Finding Salient Objects in an Image

Total Page:16

File Type:pdf, Size:1020Kb

Finding Salient Objects in an Image FINDING SALIENT OBJECTS IN AN IMAGE Anthony Hang Fai Lau Depart ment of Elecerical Engineering SIcGill Cniversity .\ Thesis siibmitted to the Facttlty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of b taster of Engineering Bibliothèque nationale du Canada Aquisitioe and Acquisitions et Bibliographe Services services bibliographiques The author has granted a non- L'auteur a accordé une Licence non exclusive licence allowing the exclusive permettant a la National Lilbrary of Canada to Bibliothèque nationale du Canada de reproduce, loan, distn'bute or sel reproduire, prêter, distriibuer ou copies of tbis thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfichell5.lm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur cpi protège cette thèse. thesis nor substantial extracts fiom it Ni la thése ni des extraits substantiels may be printed or othemise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract Slany cornpliter vision applications. such as object recognition. active vision. anci content briçed image retrieval (CBIR) could be made both more efficient and effective if thtl ohjwts of interest cotild be segrnenred from the background. This thesis dis- ciisses the developnient and implementation of a complete ~insiipervisedobject-biised atttwion systern for locating salient objects in an image. Tlie rriajor conipotierits of this system are the segmentation and the attention procrss. Consiti~rabl~research haç beeri done in these two areas. but unforturiately. diere is still not a single rnethod that can be appiied reliably under al1 situations. \Ci. have analysecl the attention model proposed by Osberger and have founci chac thir rnettiod fails to idcntify some important regions that are saiierit to humaris. Noditications to this mode1 are proposed to correct some of these problenis. For the segnientation process. one important aspect is the measurernent of the qiiality of a partictilar segnientation. since the attention process depends solely on the segmenta- tion output. in particular. three different cluster tdidity rneasures are consiclered: a simple thresholcl-based indes. a non-parameter indes. and the modified Hubert in- des. From the esperirnenta1 resuIts. the simple threshold-based index is shown to outperforrn the other indices on most test images. We believe that the success of the rhreshold-basetl index is largely reIated to the incorporation of hurnan preference ici the selection of the threshold parameter. Résumé Dc ntirnbreuses applications en vision artificielle telles que la vision active et I'indesage (l'images basé sur le contenu pourraient etre rendues plus efficaces si les objets d'intérêt poutxient segmentés du fond de l'image. Cette thèse discute du développement et de l'implémentation d'un systérne d'attention non-supervisé basé sur des objets pour localiser rlcs objets saillants clans une image. Les cornposantes niajeiires de re systènie sont la segmentation et le mécanimsme d'itttclntion. Bien que que ces rleiis sujets aient été l'objet de nombreuses recherches. il n'tlsist~toujours à ce jour pas de méthode fiable qui puisse 6tre appliqtiée dans coiitcs les situations. Xoiis avons analysé le modéle d'attention propoé par Osberger ttr. nous avons trouve qu'elle ne réussi pas a identifier quelques unes ries régions sail- lantes évicicwes pour des humains. Des modifications à ce modèle sont proposées pour c.0rrigr.r iwtairis de ces problémes. Cu des aspects importants pour la seg- iiieiitatioti est Iri niesure de la quiilité d'une m'ethode en particulier puisque le pro- resstb rt*i;ittentionrepose uniquement sur Ir résultat tlc la segnientation. Plus partir- iiliérement. trois différentes rnéthocles de niesure rle vdirlitl; sont ronsirlér6es;: tin indes tlPterniin6 par un setiillage simple. un index non-paramétrique et une version niocC ifiée rie Iïncles d'Hubert. D'après les résultats expérimenta~~x.1' indes déterminé par un seuillage siniple surpasse les autres méthodes pour la plupart des images testces. Nous croyons que le succès de l'index déterminé par un seuillage simple est largement lié a l'incorporation de préfiences humaines dans la sélection du seuiI utilisé. Acknowledgements First of dl. I would like to thank niy supervisor. Prof. '1I.D. Levine. for tiis enthii- siastic guidance and support. He is always arailable when needed and is willing tu tliscuss with his stutirnts any clifficulties encountered during the research. I must also thank GiIbert Soucy for transiating the abstract to French. al1 the people at CI11 for providing a goorl working atmosphere. and my farnily for their unfailing support arid encoiiragenient throiighoiit the period of this wrk. TABLE OF CONTENTS .. Abstract ....................................... 11 ... LIST OF FIGURES ................................ 1-111 LIST OF T.4BLES ................................. sii CH-4PTER 1. Introrluction ........................... 1 1. The Xeed for Object-based Attention ................... 1 2 . 5Iotivation .................................. -.) 3 . .4n Overview uf the Approach ....................... --I 4 . Organisation of the Thesis ......................... 4 5 . Contributions ................................ 4 CH-APTER 2 . Literature Review ........................ 6 . 1. Perceptual Grouping ............................ I 1.1. Signal Level ............................... 10 1.2. Primitive Level ............................. 12 1.3. Stn~cturalLever ............................. 12 1.4. Conslusions ............................... 23 2 . \i-isual Attention System in Humans .................... 13 2.1. Strtlcture of the Human Visual S_vstem ................ L4 -1.2. Psychophysical Aspects of the Human Visual Attention System . i5 -1.3. CoucIrrsions ............................... '210 3 . Visual -ittention Systems in Slachines ................... 20 3.1. Conchsions ............................... 3-- 3 CH-APTER 3 . Perceptual Sdiency Sleasure ................... 23 1. Perceptrial Saliency Factors ......................... 23 1.1. Osberger and Maeder 's mode! ..................... 2-4 12 Discussion ................................ 26 1.3. Xew and Slodified Importance Factors ................ 29 2 . Methods for Combining the Importance Factors ............. 33 2.1. Osberger and Uaeder's Method .................... 33 2.1. Itti and Ibch's SIethod ......................... 33 '2.3. Discussion ................................ 34 CH-WTER 4 . Feaciire Selection ......................... :33 1. Colour .................................... 36 1.1. Coloiir Spaces .............................. 35 1.2. Conclusions ............................... -13 2. Testur~.................................... 43 2.1. Relatecl CVork on Texture ........................ -14 2.2. Rrlared \.Vork ori I'risupervised Segmentation of Satura1 1ni:iges . 4G 2.3. TestureRepresentation ......................... 47 4 Gabor Filter Biink ........................... 4s 2.5. Generation of Texture Feature Set ................... 51 - - 3 . Feattire Integration ............................. ai CH.4PTER .? . Iniag~Scgnientation ....................... -59 1. Revictv of Image Segmentation Techniques ................ 59 1.1. Clustering-bwed JIethods ....................... 60 1 . Edge-bnsetl Sl~tho& .......................... 61 1..3 . Rtyjori-basetf SI~thods......................... 62 1.4. Hybriti SIethods ............................. 63 1.3. Conclusions ............................... 63 2 . ?;ou-parametric Density Estimation for Image Clustering ........ 63 '1.1. Clustering .\ lgorithrn .......................... 64 2 Cliister Càlidity indices and Stopping Criteria ............. 65 '1.3. Post-processing ............................. 70 CH-iPTER 6. Etduation and Test Results ................... Ti 1. Determining Parameter Values ....................... 71 1.1. Weights for Colour . Texture . and Position .............. 71 1.2. Parameters Csed in Image Clustering ................. 73-- 2 . Cluster Measures .............................. t t 2.1. -4ssumptions Lsed in Each SIethod .................. 78 2.2. Test Images and Implementation Issues ................ 78 2.3. Test Results and Discussion ...................... 79 3 . Saliençy Factors ............................... S2 3.1. Determining the CCéights of Different Sdiency Factors ........ 82 3.2. Discussion ................................ S1 4 . -4pplications ................................. 3-1 4.1. Face finding ............................... 8-4 4 .2. [mage compression . machine vision . and CBIR ............ 86 CHJLPTER 7 . Conritisions ............................ Si 1. Dirertion of Future Work .......................... 88 .4 PPESDIS .-\ . Thc Grnphical Cser Interface (GLI) .............. 30 APPESDIS B . The Image Database ...................... 92 APPESDIS Ç . The Test Set and Results .................... 96 REFERESCES ................................... 99 LIST OF FIGLXS LIST OF FIGURES Systern Block Diagrarn. The niethod consists of three computational processes shown in the left-hand column. The data transferred twtween each process is inciicated in the shaded strips. Examples cif the input. interniediate data. and final output are shown in the right-harul colurnri ......................... 3 -4 simple
Recommended publications
  • Paquete En Python Para La Reducción De Dimensionalidad En Imágenes a Color
    Departamento De Computación Título: Paquete en Python para la reducción de dimensionalidad en imágenes a color. Autora: Liliam Fernández Cabrera. Cabrera. Tutor: M.Sc. Roberto Díaz Amador. Santa Clara, Cuba, 2018 Este documento es Propiedad Patrimonial de la Universidad Central “Marta Abreu” de Las Villas, y se encuentra depositado en los fondos de la Biblioteca Universitaria “Chiqui Gómez Lubian” subordinada a la Dirección de Información Científico Técnica de la mencionada casa de altos estudios. Se autoriza su utilización bajo la licencia siguiente: Atribución- No Comercial- Compartir Igual Para cualquier información contacte con: Dirección de Información Científico Técnica. Universidad Central “Marta Abreu” de Las Villas. Carretera a Camajuaní. Km 5½. Santa Clara. Villa Clara. Cuba. CP. 54 830 Teléfonos.: +53 01 42281503-1419 i La que suscribe Liliam Fernández Cabrera, hago constar que el trabajo titulado Paquete en Python para la redimensionalidad de imágenes a color fue realizado en la Universidad Central “Marta Abreu” de Las Villas como parte de la culminación de los estudios de la especialidad de Licenciatura en Ciencias de la Computación, autorizando a que el mismo sea utilizado por la institución, para los fines que estime conveniente, tanto de forma parcial como total y que además no podrá ser presentado en eventos ni publicado sin la autorización de la Universidad. ______________________ Firma del Autor Los abajo firmantes, certificamos que el presente trabajo ha sido realizado según acuerdos de la dirección de nuestro centro y el mismo cumple con los requisitos que debe tener un trabajo de esta envergadura referido a la temática señalada. ____________________________ ___________________________ Firma del Tutor Firma del Jefe del Laboratorio ii RESUMEN Un enfoque eficiente de las técnicas del procesamiento digital de imágenes permite dar solución a muchas problemáticas en los campos investigativos que precisan del uso de imágenes para búsquedas de información.
    [Show full text]
  • Computational Color Harmony Based on Coloroid System
    Computational Aesthetics in Graphics, Visualization and Imaging (2005) L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Editors) Computational Color Harmony based on Coloroid System László Neumanny, Antal Nemcsicsz, and Attila Neumannx yGrup de Gràfics de Girona, Universitat de Girona, and Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain zBudapest University of Technology and Economics, Hungary xInstitute of Computer Graphics and Algorithms, Vienna University of Technology, Austria [email protected], [email protected], [email protected] (a) (b) Figure 1: (a) visualization of the overall appearance of a dichromatic color set with `caleidoscope' option of the Color Plan Designer software and (b) interactive color selection of a dichromatic color set in multi-layer mode, applying rotated regular grid. Abstract This paper presents experimentally based rules and methods for the creation of harmonic color sets. First, dichro- matic rules are presented which concern the harmony relationships of two hues. For an arbitrarily given hue pair, we define the just harmonic saturation values, resulting in minimally harmonic color pairs. These values express the fuzzy border between harmony and disharmony regions using a single scalar. Second, the value of harmony is defined corresponding to the contrast of lightness, i.e. the difference of perceptual lightness values. Third, we formulate the harmony value of the saturation contrast, depending on hue and lightness. The results of these investigations form a basis for a unified, coherent dichromatic harmony formula as well as for analysis of polychromatic color harmony. Introduced color harmony rules are based on Coloroid, which is one of the 5 6 main color-order systems and − furthermore it is an aesthetically uniform continuous color space.
    [Show full text]
  • Verfahren Zur Farbanpassung F ¨Ur Electronic Publishing-Systeme
    Verfahren zur Farbanpassung f ¨ur Electronic Publishing-Systeme Von dem Fachbereich Elektrotechnik und Informationstechnik der Universit¨atHannover zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation von Dipl.-Ing. Wolfgang W¨olker geb. am 7. Juli 1957, in Herford 1999 Referent: Prof. Dr.-Ing. C.-E. Liedtke Korreferent: Prof. Dr.-Ing. K. Jobmann Tag der Promotion: 18.01.1999 Kurzfassung Zuk ¨unftigePublikationssysteme ben¨otigenleistungsstarke Verfahren zur Farb- bildbearbeitung, um den hohen Durchsatz insbesondere der elektronischen Me- dien bew¨altigenzu k¨onnen. Dieser Beitrag beschreibt ein System f ¨urdie automatisierte Farbmanipulation von Einzelbildern. Die derzeit vorwiegend manuell ausgef ¨uhrtenAktionen wer- den durch hochsprachliche Vorgaben ersetzt, die vom System interpretiert und ausgef ¨uhrtwerden. Basierend auf einem hier vorgeschlagenen Grundwortschatz zur Farbmanipulation sind Modifikationen und Erweiterungen des Wortschat- zes durch neue abstrakte Begriffe m¨oglich.Die Kombination mehrerer bekannter Begriffe zu einem neuen abstrakten Begriff f ¨uhrtdabei zu funktionserweitern- den, komplexen Aktionen. Dar ¨uberhinaus pr¨agendiese Erg¨anzungenden in- dividuellen Wortschatz des jeweiligen Anwenders. Durch die hochsprachliche Schnittstelle findet eine Entkopplung der Benutzervorgaben von der technischen Umsetzung statt. Die farbverarbeitenden Methoden lassen sich so im Hinblick auf die verwendeten Farbmodelle optimieren. Statt der bisher ¨ublichenmedien- und ger¨atetechnischbedingten Farbmodelle kann nun z.B. das visuell adaptierte CIE(1976)-L*a*b*-Modell genutzt werden. Die damit m¨oglichenfarbverarbeiten- den Methoden erlauben umfangreiche und wirksame Eingriffe in die Farbdar- stellung des Bildes. Zielsetzung des Verfahrens ist es, unter Verwendung der vorgeschlagenen Be- nutzerschnittstelle, die teilweise wenig anschauliche Parametrisierung bestimm- ter Farbmodelle, durch einen hochsprachlichen Zugang zu ersetzen, der den An- wender bei der Farbbearbeitung unterst ¨utztund den Experten entlastet.
    [Show full text]
  • ARC Laboratory Handbook. Vol. 5 Colour: Specification and Measurement
    Andrea Urland CONSERVATION OF ARCHITECTURAL HERITAGE, OFARCHITECTURALHERITAGE, CONSERVATION Colour Specification andmeasurement HISTORIC STRUCTURESANDMATERIALS UNESCO ICCROM WHC VOLUME ARC 5 /99 LABORATCOROY HLANODBOUOKR The ICCROM ARC Laboratory Handbook is intended to assist professionals working in the field of conserva- tion of architectural heritage and historic structures. It has been prepared mainly for architects and engineers, but may also be relevant for conservator-restorers or archaeologists. It aims to: - offer an overview of each problem area combined with laboratory practicals and case studies; - describe some of the most widely used practices and illustrate the various approaches to the analysis of materials and their deterioration; - facilitate interdisciplinary teamwork among scientists and other professionals involved in the conservation process. The Handbook has evolved from lecture and laboratory handouts that have been developed for the ICCROM training programmes. It has been devised within the framework of the current courses, principally the International Refresher Course on Conservation of Architectural Heritage and Historic Structures (ARC). The general layout of each volume is as follows: introductory information, explanations of scientific termi- nology, the most common problems met, types of analysis, laboratory tests, case studies and bibliography. The concept behind the Handbook is modular and it has been purposely structured as a series of independent volumes to allow: - authors to periodically update the
    [Show full text]
  • Color Harmony: Experimental and Computational Modeling
    Color harmony : experimental and computational modeling Christel Chamaret To cite this version: Christel Chamaret. Color harmony : experimental and computational modeling. Image Processing [eess.IV]. Université Rennes 1, 2016. English. NNT : 2016REN1S015. tel-01382750 HAL Id: tel-01382750 https://tel.archives-ouvertes.fr/tel-01382750 Submitted on 17 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNEE´ 2016 THESE` / UNIVERSITE´ DE RENNES 1 sous le sceau de l'Universit´eBretagne Loire pour le grade de DOCTEUR DE L'UNIVERSITE´ DE RENNES 1 Mention : Informatique Ecole doctorale Matisse pr´esent´eepar Christel Chamaret pr´epar´ee`al'IRISA (Institut de recherches en informatique et syst`emesal´eatoires) et Technicolor Th`esesoutenue `aRennes Color Harmony: le 28 Avril 2016 experimental and devant le jury compos´ede : Pr Alain Tr´emeau Professeur, Universit´ede Saint-Etienne / rapporteur computational Dr Vincent Courboulay Ma^ıtre de conf´erences HDR, Universit´e de La modeling. Rochelle / rapporteur Pr Patrick Le Callet Professeur, Universit´ede Nantes / examinateur Dr Frederic Devinck Ma^ıtrede conf´erencesHDR, Universit´ede Rennes 2 / examinateur Pr Luce Morin Professeur, INSA Rennes / examinateur Dr Olivier Le Meur Ma^ıtrede conf´erencesHDR, Universit´ede Rennes 1 / directeur de th`ese Abstract While the consumption of digital media exploded in the last decade, consequent improvements happened in the area of medical imaging, leading to a better understanding of vision mechanisms.
    [Show full text]
  • Download Book of Abstracts
    SPONSORED BY: International Colour Association The Color Science Association of Japan IN COOPERATION WITH: Ministry of Foreign Affairs Ministry of Education, Science, Sports and Culture Ministry of Construction Agency of Industrial Science and Technology, MITI Kyoto Prefectural Government Kyoto Municipal Government SUPPORTED BY: Architectural Institute of Japan The Illuminating Institute of Japan The Institute of Electrical Engineers of Japan The Institute of Electronics and Communication Engineers of Japan The Institute of Imaging Electronics Engineers of Japan The Institute of Television Engineers of Japan Japan Ergonomics Research Society Japanese Institute of Landscape Architecture Japanese Ophthalmological Society The Japanese Psychological Association The Japanese Psychonomic Society Japanese Society for the Science of Design The Japanese Society of Printing Science and Technology Japan Society for Interior Studies The Japan Society of Image Arts and Sciences The Japan Society of Home Economics Optical Society of Japan The Society of Fiber Science and Technology, Japan The Society of Photographic Science and Technology of Japan Japan National Tourist Organization This International Scientific Congress, which is held with participants from both home and abroad is jointly supported by The Ministry of Education, Science, Sports and Culture who provided a Grant-in-Aid for Publication of Scientific Research Results and a Grant-in-Aid for Scientific Research for the fiscal year 1996. TABLE OF CONTENTS-------.... CONGRESS INFORMATION ·
    [Show full text]
  • Copyrighted Material
    Contents About the Authors xv Series Preface xvii Preface xix Acknowledgements xxi 1 Colour Vision 1 1.1 Introduction . 1 1.2 Thespectrum................................. 1 1.3 Constructionoftheeye............................ 3 1.4 The retinal receptors . 4 1.5 Spectral sensitivities of the retinal receptors . 5 1.6 Visualsignaltransmission.......................... 8 1.7 Basicperceptualattributesofcolour..................... 9 1.8 Colourconstancy............................... 10 1.9 Relative perceptual attributes of colours . 11 1.10 Defectivecolourvision............................ 13 1.11 Colour pseudo-stereopsis . 15 References....................................... 16 GeneralReferences.................................. 17 2 Spectral Weighting Functions 19 2.1 Introduction . 19 2.2 Scotopic spectral luminous efficiency . 19 2.3 PhotopicCOPYRIGHTED spectral luminous efficiency . .MATERIAL . 21 2.4 Colour-matchingfunctions.......................... 26 2.5 TransformationfromR,G,BtoX,Y,Z .................. 32 2.6 CIEcolour-matchingfunctions........................ 33 2.7 Metamerism.................................. 38 2.8 Spectral luminous efficiency functions for photopic vision . 39 References....................................... 40 GeneralReferences.................................. 40 viii CONTENTS 3 Relations between Colour Stimuli 41 3.1 Introduction . 41 3.2 TheYtristimulusvalue............................ 41 3.3 Chromaticity................................. 42 3.4 Dominantwavelengthandexcitationpurity................. 44 3.5 Colourmixturesonchromaticitydiagrams................
    [Show full text]
  • Computational Color Harmony Based on Coloroid System
    Institut fur¨ Computergraphik und Institute of Computer Graphics and Algorithmen Algorithms Technische Universitat¨ Wien Vienna University of Technology Karlsplatz 13/186/2 email: A-1040 Wien [email protected] AUSTRIA other services: Tel: +43 (1) 58801-18601 http://www.cg.tuwien.ac.at/ Fax: +43 (1) 58801-18698 ftp://ftp.cg.tuwien.ac.at/ TECHNICAL REPORT Computational Color Harmony based on Coloroid System Laszl´ o´ Neumanna, Antal Nemcsicsb, Attila Neumannc a Grup de Grafics` de Girona, Universitat de Girona, Spain Institucio´ Catalana de Recerca i Estudis Avanc¸ats, ICREA, Barcelona email:[email protected] : Corresponding author b Budapest University of Technology and Economics, Hungary email:[email protected] c Institute of Computer Graphics and Algorithms, University of Technology, Vienna, Austria email:[email protected] TR-186-2-05-05 (revised) June 2005 Computational Color Harmony based on Coloroid System Laszl´ o´ Neumanna, Antal Nemcsicsb, Attila Neumannc a Grup de Grafics` de Girona, Universitat de Girona, Spain Institucio´ Catalana de Recerca i Estudis Avanc¸ats, ICREA, Barcelona email:[email protected] : Corresponding author b Budapest University of Technology and Economics, Hungary email:[email protected] c Institute of Computer Graphics and Algorithms, University of Technology, Vienna, Austria email:[email protected] June 26, 2005 Figure 1: Visualization of the overall appearance of a dichromatic color set with ‘caleidoscope’ option of the Color Plan Designer software ABSTRACT Figure 2: Interactive color selection of a dichromatic color set in multi-layer mode, applying rotated regular The paper presents experimentally based rules and grid methods creating harmonic color sets.
    [Show full text]
  • Color Appearance and Color Difference Specification
    Errata: 1) On page 200, the coefficient on B^1/3 for the j coordinate in Eq. 5.2 should be -9.7, rather than the +9.7 that is published. 2) On page 203, Eq. 5.4, the upper expression for L* should be L* = 116(Y/Yn)^1/3-16. The exponent 1/3 is omitted in the published text. In addition, the leading factor in the expression for b* should be 200 rather than 500. 3) In the expression for "deltaH*_94" just above Eq. 5.8, each term inside the radical should be squared. Color Appearance and Color Difference Specification David H. Brainard Department of Psychology University of California, Santa Barbara, CA 93106, USA Present address: Department of Psychology University of Pennsylvania, 381 S Walnut Street Philadelphia, PA 19104-6196, USA 5.1 Introduction 192 5.3.1.2 Definition of CI ELAB 202 5.31.3 Underlying experimental data 203 5.2 Color order systems 192 5.3.1.4 Discussion olthe C1ELAB system 203 5.2.1 Example: Munsell color order system 192 5.3.2 Other color difference systems 206 5.2.1.1 Problem - specifying the appearance 5.3.2.1 C1ELUV 206 of surfaces 192 5.3.2.2 Color order systems 206 5.2.1.2 Perceptual ideas 193 5.2.1.3 Geometric representation 193 5.4 Current directions in color specification 206 5.2.1.4 Relating Munsell notations to stimuli 195 5.4.1 Context effects 206 5.2.1.5 Discussion 196 5.4.1.1 Color appearance models 209 5.2.16 Relation to tristimulus coordinates 197 5.4.1.2 C1ECAM97s 209 5.2.2 Other color order systems 198 5.4.1.3 Discussion 210 5.2.2.1 Swedish Natural Colour System 5.42 Metamerism 211 (NC5) 198 5.4.2.1 The
    [Show full text]
  • Measuring Colour
    Measuring Colour Fourth Edition R.W.G. Hunt Independent Colour Consultant, UK M.R. Pointer Independent Colour Consultant and Visiting Professor, University of Leeds, UK ( WILEY A John Wiley & Sons, Ltd., Publication Contents About the Authors xv Series Preface xvii Preface xix Acknowledgements xxi 1 Colour Vision 1 1.1 Introduction 1 1.2 The spectrum 1 1.3 Construction of the eye 3 1.4 The retinal receptors 4 1.5 Spectral sensitivities of the retinal receptors 5 1.6 Visual signal transmission 8 1.7 Basic perceptual attributes of colour 9 1.8 Colour constancy 10 1.9 Relative perceptual attributes of colours 11 1.10 Defective colour vision 13 1.11 Colour pseudo-stereopsis 15 References 16 General References 17 2 Spectral Weighting Functions 19 2.1 Introduction 19 2.2 Scotopic spectral luminous efficiency 19 2.3 Photopic spectral luminous efficiency 21 2.4 Colour-matching functions 26 2.5 Transformation from R, G, B to X, Y, Z 32 2.6 CIE colour-matching functions 33 2.7 Metamerism 38 2.8 Spectral luminous efficiency functions for photopic vision 39 References 40 General References 40 viii CONTENTS 3 Relations between Colour Stimuli 41 3.1 Introduction 41 3.2 The Y tristimulus value 41 3.3 Chromaticity 42 3.4 Dominant wavelength and excitation purity 44 3.5 Colour mixtures on chromaticity diagrams 46 3.6 Uniform chromaticity diagrams 48 3.7 CIE 1976 hue-angle and saturation 51 3.8 CIE 1976 lightness, L* 52 3.9 Uniform colour spaces 53 3.10 CIE 1976 colour difference formulae 57 3.11 CMC, CIE94, and CIEDE2000 color difference formulae 61 3.12 An alternative form of the CIEDE2000 colour-difference equation ...
    [Show full text]
  • An Efficient Perception-Based Adaptive Color to Gray
    Computational Aesthetics in Graphics, Visualization, and Imaging (2007) D. W. Cunningham, G. Meyer, L. Neumann (Editors) An Efficient Perception-based Adaptive Color to Gray Transformation † ‡ § L. Neumann 1 and M. Cadíkˇ 2 and A. Nemcsics 3 1ICREA, Barcelona, and VICOROB, University of Girona, Spain 2Department of Computer Science and Engineering, Czech Technical University in Prague, Czech Republic 3Technical University of Budapest, Hungary Abstract The visualization of color images in gray scale has high practical and theoretical importance. Neither the existing local, gradient based methods, nor the fast global techniques give a satisfying result. We present a new color to grayscale transformation, based on the experimental background of the Coloroid system observations. We regard the color and luminance contrasts as a gradient field and we introduce a new simple, yet very efficient method to solve the inconsistency of the field. Having a consistent gradient field, we obtain the resultant image via fast direct integration. The complexity of the method is linear in the number of pixels, making it fast and suitable for high resolution images. Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Picture Image Generation]: Display Algorithms, Viewing Algorithms; I.4.3 [Image Processing and Computer Vision]: Enhancement-Filtering 1. Introduction changes (gradients) and values. The problem combines var- ious aspects of color vision and spatial vision. How does Nowadays, except for a few artistic and scientific applica- the visual effect of chrominance and luminance contrasts de- tions, the vast majority of captured images are color pho- pend on spatial frequencies? tographs. On the other hand, many laser printers are still black-and-white, and most of the pictures in daily newspa- The above questions do not have simple solutions, as pers published in the world are predominantly gray-scale im- adaptive color to gray transformations are not generally ages.
    [Show full text]
  • An Improved Contrast Enhancing Approach for Color-To-Grayscale Mappings
    The Visual Computer manuscript No. (will be inserted by the editor) Giovane R. Kuhn · Manuel M. Oliveira · Leandro A. F. Fernandes An Improved Contrast Enhancing Approach for Color-to-Grayscale Mappings Abstract Despite the widespread availability of color sen- sors for image capture, the printing of documents and books are still primarily done in black-and-white for economic rea- sons. In this case, the included illustrations and photographs are printed in grayscale, with the potential loss of important information encoded in the chrominance channels of these (a) (b) (c) images. We present an efficient contrast-enhancement algo- Fig. 1 Color-to-Grayscale mapping. (a) Isoluminant color image. rithm for color-to-grayscale image conversion that uses both (b) Image obtained using the standard color-to-grayscale conversion luminance and chrominance information. Our algorithm is algorithm. (c) Grayscale image obtained from (a) using our algorithm. about three orders of magnitude faster than previous optimi- zation-based methods, while providing some guarantees on important image properties. More specifically, our approach recognition algorithms and systems that have been designed preserves gray values present in the color image, ensures to operate on luminance information only. By completely ig- global consistency, and locally enforces luminance consis- noring chrominance, such methods cannot take advantage of tency. Our algorithm is completely automatic, scales well a rich source of information. with the number of pixels in the image, and can be efficiently In order to address these limitations, a few techniques implemented on modern GPUs. We also introduce an error have been recently proposed to convert color images into metric for evaluating the quality of color-to-grayscale trans- grayscale ones with enhanced contrast by taking both lumi- formations.
    [Show full text]