 2 Duo processor and Mobile Intel® GME965 Express Chipset Development Kit User Manual June 2007 Document Number: 316704-001 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel may make changes to specifications and product descriptions at any time, without notice. Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families.
    [Show full text]
  • Intel® Compute Card CD1M3128MK CD1IV128MK Technical Product Specification
    + Intel® Compute Card CD1M3128MK CD1IV128MK Technical Product Specification August 2017 Order Number: J46734-001 Intel® Compute Card CD1M3128MK or CD1IV128MK may contain design defects or errors known as errata that may cause the product to deviate from published specifications. Current characterized errata, if any, are documented in Intel® Compute Card CD1M3128MK or CDIV128MK Specification Updates Revision History Revision Revision History Date 001 First release August 2017 Disclaimer This product specification applies to only the standard Intel® Compute Card with BIOS identifier MKKBLY35.86A or MKKBI5V.86A. INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. All Compute Cards are evaluated as Information Technology Equipment (I.T.E.) for installation in homes, offices, schools, computer rooms, and similar locations. The suitability of this product for other PC or embedded non-PC applications or other environments, such as medical, industrial, alarm systems, test equipment, etc.
    [Show full text]
  • Technical Reference Guide HP Compaq Dc7800 Series Business Desktop Computers
    Technical Reference Guide HP Compaq dc7800 Series Business Desktop Computers Document Part Number: 461444-001 October 2007 This document provides information on the design, architecture, function, and capabilities of the HP Compaq dc7800 Series Business Desktop Computers. This information may be used by engineers, technicians, administrators, or anyone needing detailed information on the products covered. © Copyright 2007 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Microsoft, MS-DOS, Windows, and Windows NT are trademarks of Microsoft Corporation in the U.S. and other countries. Intel, Intel Core 2 Duo, Intel Core 2 Quad, Pentium Dual-Core, Intel Inside, and Celeron are trademarks of Intel Corporation in the U.S. and other countries. Adobe, Acrobat, and Acrobat Reader are trademarks or registered trademarks of Adobe Systems Incorporated. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. This document contains proprietary information that is protected by copyright. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company. Technical Reference Guide HP Compaq dc7800 Series Business Desktop Computers First Edition (October 2007) Document Part Number: 461444-001 Contents 1Introduction 1.1 About this Guide . 1–1 1.1.1 Online Viewing . 1–1 1.1.2 Hardcopy . 1–1 1.2 Additional Information Sources . 1–1 1.3 Model Numbering Convention .
    [Show full text]
  • The Requirements of I/O OS Basics: I/O in a Picture
    The Requirements of I/O CS162 • So far in this course: Operating Systems and – We have learned how to manage CPU and memory Systems Programming Lecture 16 • What about I/O? – Without I/O, computers are useless (disembodied brains?) General I/O – But… thousands of devices, each slightly different » How can we standardize the interfaces to these devices? October 24th, 2016 – Devices unreliable: media failures and transmission errors Prof. Anthony D. Joseph » How can we make them reliable??? http://cs162.eecs.Berkeley.edu – Devices unpredictable and/or slow » How can we manage them if we don’t know what they will do or how they will perform? 10/24/16 Joseph CS162 ©UCB Fall 2016 Lec 16.2 OS Basics: I/O In a Picture Threads Read / Address Spaces Windows Write wires Processes Files Sockets Processor OS Hardware Virtualization Core I/O Software Controllers Hardware ISA Memory interrupts Secondary Read / DMA transfer Write Main Secondary Storage Core Processor Protection Memory Storage (Disk) Boundary (DRAM) OS (SSD) Ctrlr Networks storage • I/O devices you recognize are supported by I/O Controllers • Processors accesses them by reading and writing IO registers as if they were memory Displays – Write commands and arguments, read status and results Inputs 10/24/16 Joseph CS162 ©UCB Fall 2016 Lec 16.3 10/24/16 Joseph CS162 ©UCB Fall 2016 Lec 16.4 Operational Parameters for I/O Kernel Device Structure • Data granularity: Byte vs. Block The System Call Interface – Some devices provide single byte at a time (e.g., keyboard) – Others provide whole blocks (e.g., disks, networks, etc.) Process Memory Device Filesystems Networking Management Management Control • Access pattern: Sequential vs.
    [Show full text]
  • Sun Server X2-8 System Architecture White Paper
    An Oracle White Paper July 2011; Revised July 2012 Oracle¶V Sun Server X2-8 System Architecture 2UDFOH¶V6XQServer X2-8 System Architecture Introduction ....................................................................................... 1 2UDFOH¶V6XQServer X2-8 System ..................................................... 2 The Sun Server X2-8 System Architecture ........................................ 5 CPU Module .................................................................................. 6 Memory ......................................................................................... 9 PCI Express ExpressModule ....................................................... 10 Network Express Module ............................................................. 12 Internal Drives ............................................................................. 13 Chassis and External Interfaces .................................................. 13 Cooling ........................................................................................ 14 Power .......................................................................................... 15 System Management ....................................................................... 16 ILOM Service Processor .............................................................. 16 SNMP Support ............................................................................ 20 ® Oracle Enterprise Manager Ops Center Software ...................... 21 A Choice of Operating Systems ......................................................
    [Show full text]